1
|
Adiguzel E, Bozkurt NM, Unal G. Independent and combined effects of astaxanthin and omega-3 on behavioral deficits and molecular changes in a prenatal valproic acid model of autism in rats. Nutr Neurosci 2024; 27:590-606. [PMID: 37534957 DOI: 10.1080/1028415x.2023.2239575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Objectives: Autism is a devastating neurodevelopmental disorder and recent studies showed that omega-3 or astaxanthin might reduce autistic symptoms due to their anti-inflammatory properties. Therefore, we investigated the effects of omega-3 and astaxanthin on the VPA-induced autism model of rats.Material and Methods: Female Wistar albino pups (n = 40) were grouped as control, autistic, astaxanthin (2 mg/kg), omega-3 (200 mg/kg), and astaxanthin (2 mg/kg)+omega-3 (200 mg/kg). All groups except the control were prenatally exposed to VPA. Astaxanthin and omega-3 were orally administered from the postnatal day 41 to 68 and behavioral tests were performed between day 69 and 73. The rats were decapitated 24 h after the behavioral tests and hippocampal and prefrontal cytokines and 5-HT levels were analyzed by ELISA.Results: VPA rats have increased grooming behavior while decreased sociability (SI), social preference index (SPI), discrimination index (DI), and prepulse inhibition (PPI) compared to control. Additionally, IL-1β, IL-6, TNF-α, and IFN-γ levels increased while IL-10 and 5-HT levels decreased in both brain regions. Astaxanthin treatment raised SI, SPI, DI, PPI, and prefrontal IL-10 levels. It also raised 5-HT levels and decreased IL-6 levels in both brain regions. Omega-3 and astaxanthin + omega-3 increased the SI, SPI, DI, and PPI and decreased grooming behavior. Moreover, they increased IL-10 and 5-HT levels whereas decreased IL-1β, IL-6, TNF-α, IFN-γ levels in both brain regions.Conclusions: Our results showed that VPA administration mimicked the behavioral and molecular changes of autism in rats. Single and combined administration of astaxanthin and omega-3 improved the autistic-like behavioral and molecular changes in the VPA model of rats.
Collapse
Affiliation(s)
- Emre Adiguzel
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Nuh Mehmet Bozkurt
- Faculty of Pharmacy, Department of Pharmacology, Erciyes University, Kayseri, Türkiye
- Experimental Research and Application Center (DEKAM), Brain Research Unit, Erciyes University, Kayseri, Türkiye
- e-Neuro Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| | - Gokhan Unal
- Faculty of Pharmacy, Department of Pharmacology, Erciyes University, Kayseri, Türkiye
- Experimental Research and Application Center (DEKAM), Brain Research Unit, Erciyes University, Kayseri, Türkiye
- e-Neuro Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| |
Collapse
|
2
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
3
|
Ornoy A, Echefu B, Becker M. Valproic Acid in Pregnancy Revisited: Neurobehavioral, Biochemical and Molecular Changes Affecting the Embryo and Fetus in Humans and in Animals: A Narrative Review. Int J Mol Sci 2023; 25:390. [PMID: 38203562 PMCID: PMC10779436 DOI: 10.3390/ijms25010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Valproic acid (VPA) is a very effective anticonvulsant and mood stabilizer with relatively few side effects. Being an epigenetic modulator, it undergoes clinical trials for the treatment of advanced prostatic and breast cancer. However, in pregnancy, it seems to be the most teratogenic antiepileptic drug. Among the proven effects are congenital malformations in about 10%. The more common congenital malformations are neural tube defects, cardiac anomalies, urogenital malformations including hypospadias, skeletal malformations and orofacial clefts. These effects are dose related; daily doses below 600 mg have a limited teratogenic potential. VPA, when added to other anti-seizure medications, increases the malformations rate. It induces malformations even when taken for indications other than epilepsy, adding to the data that epilepsy is not responsible for the teratogenic effects. VPA increases the rate of neurodevelopmental problems causing reduced cognitive abilities and language impairment. It also increases the prevalence of specific neurodevelopmental syndromes like autism (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). High doses of folic acid administered prior to and during pregnancy might alleviate some of the teratogenic effect of VPA and other AEDs. Several teratogenic mechanisms are proposed for VPA, but the most important mechanisms seem to be its effects on the metabolism of folate, SAMe and histones, thus affecting DNA methylation. VPA crosses the human placenta and was found at higher concentrations in fetal blood. Its concentrations in milk are low, therefore nursing is permitted. Animal studies generally recapitulate human data.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
4
|
Anshu K, Nair AK, Srinath S, Laxmi TR. Altered Developmental Trajectory in Male and Female Rats in a Prenatal Valproic Acid Exposure Model of Autism Spectrum Disorder. J Autism Dev Disord 2023; 53:4390-4411. [PMID: 35976506 DOI: 10.1007/s10803-022-05684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
Early motor and sensory developmental delays precede Autism Spectrum Disorder (ASD) diagnosis and may serve as early indicators of ASD. The literature on sensorimotor development in animal models is sparse, male centered, and has mixed findings. We characterized early development in a prenatal valproic acid (VPA) model of ASD and found sex-specific developmental delays in VPA rats. We created a developmental composite score combining 15 test readouts, yielding a reliable gestalt measure spanning physical, sensory, and motor development, that effectively discriminated between VPA and control groups. Considering the heterogeneity in ASD phenotype, the developmental composite offers a robust metric that can enable comparison across different animal models of ASD and can serve as an outcome measure for early intervention studies.
