1
|
Tipado Z, Kuypers KPC, Sorger B, Ramaekers JG. Visual hallucinations originating in the retinofugal pathway under clinical and psychedelic conditions. Eur Neuropsychopharmacol 2024; 85:10-20. [PMID: 38648694 DOI: 10.1016/j.euroneuro.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Psychedelics like LSD (Lysergic acid diethylamide) and psilocybin are known to modulate perceptual modalities due to the activation of mostly serotonin receptors in specific cortical (e.g., visual cortex) and subcortical (e.g., thalamus) regions of the brain. In the visual domain, these psychedelic modulations often result in peculiar disturbances of viewed objects and light and sometimes even in hallucinations of non-existent environments, objects, and creatures. Although the underlying processes are poorly understood, research conducted over the past twenty years on the subjective experience of psychedelics details theories that attempt to explain these perceptual alterations due to a disruption of communication between cortical and subcortical regions. However, rare medical conditions in the visual system like Charles Bonnet syndrome that cause perceptual distortions may shed new light on the additional importance of the retinofugal pathway in psychedelic subjective experiences. Interneurons in the retina called amacrine cells could be the first site of visual psychedelic modulation and aid in disrupting the hierarchical structure of how humans perceive visual information. This paper presents an understanding of how the retinofugal pathway communicates and modulates visual information in psychedelic and clinical conditions. Therefore, we elucidate a new theory of psychedelic modulation in the retinofugal pathway.
Collapse
Affiliation(s)
- Zeus Tipado
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| |
Collapse
|
2
|
Pérez-Santos I, García-Cabezas MÁ, Cavada C. Mapping the primate thalamus: systematic approach to analyze the distribution of subcortical neuromodulatory afferents. Brain Struct Funct 2023:10.1007/s00429-023-02619-w. [PMID: 36890350 DOI: 10.1007/s00429-023-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Neuromodulatory afferents to thalamic nuclei are key for information transmission and thus play critical roles in sensory, motor, and limbic processes. Over the course of the last decades, diverse attempts have been made to map and describe subcortical neuromodulatory afferents to the primate thalamus, including axons using acetylcholine, serotonin, dopamine, noradrenaline, adrenaline, and histamine. Our group has been actively involved in this endeavor. The published descriptions on neuromodulatory afferents to the primate thalamus have been made in different laboratories and are not fully comparable due to methodological divergences (for example, fixation procedures, planes of cutting, techniques used to detect the afferents, different criteria for identification of thalamic nuclei…). Such variation affects the results obtained. Therefore, systematic methodological and analytical approaches are much needed. The present article proposes reproducible methodological and terminological frameworks for primate thalamic mapping. We suggest the use of standard stereotaxic planes to produce and present maps of the primate thalamus, as well as the use of the Anglo-American school terminology (vs. the German school terminology) for identification of thalamic nuclei. Finally, a public repository of the data collected under agreed-on frameworks would be a useful tool for looking up and comparing data on the structure and connections of primate thalamic nuclei. Important and agreed-on efforts are required to create, manage, and fund a unified and homogeneous resource of data on the primate thalamus. Likewise, a firm commitment of the institutions to preserve experimental brain material is much needed because neuroscience work with non-human primates is becoming increasingly rare, making earlier material still more valuable.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.,Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain. .,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.
| |
Collapse
|
3
|
Gaddis A, Lidstone DE, Nebel MB, Griffiths RR, Mostofsky SH, Mejia AF, Barrett FS. Psilocybin induces spatially constrained alterations in thalamic functional organizaton and connectivity. Neuroimage 2022; 260:119434. [PMID: 35792293 DOI: 10.1016/j.neuroimage.2022.119434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Classic psychedelics, such as psilocybin and LSD, and other serotonin 2A receptor (5-HT2AR) agonists evoke acute alterations in perception and cognition. Altered thalamocortical connectivity has been hypothesized to underlie these effects, which is supported by some functional MRI (fMRI) studies. These studies have treated the thalamus as a unitary structure, despite known differential 5-HT2AR expression and functional specificity of different intrathalamic nuclei. Independent Component Analysis (ICA) has been previously used to identify reliable group-level functional subdivisions of the thalamus from resting-state fMRI (rsfMRI) data. We build on these efforts with a novel data-maximizing ICA-based approach to examine psilocybin-induced changes in intrathalamic functional organization and thalamocortical connectivity in individual participants. METHODS Baseline rsfMRI data (n=38) from healthy individuals with a long-term meditation practice was utilized to generate a statistical template of thalamic functional subdivisions. This template was then applied in a novel ICA-based analysis of the acute effects of psilocybin on intra- and extra-thalamic functional organization and connectivity in follow-up scans from a subset of the same individuals (n=18). We examined correlations with subjective reports of drug effect and compared with a previously reported analytic approach (treating the thalamus as a single functional unit). RESULTS Several intrathalamic components showed significant psilocybin-induced alterations in spatial organization, with effects of psilocybin largely localized to the mediodorsal and pulvinar nuclei. The magnitude of changes in individual participants correlated with reported subjective effects. These components demonstrated predominant decreases in thalamocortical connectivity, largely with visual and default mode networks. Analysis in which the thalamus is treated as a singular unitary structure showed an overall numerical increase in thalamocortical connectivity, consistent with previous literature using this approach, but this increase did not reach statistical significance. CONCLUSIONS We utilized a novel analytic approach to discover psilocybin-induced changes in intra- and extra-thalamic functional organization and connectivity of intrathalamic nuclei and cortical networks known to express the 5-HT2AR. These changes were not observed using whole-thalamus analyses, suggesting that psilocybin may cause widespread but modest increases in thalamocortical connectivity that are offset by strong focal decreases in functionally relevant intrathalamic nuclei.
