1
|
Priya I, Sharma I, Sharma S, Gupta S, Arora M, Bhat GR, Mahajan R, Kapoor N. Genetic association of DISC1 variant rs3738401 with susceptibility to Schizophrenia risk in North Indian population. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
2
|
Xu Y, Ren J, Ye H. Association between variations in the disrupted in schizophrenia 1 gene and schizophrenia: A meta-analysis. Gene 2018; 651:94-99. [PMID: 29410289 DOI: 10.1016/j.gene.2018.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/17/2017] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
Abstract
Schizophrenia is a severe psychiatric disorder. Genetic and functional studies have strongly implicated the disrupted in schizophrenia 1 gene (DISC1) as a candidate susceptibility gene for schizophrenia. Moreover, recent association studies have indicated that several DISC1 single nucleotide polymorphisms (SNPs) are associated with schizophrenia. However, the association is hardly replicate in different ethnic group. Here, we performed a meta-analysis of the association between DISC1 SNPs and schizophrenia in which the samples were divided into subgroups according to ethnicity. Both rs3738401 and rs821616 showed not significantly association with schizophrenia in the Caucasian, Asian, Japanese or Han Chinese populations.
Collapse
Affiliation(s)
- Yiliang Xu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| | - Jun Ren
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Hu G, Yang C, Zhao L, Fan Y, Lv Q, Zhao J, Zhu M, Guo X, Bao C, Xu A, Jie Y, Jiang Y, Zhang C, Yu S, Wang Z, Li Z, Yi Z. The interaction of NOS1AP, DISC1, DAOA, and GSK3B confers susceptibility of early-onset schizophrenia in Chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:187-193. [PMID: 29100974 DOI: 10.1016/j.pnpbp.2017.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 01/12/2023]
Abstract
Although many major breakthrough had identificated potential susceptibility genes for schizophrenia, the aetiology of schizophrenia is still unknown. In the present study, we focused on the N-methyl-Daspartate receptors related genes nitric oxide synthase 1 adaptor gene (NOS1AP), disrupted in schizophrenia 1 gene (DISC1), d-amino acid oxidase activator gene (DAOA), and glycogen synthase kinase 3-beta gene (GSK3B). A family-based genetic association study (459 Han Chinese subjects in 153 nuclear families) using 3 single nucleotide polymorphisms in NOS1AP, 2 in DISC1, 1 in DAOA and 1 in GSK3B was conducted. We found rs12742393 have just positive trend with schizophrenia (SCZ) (p=0.07) after FDR correction. NOS1AP mRNA and serum levels were significantly elevated in SCZ patients (p<0.001; p<0.001) compared with healthy control. However, expression Quantitative Trait Loci (eQTL) analysis have demonstrated that rs12742393 genotype were not significantly associated with the NOS1AP mRNA expression. GMDR identified a significant seven-locus interaction model involving (NOS1AP-rs348624, rs12742393, rs1415263, DISC1-rs821633, rs1000731, DAOA-rs2391191and GSK3B- rs6438552) with a good testing accuracy (0.72). Our finding suggested statistically significant role of interaction of NOS1AP, DISC1, DAOA, and GSK3B polymorphisms (NOS1AP-rs348624, rs12742393, rs1415263, DISC1-rs821633, rs1000731, DAOA-rs2391191and GSK3B-rs6438552) in EOS susceptibility.
Collapse
Affiliation(s)
- Guoqin Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; HuangpuDistrictMental Health Center, 1162 Qu Xi Road, Shanghai 200023, China
| | - Chengqing Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Lei Zhao
- Department of Psychiatry, Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong 266034, China
| | - Yong Fan
- Department of Psychiatry, Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong 266034, China
| | - Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Jing Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Minghuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Xiangqing Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Chenxi Bao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Ahong Xu
- Department of Psychiatry, Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong 266034, China
| | - Yong Jie
- Department of Psychiatry, Hongkou District Mental Health Center, 159 Tong Xing Road, Shanghai 200083, China
| | - Yaqing Jiang
- Department of Psychiatry, Hongkou District Mental Health Center, 159 Tong Xing Road, Shanghai 200083, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Zuowei Wang
- Department of Psychiatry, Hongkou District Mental Health Center, 159 Tong Xing Road, Shanghai 200083, China.
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pu Jian Road, Shanghai 200127, China.