Collapse
Affiliation(s)
- Kumari Anshu
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Ajay Kumar Nair
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, 53703, WI, USA
| | - Shoba Srinath
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India
| | - T Rao Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
5
|
Genetic ablation of metabotropic glutamate receptor 5 in rats results in an autism-like behavioral phenotype. PLoS One 2022; 17:e0275937. [PMCID: PMC9668160 DOI: 10.1371/journal.pone.0275937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication, and social skills, as well as repetitive and/or restrictive interests and behaviors. The severity of ASD varies from mild to severe, drastically interfering with the quality of life of affected individuals. The current occurrence of ASD in the United States is about 1 in 44 children. The precise pathophysiology of ASD is still unknown, but it is believed that ASD is heterogeneous and can arise due to genetic etiology. Although various genes have been implicated in predisposition to ASD, metabotropic glutamate receptor 5 (mGluR5) is one of the most common downstream targets, which may be involved in autism. mGluR5 signaling has been shown to play a crucial role in neurodevelopment and neural transmission making it a very attractive target for understanding the pathogenesis of ASD. In the present study, we determined the effect of genetic ablation of mGluR5 (Grm5) on an ASD-like phenotype using a rat model to better understand the role of mGluR5 signaling in behavior patterns and clinical manifestations of ASD. We observed that mGluR5 Ko rats exhibited exaggerated self-grooming and increased marble burying, as well as deficits in social novelty. Our results suggest that mGluR5 Ko rats demonstrate an ASD-like phenotype, specifically impaired social interaction as well as repetitive and anxiety-like behavior, which are correlates of behavior symptoms observed in individuals with ASD. The mGluR5 Ko rat model characterized in this study may be explored to understand the molecular mechanisms underlying ASD and for developing effective therapeutic modalities.
Collapse
|
6
|
Mehra S, Ul Ahsan A, Seth E, Chopra M. Critical Evaluation of Valproic Acid-Induced Rodent Models of Autism: Current and Future Perspectives. J Mol Neurosci 2022; 72:1259-1273. [DOI: 10.1007/s12031-022-02033-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
|
7
|
Lin J, Zhang K, Cao X, Zhao Y, Ullah Khan N, Liu X, Tang X, Chen M, Zhang H, Shen L. iTRAQ-Based Proteomics Analysis of Rat Cerebral Cortex Exposed to Valproic Acid before Delivery. ACS Chem Neurosci 2022; 13:648-663. [PMID: 35138800 DOI: 10.1021/acschemneuro.1c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder characterized by social and communication difficulties. Valproic acid (VPA) injection during pregnancy elicits autism-like behavior in the offspring, making it a classic animal model of ASD. However, the mechanisms involved have not yet been determined. In this study, we used iTRAQ (isobaric tags for relative and absolute quantification) proteomics analysis of the cerebral cortex of a VPA rat model (VPA group) and controls (CON group). The results showed that 79 differentially expressed proteins (DEPs) were identified between the VPA group and the CON group. Based on bioinformatics analysis, the DEPs were mainly enriched at synapses, especially glutamatergic synapses and GABAergic synapses. Some DEPs were involved in energy metabolism, thyroid hormone synthesis pathway, and Na+-K+-ATPase. Cytoskeleton and endoplasmic reticulum (ER) stress-related proteins were also involved. Some DEPs matched either the ASD gene database or previous reports on cerebral cortical transcriptome studies in VPA rat models. Dysregulation of these DEPs in the cerebral cortex of VPA rats may be responsible for autism-like behavior in rats. We also found that some DEPs were associated with neuropsychiatric disorders, implying that these diseases share common signaling pathways and mechanisms. Moreover, increased expression of DEPs was associated with energy metabolism in the cerebral cortex of VPA rats, implying that ASD may be a distinct type of mitochondrial dysfunction that requires further investigation.