Collapse
Affiliation(s)
- Andrew Gaddis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Daniel E Lidstone
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland R Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stewart H Mostofsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda F Mejia
- Department of Statistics, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Doss MK, Madden MB, Gaddis A, Nebel MB, Griffiths RR, Mathur BN, Barrett FS. Models of psychedelic drug action: modulation of cortical-subcortical circuits. Brain 2022; 145:441-456. [PMID: 34897383 PMCID: PMC9014750 DOI: 10.1093/brain/awab406] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Classic psychedelic drugs such as psilocybin and lysergic acid diethylamide (LSD) have recaptured the imagination of both science and popular culture, and may have efficacy in treating a wide range of psychiatric disorders. Human and animal studies of psychedelic drug action in the brain have demonstrated the involvement of the serotonin 2A (5-HT2A) receptor and the cerebral cortex in acute psychedelic drug action, but different models have evolved to try to explain the impact of 5-HT2A activation on neural systems. Two prominent models of psychedelic drug action (the cortico-striatal thalamo-cortical, or CSTC, model and relaxed beliefs under psychedelics, or REBUS, model) have emphasized the role of different subcortical structures as crucial in mediating psychedelic drug effects. We describe these models and discuss gaps in knowledge, inconsistencies in the literature and extensions of both models. We then introduce a third circuit-level model involving the claustrum, a thin strip of grey matter between the insula and the external capsule that densely expresses 5-HT2A receptors (the cortico-claustro-cortical, or CCC, model). In this model, we propose that the claustrum entrains canonical cortical network states, and that psychedelic drugs disrupt 5-HT2A-mediated network coupling between the claustrum and the cortex, leading to attenuation of canonical cortical networks during psychedelic drug effects. Together, these three models may explain many phenomena of the psychedelic experience, and using this framework, future research may help to delineate the functional specificity of each circuit to the action of both serotonergic and non-serotonergic hallucinogens.
Collapse
Affiliation(s)
- Manoj K Doss
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Maxwell B Madden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Andrew Gaddis
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Roland R Griffiths
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Frederick S Barrett
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Punda H, Mardesic S, Filipovic N, Kosovic I, Benzon B, Ogorevc M, Bocina I, Kolic K, Vukojevic K, Saraga-Babic M. Expression Pattern of 5-HT (Serotonin) Receptors during Normal Development of the Human Spinal Cord and Ganglia and in Fetus with Cervical Spina Bifida. Int J Mol Sci 2021; 22:ijms22147320. [PMID: 34298938 PMCID: PMC8304340 DOI: 10.3390/ijms22147320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
The expression of 5-HT (serotonin) receptors (sr) was analyzed in the spinal cord and ganglia of 15 human conceptuses (5–10-weeks), and in the 9-week fetus with spina bifida. We used immunohistochemical method to detect sr-positive, apoptotic (caspase-3) and proliferating (Ki-67) cells, double immunofluorescence for co-localization with protein gene peptide (pgp) 9.5 and GFAP, as well as semiquantification and statistical measurements. Following the neurulation process, moderate (sr1 and sr2) and mild (sr3) expression characterized neuroblasts in the spinal cord and ganglia. During further development, sr1 expression gradually increased in the motoneurons, autonomic and sensory neurons, while sr2 and sr3 increased strongly in floor and roof plates. In the ganglia, sr3 expression increased during limited developmental period, while sr1 and sr2 increased throughout the investigated period. Co-expression of sr/pgp 9.5 characterized developing neurons, while sr/GFAP co-localized in the roof plate. In the spinal cord and ganglia of malformed fetus, weaker sr1 and sr2 and stronger sr3 expression accompanied morphological abnormalities. Anomalous roof plate morphology showed an excess of apoptotic and proliferating cells and increased sr3 expression. Our results indicate a human-species specific sr expression pattern, and the importance of sr1 in neuronal differentiation, and sr2 and sr3 in the control of the roof plate morphogenesis in normal and disturbed development.