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| |
Collapse
|
4
|
Norlelawati AT, Kartini A, Norsidah K, Ramli M, Tariq AR, Wan Rohani WT. Disrupted-in-Schizophrenia-1 SNPs and Susceptibility to Schizophrenia: Evidence from Malaysia. Psychiatry Investig 2015; 12:103-11. [PMID: 25670952 PMCID: PMC4310907 DOI: 10.4306/pi.2015.12.1.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/28/2014] [Accepted: 02/20/2014] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Even though the role of the DICS1 gene as a risk factor for schizophrenia is still unclear, there is substantial evidence from functional and cell biology studies that supports the connection of the gene with schizophrenia. The studies associating the DISC1 gene with schizophrenia in Asian populations are limited to East-Asian populations. Our study examined several DISC1 markers of schizophrenia that were identified in the Caucasian and East-Asian populations in Malaysia and assessed the role of rs2509382, which is located at 11q14.3, the mutual translocation region of the famous DISC1 translocation [t (1; 11) (p42.1; q14.3)]. METHODS We genotyped eleven single-neucleotide polymorphism (SNPs) within or related to DISC1 (rs821597, rs821616, rs4658971, rs1538979, rs843979, rs2812385, rs1407599, rs4658890, and rs2509382) using the PCR-RFLP methods. RESULTS In all, there were 575 participants (225 schizophrenic patients and 350 healthy controls) of either Malay or Chinese ethnicity. The case-control analyses found two SNPs that were associated with schizophrenia [rs4658971 (p=0.030; OR=1.43 (1.35-1.99) and rs1538979-(p=0.036; OR=1.35 (1.02-1.80)] and rs2509382-susceptibility among the males schizophrenics [p=0.0082; OR=2.16 (1.22-3.81)]. This is similar to the meta-analysis findings for the Caucasian populations. CONCLUSION The study supports the notion that the DISC1 gene is a marker of schizophrenia susceptibility and that rs2509382 in the mutual DISC1 translocation region is a susceptibility marker for schizophrenia among males in Malaysia. However, the finding of the study is limited due to possible genetic stratification and the small sample size.
Collapse
Affiliation(s)
- A. Talib Norlelawati
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Abdullah Kartini
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Kuzaifah Norsidah
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Musa Ramli
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Abdul Razak Tariq
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Wan Taib Wan Rohani
- Faculty of Medicine, University of Sultan Zainal Abidin, Terengganu, Malaysia
| |
Collapse
|
5
|
de Bartolomeis A, Latte G, Tomasetti C, Iasevoli F. Glutamatergic postsynaptic density protein dysfunctions in synaptic plasticity and dendritic spines morphology: relevance to schizophrenia and other behavioral disorders pathophysiology, and implications for novel therapeutic approaches. Mol Neurobiol 2013; 49:484-511. [PMID: 23999870 DOI: 10.1007/s12035-013-8534-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023]
Abstract
Emerging researches point to a relevant role of postsynaptic density (PSD) proteins, such as PSD-95, Homer, Shank, and DISC-1, in the pathophysiology of schizophrenia and autism spectrum disorders. The PSD is a thickness, detectable at electronic microscopy, localized at the postsynaptic membrane of glutamatergic synapses, and made by scaffolding proteins, receptors, and effector proteins; it is considered a structural and functional crossroad where multiple neurotransmitter systems converge, including the dopaminergic, serotonergic, and glutamatergic ones, which are all implicated in the pathophysiology of psychosis. Decreased PSD-95 protein levels have been reported in postmortem brains of schizophrenia patients. Variants of Homer1, a key PSD protein for glutamate signaling, have been associated with schizophrenia symptoms severity and therapeutic response. Mutations in Shank gene have been recognized in autism spectrum disorder patients, as well as reported to be associated to behaviors reminiscent of schizophrenia symptoms when expressed in genetically engineered mice. Here, we provide a critical appraisal of PSD proteins role in the pathophysiology of schizophrenia and autism spectrum disorders. Then, we discuss how antipsychotics may affect PSD proteins in brain regions relevant to psychosis pathophysiology, possibly by controlling synaptic plasticity and dendritic spine rearrangements through the modulation of glutamate-related targets. We finally provide a framework that may explain how PSD proteins might be useful candidates to develop new therapeutic approaches for schizophrenia and related disorders in which there is a need for new biological treatments, especially against some symptom domains, such as negative symptoms, that are poorly affected by current antipsychotics.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Section of Psychiatry, University School of Medicine "Federico II", Via Pansini 5, 80131, Naples, Italy,
| | | | | | | |
Collapse
|