Collapse
Affiliation(s)
- Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, P. R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen 518071, P. R. China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, Georgia 30322, United States
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen 518071, P. R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
8
|
Gu Y, Han Y, Ren S, Zhang B, Zhao Y, Wang X, Zhang S, Qin J. Correlation among gut microbiota, fecal metabolites and autism-like behavior in an adolescent valproic acid-induced rat autism model. Behav Brain Res 2022; 417:113580. [PMID: 34555431 DOI: 10.1016/j.bbr.2021.113580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022]
Abstract
This study aims to understand the relationship between fecal metabolites and gut microbiota in an adolescent valproic acid-induced rat autism model (VPA-exposed offspring). We analyzed the fecal samples of VPA-exposed offspring using 16S rRNA gene sequencing and untargeted metabolomics. Autism-like behavior was evaluated by a three-chamber sociability test and a self-grooming test. Based on these data, we analyzed the association among fecal metabolites, gut microbiota and autism-like behavior. Behavioral tests showed that VPA-exposed offspring displayed typical autism-like behavior. Forty-nine named differential fecal metabolites and 14 enriched KEGG pathways were identified between the VPA and control groups. Five fecal metabolites may be used as characteristic metabolites. The richness and diversity of gut microbiota did not differ between the two groups, while the overall composition of gut microbiota was significantly different. Candidatus_Saccharimonas, Desulfovibrio, [Eubacterium]_xylanophilum_group and Ruminococcus_2 were the characteristic genera of VPA-exposed offspring. Correlation analysis revealed a tight relationship among gut microbiota, fecal metabolites and autistic behavior in VPA-exposed offspring. This study illustrates that specific alterations in gut microbiota and fecal metabolites may be regarded as characteristics of VPA-exposed offspring. The characteristic gut microbiota and fecal metabolites as well as their relationship may play a crucial role in autism-like behavior caused by prenatal exposure to VPA.
Collapse
Affiliation(s)
- Youyu Gu
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - Ying Han
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | - Shimeng Ren
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - Bi Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - Yihan Zhao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Xiaoxi Wang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
| | - Shaobin Zhang
- Beijing Gutgene Technology Co. Ltd, Beijing 100085, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
9
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
10
|
Dichter GS, Rodriguez-Romaguera J. Anhedonia and Hyperhedonia in Autism and Related Neurodevelopmental Disorders. Curr Top Behav Neurosci 2022; 58:237-254. [PMID: 35397066 DOI: 10.1007/7854_2022_312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although autism spectrum disorder (ASD) is defined by impaired social communication and restricted and repetitive behaviors and interests, ASD is also characterized by impaired motivational processes. The "social motivation theory of autism" describes how social motivation disruptions in ASD in early childhood may impede the drive to engage in reciprocal social behaviors and ultimately interfere with the development of neural networks critical for social communication (Chevallier et al., Trends Cogn Sci 16:231-239, 2012b). Importantly, clinical studies and preclinical research using model organisms for ASD indicate that motivational impairments in ASD are not constrained to social rewards but are evident in response to a range of nonsocial rewards as well. Additionally, translational studies on certain genetically defined neurodevelopmental disorders associated with ASD indicate that these syndromic forms of ASD are also characterized by motivational deficits and mesolimbic dopamine impairments. In this chapter we summarize clinical and preclinical research relevant to reward processing impairments in ASD and related neurodevelopmental disorders. We also propose a nosology to describe reward processing impairments in these disorders that uses a three-axes model. In this triaxial nosology, the first axis defines the direction of the reward response (i.e., anhedonic, hyperhedonic); the second axis defines the construct of the reward process (e.g., reward liking, reward wanting); and the third axis defines the context of the reward response (e.g., social, nonsocial). A more precise nosology for describing reward processing impairments in ASD and related neurodevelopmental disorders will aid in the translation of preclinical research to clinical investigations which will ultimately help to speed up the development of interventions that target motivational systems for ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jose Rodriguez-Romaguera