Collapse
Affiliation(s)
- Hrvoje Punda
- Department of Diagnostic and Interventional Radiology, University Hospital in Split, 21000 Split, Croatia; (H.P.); (K.K.)
| | - Snjezana Mardesic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Ivona Kosovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Ivana Bocina
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Kresimir Kolic
- Department of Diagnostic and Interventional Radiology, University Hospital in Split, 21000 Split, Croatia; (H.P.); (K.K.)
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Mirna Saraga-Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
- Correspondence:
| |
Collapse
|
6
|
Maternal Fluoxetine Exposure Alters Cortical Hemodynamic and Calcium Response of Offspring to Somatosensory Stimuli. eNeuro 2019; 6:ENEURO.0238-19.2019. [PMID: 31843753 PMCID: PMC6978917 DOI: 10.1523/eneuro.0238-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/04/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022] Open
Abstract
Epidemiological studies have found an increased incidence of neurodevelopmental disorders in populations prenatally exposed to selective serotonin reuptake inhibitors (SSRIs). Optical imaging provides a minimally invasive way to determine if perinatal SSRI exposure has long-term effects on cortical function. Herein we probed the functional neuroimaging effects of perinatal SSRI exposure in a fluoxetine (FLX)-exposed mouse model. Epidemiological studies have found an increased incidence of neurodevelopmental disorders in populations prenatally exposed to selective serotonin reuptake inhibitors (SSRIs). Optical imaging provides a minimally invasive way to determine if perinatal SSRI exposure has long-term effects on cortical function. Herein we probed the functional neuroimaging effects of perinatal SSRI exposure in a fluoxetine (FLX)-exposed mouse model. While resting-state homotopic contralateral functional connectivity was unperturbed, the evoked cortical response to forepaw stimulation was altered in FLX mice. The stimulated cortex showed decreased activity for FLX versus controls, by both hemodynamic responses [oxyhemoglobin (HbO2)] and neuronal calcium responses (Thy1-GCaMP6f fluorescence). Significant alterations in both cortical HbO2 and calcium response amplitude were seen in the cortex ipsilateral to the stimulated paw in FLX as compared to controls. The cortical regions of largest difference in activation between FLX and controls also were consistent between HbO2 and calcium contrasts at the end of stimulation. Taken together, these results suggest a global loss of response signal amplitude in FLX versus controls. These findings indicate that perinatal SSRI exposure has long-term consequences on somatosensory cortical responses.
Collapse
|
7
|
Gentile S, Fusco ML. Placental and fetal effects of antenatal exposure to antidepressants or untreated maternal depression. J Matern Fetal Neonatal Med 2016; 30:1189-1199. [PMID: 27379818 DOI: 10.1080/14767058.2016.1209184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To assess systematically the effects of antidepressants and untreated maternal depression on human placenta and the developing fetus. METHODS Pertinent medical literature information was identified using MEDLINE/PubMed, SCOPUS and EMBASE. Electronic searches, limited to human studies published in English, provided 21 studies reporting primary data on placental and fetal effects of antidepressant exposure or untreated gestational depression. RESULTS The impact of antidepressants and non-medicated maternal depression on placental functioning and fetal biochemical architecture seems to be demonstrated, although its clinical significance remains unclear. More robust data seem to indicate that exposure to either antidepressants or untreated maternal depression may induce epigenetic changes and interfere with the physiological fetal behavior. Two cases of iatrogenic fetal tachyarrhythmia have also been reported. CONCLUSIONS Future research should clarify the clinical relevance of the impact of antidepressant and untreated maternal depression exposure on placental functioning. Moreover, ultrasound studies investigating fetal responses to antidepressants or maternal depressive symptoms are mandatory. This assessment should be performed during the whole duration of gestational period, when different fetal behavioral patterns become progressively detectable. Analyses of biochemical and epigenetic modifications associated with maternal mood symptoms and antidepressant treatment should also be implemented.
Collapse
Affiliation(s)
- Salvatore Gentile
- a ASL Salerno, Department of Mental Health, Mental Health Center Cava de' Tirreni, Vietri sul Mare , Salerno , Italy.,b Department of Neurosciences , Division of Perinatal Psychiatry, Medical School "Federico II", University of Naples , Naples , Italy
| | - Maria Luigia Fusco
- c Mental Health Institute, Torre Annunziata , Naples , Italy , and.,d Department of Developmental Psychology , Post-Graduate School of Psychotherapy (SIPGI), Torre Annunziata, Naples , Italy
| |
Collapse
|
8
|
Jalewa J, Joshi A, McGinnity TM, Prasad G, Wong-Lin K, Hölscher C. Neural circuit interactions between the dorsal raphe nucleus and the lateral hypothalamus: an experimental and computational study. PLoS One 2014; 9:e88003. [PMID: 24516577 PMCID: PMC3916338 DOI: 10.1371/journal.pone.0088003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/02/2014] [Indexed: 12/22/2022] Open
Abstract
Orexinergic/hypocretinergic (Ox) neurotransmission plays an important role in regulating sleep, as well as in anxiety and depression, for which the serotonergic (5-HT) system is also involved in. However, little is known regarding the direct and indirect interactions between 5-HT in the dorsal raphe nucleus (DRN) and Ox neurons in the lateral hypothalamus (LHA). In this study, we report the additional presence of 5-HT1BR, 5-HT2AR, 5-HT2CR and fast ligand-gated 5-HT3AR subtypes on the Ox neurons of transgenic Ox-enhanced green fluorescent protein (Ox-EGFP) and wild type C57Bl/6 mice using single and double immunofluorescence (IF) staining, respectively, and quantify the colocalization for each 5-HT receptor subtype. We further reveal the presence of 5-HT3AR and 5-HT1AR on GABAergic neurons in LHA. We also identify NMDAR1, OX1R and OX2R on Ox neurons, but none on adjacent GABAergic neurons. This suggests a one-way relationship between LHA's GABAergic and Ox neurons, wherein GABAergic neurons exerts an inhibitory effect on Ox neurons under partial DRN's 5-HT control. We also show that Ox axonal projections receive glutamatergic (PSD-95 immunopositive) and GABAergic (Gephyrin immunopositive) inputs in the DRN. We consider these and other available findings into our computational model to explore possible effects of neural circuit connection types and timescales on the DRN-LHA system's dynamics. We find that if the connections from 5-HT to LHA's GABAergic neurons are weakly excitatory or inhibitory, the network exhibits slow oscillations; not observed when the connection is strongly excitatory. Furthermore, if Ox directly excites 5-HT neurons at a fast timescale, phasic Ox activation can lead to an increase in 5-HT activity; no significant effect with slower timescale. Overall, our experimental and computational approaches provide insights towards a more complete understanding of the complex relationship between 5-HT in the DRN and Ox in the LHA.
Collapse
Affiliation(s)
- Jaishree Jalewa
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Alok Joshi
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - T. Martin McGinnity
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - Girijesh Prasad
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
- * E-mail: (CH); (KW)
| | - Christian Hölscher
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
- * E-mail: (CH); (KW)
| |
Collapse
|
9
|
Hodge E, Nelson CP, Miller S, Billington CK, Stewart CE, Swan C, Malarstig A, Henry AP, Gowland C, Melén E, Hall IP, Sayers I. HTR4 gene structure and altered expression in the developing lung. Respir Res 2013; 14:77. [PMID: 23890215 PMCID: PMC3750317 DOI: 10.1186/1465-9921-14-77] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meta-analyses of genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) spanning the 5-hydroxytryptamine receptor 4 (5-HT₄R) gene (HTR4) associated with lung function. The aims of this study were to i) investigate the expression profile of HTR4 in adult and fetal lung tissue and cultured airway cells, ii) further define HTR4 gene structure and iii) explore the potential functional implications of key SNPs using a bioinformatic approach. METHODS Following reverse transcription (RT)-PCR in human brain, 5' rapid amplification of cDNA ends (5' RACE) was used to examine the exonic structure of HTR4 at the 5' end. Quantitative (Q)-PCR was used to quantify HTR4 mRNA expression in total RNA from cultured airway cells and whole lung tissue. Publically available gene microarray data on fetal samples of estimated gestational age 7-22 weeks were mined for HTR4 expression. Immunohistochemistry (IHC; in adult and fetal lung tissue) and a radioligand binding assay (in cultured airway cells) were used to analyze 5-HT₄R protein expression. RESULTS IHC in adult lung, irrespective of the presence of chronic obstructive pulmonary disease (COPD), suggested low level expression of 5-HT₄R protein, which was most prominent in alveolar pneumocytes. There was evidence of differential 5-HT₄R protein levels during gestation in fetal lung, which was also evident in gene expression microarray data. HTR4 mRNA expression, assessed by Q-PCR, was <0.5% relative to brain in total adult lung tissue and in human airway smooth muscle (HASM) and bronchial epithelial cells (HBEC) derived from adult donors. Radioligand binding experiments also indicated that HBEC and HASM cells did not express a significant 5-HT₄R population. 5' RACE in brain identified a novel N-terminal variant, containing an extended N-terminal sequence. The functional significance of key HTR4 SNPs was investigated using the encyclopedia of DNA elements consortium (ENCODE) dataset. These analyses identified multiple alterations in regulatory motifs for transcription factors implicated in lung development, including Foxp1. CONCLUSIONS Taken together, these data suggest a role for HTR4 in lung development, which may at least in part explain the genetic association with lung function.