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Wang B, Dong H, Li H, Yue X, Xie L. A Probable Way Vitamin D Affects Autism Spectrum Disorder: The Nitric Oxide Signaling Pathway. Front Psychiatry 2022; 13:908895. [PMID: 35722582 PMCID: PMC9199365 DOI: 10.3389/fpsyt.2022.908895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Vitamin D (VD) deficiency during pregnancy and early brain development is an important environmental risk factor for autism spectrum disorder (ASD). Its specific mechanism of action is still unclear. However, one study on the correlation between metabolomics and VD levels in children with ASD has found that the whole-blood arginine (Arg) levels of children with ASD are significantly negatively correlated with serum VD levels, suggesting that the effect of VD on ASD may be related to the signaling pathway involving Arg. Arg is a precursor of nitric oxide (NO), and changes in its levels most directly affect NO levels and signal transduction pathways. NO, a biologically active free radical, is both a neurotransmitter and a neuromodulator in the central nervous system and is related to the pathogeneses of various neurological diseases. The NO signaling pathway is not only affected by VD levels but also closely related to ASD through a series of mechanisms, such as neurotransmitter imbalance, immune disorders, and oxidative stress. Therefore, the effect of VD on ASD may be achieved via regulation of the NO signaling pathway. The current review discusses the relationship among VD, NO, and ASD as suggested by a large body of evidence in the literature in an effort to provide clues for researchers on the pathogenesis of ASD and the mechanism of VD's impact on ASD.
Collapse
Affiliation(s)
- Bing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China.,Department of Developmental and Behavioral Pediatrics, First Affiliated Hospital of Jilin University, Changchun, China
| | - HanYu Dong
- Department of Developmental and Behavioral Pediatrics, First Affiliated Hospital of Jilin University, Changchun, China
| | - HongHua Li
- Department of Developmental and Behavioral Pediatrics, First Affiliated Hospital of Jilin University, Changchun, China
| | - XiaoJing Yue
- Department of Developmental and Behavioral Pediatrics, First Affiliated Hospital of Jilin University, Changchun, China
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
12
|
Li S, Qi J, Sun Y, Gao X, Ma J, Zhao S. An integrated RNA-Seq and network study reveals that valproate inhibited progesterone production in human granulosa cells. J Steroid Biochem Mol Biol 2021; 214:105991. [PMID: 34487832 DOI: 10.1016/j.jsbmb.2021.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Valproate (VPA) is an antiepileptic drug (AEDs) with an ideal effect against epilepsy as well as other neuropsychiatric diseases. There is considerable evidence that women taking VPA are prone to reproductive endocrine disorders. However, few studies have been published about VPA effects on human ovarian granulosa cells. METHODS By treating human ovarian granulosa cell line KGN with VPA, the cell viability and progesterone production function were evaluated. RNA-sequencing was applied to uncover the global gene expression upon VPA treatment. RESULTS We revealed that VPA dose-dependently repressed the viability of KGN. VPA treatment at 600 μM inhibited the progesterone production. The mRNA and protein expression of CYP11A1 and STAR, two key enzymes in the biosynthesis of progesterone, were both suppressed. Gene set enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis of the transcriptome revealed classical functions of VPA as a neuromodulator and regulator of histone acetylation modifications. In addition to this, VPA commonly affected many steroid metabolism related genes in follicle cells, such as promoting the expression of vitamin D receptor (VDR). CONCLUSION Our findings suggest that VPA caused steroids metabolism pathways disturbance related with ovarian function and inhibited progesterone biosynthesis by inhibiting the expression of steroidogenesis genes. Our research may provide theoretical basis for the better use of VPA and the possible ways to counteract its side effects.
Collapse
Affiliation(s)
- Shumin Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Junfeng Qi
- Department of Plastic Surgery, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, Shandong, 250012, China
| | - Yu Sun
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Xueying Gao
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
13
|
Thornton AM, Humphrey RM, Kerr DM, Finn DP, Roche M. Increasing Endocannabinoid Tone Alters Anxiety-Like and Stress Coping Behaviour in Female Rats Prenatally Exposed to Valproic Acid. Molecules 2021; 26:molecules26123720. [PMID: 34207178 PMCID: PMC8233839 DOI: 10.3390/molecules26123720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Given the sex differences evident in the prevalence of autism, there is an increased awareness of the importance of including females in autism research to determine sexual dimorphism and sex-specific treatments. Cannabinoids and endocannabinoid modulators have been proposed as potential novel treatments for autism-related symptoms; however, few studies to date have examined if these pharmacological agents elicit sex-specific effects. The aim of the present study was to use the valproic acid (VPA) model of autism to compare the behavioural responses of male and female rats and examine the effects of increasing endocannabinoid tone on the behavioural responses of VPA-exposed female rats. These data revealed that VPA-exposed male, but not female, rats exhibit reduced social responding in the three-chamber and olfactory habituation/dishabituation (OHD) test during adolescence. In comparison, VPA-exposed female, but not male, adolescent rats exhibited anxiety-like behaviour in the elevated plus maze (EPM) and open field test (OFT). In VPA-exposed female rats, increasing 2-AG levels augmented anxiety-like behaviour in the EPM and OFT, while increasing AEA levels reduced stress coping behaviour in the swim stress test. These data highlight sexual dimorphic behaviours in the VPA model and indicate that enhancing endocannabinoid levels may exacerbate negative affective behaviour in VPA-exposed females. Thus, considerations should be paid to the possible sex-specific effects of cannabinoids for the treatment of symptoms associated with autism.
Collapse
Affiliation(s)
- Aoife M. Thornton
- Physiology, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (A.M.T.); (R.M.H.)
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
| | - Rachel M. Humphrey
- Physiology, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (A.M.T.); (R.M.H.)
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Daniel M. Kerr
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
| | - David P. Finn
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (A.M.T.); (R.M.H.)
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- Correspondence:
| |
Collapse
|
14
|
Chaliha D, Albrecht M, Vaccarezza M, Takechi R, Lam V, Al-Salami H, Mamo J. A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism. Dev Neurosci 2020; 42:12-48. [DOI: 10.1159/000509109] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
|
15
|
Vitamin D Supplementation Rescues Aberrant NF-κB Pathway Activation and Partially Ameliorates Rett Syndrome Phenotypes in Mecp2 Mutant Mice. eNeuro 2020; 7:ENEURO.0167-20.2020. [PMID: 32393583 PMCID: PMC7253640 DOI: 10.1523/eneuro.0167-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/28/2023] Open
Abstract
Rett syndrome (RTT) is a severe, progressive X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MECP2. We previously identified aberrant NF-κB pathway upregulation in brains of Mecp2-null mice and demonstrated that genetically attenuating NF-κB rescues some characteristic neuronal RTT phenotypes. These results raised the intriguing question of whether NF-κB pathway inhibitors might provide a therapeutic avenue in RTT. Here, we investigate whether the known NF-κB pathway inhibitor vitamin D ameliorates neuronal phenotypes in Mecp2-mutant mice. Vitamin D deficiency is prevalent among RTT patients, and we find that Mecp2-null mice similarly have significantly reduced 25(OH)D serum levels compared with wild-type littermates. We identify that vitamin D rescues aberrant NF-κB pathway activation and reduced neurite outgrowth of Mecp2 knock-down cortical neurons in vitro. Further, dietary supplementation with vitamin D in early symptomatic male Mecp2 hemizygous null and female Mecp2 heterozygous mice ameliorates reduced neocortical dendritic morphology and soma size phenotypes and modestly improves reduced lifespan of Mecp2-nulls. These results elucidate fundamental neurobiology of RTT and provide foundation that NF-κB pathway inhibition might be a therapeutic target for RTT.
Collapse
|
16
|
Neurobiology of sensory processing in autism spectrum disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:161-181. [PMID: 32711809 DOI: 10.1016/bs.pmbts.2020.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Altered sensory processing and perception has been one of the characteristics of autism spectrum disorder (ASD). In this chapter, we review the neural underpinnings of sensory abnormalities of ASD by examining the literature on clinical, behavioral and neurobiological evidence that underlies the main patterns of sensory integration function and dysfunction. Furthermore, neural differences in anatomy, function and connectivity of different regions underlying sensory processing are also discussed. We conclude that sensory integration intervention is built on the premise of neuroplasticity to improve function and behavior for individuals with ASD.