Collapse
Affiliation(s)
- Emily Hodge
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Carl P Nelson
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Suzanne Miller
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Charlotte K Billington
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Ceri E Stewart
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Caroline Swan
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Anders Malarstig
- Precision Medicine Unit, Pfizer Global Research and Development, Cambridge, UK
| | - Amanda P Henry
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Catherine Gowland
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs’ Children’s Hospital, Stockholm, Sweden
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
10
|
Sporadic male patients with intellectual disability: contribution of X-chromosome copy number variants. Eur J Med Genet 2012; 55:577-85. [PMID: 22659343 DOI: 10.1016/j.ejmg.2012.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/19/2012] [Accepted: 05/20/2012] [Indexed: 12/18/2022]
Abstract
Genome-wide array comparative genome hybridization has become the first in line diagnostic tool in the clinical work-up of patients presenting with intellectual disability. As a result, chromosome X-copy number variations are frequently being detected in routine diagnostics. We retrospectively reviewed genome wide array-CGH data in order to determine the frequency and nature of chromosome X-copy number variations (X-CNV) in a cohort of 2222 sporadic male patients with intellectual disability (ID) referred to us for diagnosis. In this cohort, 68 males were found to have at least one X-CNV (3.1%). However, correct interpretation of causality remains a challenging task, and is essential for proper counseling, especially when the CNV is inherited. On the basis of these data, earlier experience and literature data we designed and propose an algorithm that can be used to evaluate the clinical relevance of X-CNVs detected in sporadic male ID patients. Applied to our cohort, 19 male ID patients (0.85%) were found to carry a (likely) pathogenic X-CNV.
Collapse
|
11
|
Rodríguez JJ, Noristani HN, Hoover WB, Linley SB, Vertes RP. Serotonergic projections and serotonin receptor expression in the reticular nucleus of the thalamus in the rat. Synapse 2011; 65:919-28. [PMID: 21308802 DOI: 10.1002/syn.20920] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 01/24/2011] [Indexed: 11/11/2022]
Abstract
The reticular nucleus (RT) of the thalamus, a thin sheet of GABAergic neurons located between the external medullary lamina and the internal capsule of the thalamus, has functionally distinct afferent and efferent connections with thalamic nuclei, the neocortex, the basal forebrain and the brainstem. RT is critically positioned to rhythmically pace thalamocortical networks leading to the generation of spindle activity during the early phases of sleep and during absence (spike-wave) seizures. Serotonin, acting on 5-HT(1A) receptors on parvalbumin-containing cells of RT, has been implicated in this rhythmicity. However, the precise source(s) of 5-HT afferents to the RT remains to be determined. In the present study, we injected the retrograde tracer, Fluorogold, into dorsal and ventral regions of RT to determine the origins of raphe input to RT. We further characterized the distribution of 5-HT fibers to RT by using immunohistochemistry for 5-HT and for the 5HT transporter (SERT) detection. Finally, we described the presence of the two major postsynaptic 5-HT receptors in RT, 5-HT(1A) and 5-HT(2A) receptors. Our results show that the dorsal raphe nucleus and the supralemniscal nucleus (B9) of the midbrain are the principal sources of raphe projections to RT. In addition, serotonergic fibers (5-HT and SERT positive) were richly distributed throughout RT, and 5-HT(1A) and 5-HT(2A) receptors were highly expressed on RT neurons and dendrites. These findings suggest a significant 5-HT modulatory influence on GABAergic neurons of RT in the control of rhythmical (or spindle) activity in thalamocortical systems directly associated with sleep and possibly with absence seizures.
Collapse
Affiliation(s)
- José J Rodríguez
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | | | | | | | | |
Collapse
|