Collapse
|
17
|
Hughes EM, Calcagno P, Clarke M, Sanchez C, Smith K, Kelly JP, Finn DP, Roche M. Prenatal exposure to valproic acid reduces social responses and alters mRNA levels of opioid receptor and pre-pro-peptide in discrete brain regions of adolescent and adult male rats. Brain Res 2020; 1732:146675. [PMID: 31978376 DOI: 10.1016/j.brainres.2020.146675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/21/2022]
Abstract
Altered social behaviours are a hallmark of several psychiatric and developmental disorders. Clinical and preclinical data have demonstrated that prenatal exposure to valproic acid (VPA), an anti-epileptic and mood stabiliser, is associated with impaired social responses, and thus provides a useful model for the evaluation of neurobiological mechanisms underlying altered social behaviours. The opioid system is widely recognised to regulate and modulate social behaviours, however few studies have examined if the endogenous opioid system is altered in animal models of social impairment. The present study examined social behavioural responses of adolescent and adult male rats prenatally exposed to VPA, and the expression of mRNA encoding opioid receptors and pre-pro-peptides in discrete brain regions. Adolescent and adult rats prenatally exposed to VPA spent less time engaging in social behaviours in the direct social interaction test and exhibited reduced sociability and social novelty preference in the 3-chamber sociability test, compared to saline-treated counterparts. The VPA-exposed adolescent rats exhibited significantly reduced kappa opioid receptor (oprk1) and pre-pro-dynorphin (pdyn) mRNA expression in the cerebral cortex, and reduced oprk1 and nociceptin/orphanin FQ (oprl1) mRNA expression in the hypothalamus. Adult rats prenatally exposed to VPA exhibited decreased mRNA expression of oprk1 and pdyn in hypothalamus, reduced pro-opiomelanocortin(pomc) in the striatum and an increase in delta opioid receptor (oprd1) mRNA in the amygdaloid cortex, when compared to saline-treated counterparts. Mu opioid receptor (oprm1) mRNA expression did not differ between saline and VPA-exposed rats in any region examined. The data demonstrate that impaired social behaviours in adolescent and adult rats prenatally exposed to VPA is accompanied by altered mRNA expression of opioid receptors and pre-pro-peptides in a region specific manner. In particular, both adolescent and adult VPA-exposed rats exhibit reduced oprk1-pdyn mRNA expression in several brain regions, which are associated with deficits in social behavioural responding in the model.
Collapse
Affiliation(s)
- Edel M Hughes
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Patricia Calcagno
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Morgane Clarke
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland
| | | | | | - John P Kelly
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
18
|
Effects of vitamin D on drugs: Response and disposal. Nutrition 2020; 74:110734. [PMID: 32179384 DOI: 10.1016/j.nut.2020.110734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/11/2022]
Abstract
Vitamin D supplementation and vitamin D deficiency are common in clinical experience and in daily life. Vitamin D not only promotes calcium absorption and immune regulation, but also changes drug effects (pharmacodynamics and adverse reactions) and drug disposal in vivo when combined with various commonly used clinical drugs. The extensive physiological effects of vitamin D may cause synergism effects or alleviation of adverse reactions, and vitamin D's affect on drugs in vivo disposal through drug transporters or metabolic enzymes may also lead to changes in drug effects. Herein, the effects of vitamin D combined with commonly used drugs were reviewed from the perspective of drug efficacy and adverse reactions. The effects of vitamin D on drug transport and metabolism were summarized and analyzed. Hopefully, more attention will be paid to vitamin D supplementation and deficiency in clinical treatment and drug research and development.
Collapse
|
19
|
Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. ADVANCES IN NEUROBIOLOGY 2020; 24:97-141. [PMID: 32006358 DOI: 10.1007/978-3-030-30402-7_4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous consortium of pervasive development disorders (PDD) which ranges from atypical autism, autism, and Asperger syndrome affecting brain in the developmental stage. This debilitating neurodevelopmental disorder results in both core as well as associated symptoms. Core symptoms observed in autistic patients are lack of social interaction, pervasive, stereotyped, and restricted behavior while the associated symptoms include irritability, anxiety, aggression, and several comorbid disorders.ASD is a polygenic disorder and is multifactorial in origin. Copy number variations (CNVs) of several genes that regulate the synaptogenesis and signaling pathways are one of the major factors responsible for the pathogenesis of autism. The complex integration of various CNVs cause mutations in the genes which code for molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding proteins as well as signaling pathways (PTEN and mTOR pathways). These mutated genes are responsible for affecting synaptic transmission by causing plasticity dysfunction responsible, in turn, for the expression of ASD.Epigenetic modifications affecting DNA transcription and various pre-natal and post-natal exposure to a variety of environmental factors are also precipitating factors for the occurrence of ASD. All of these together cause dysregulation of glutamatergic signaling as well as imbalance in excitatory: inhibitory pathways resulting in glial cell activation and release of inflammatory mediators responsible for the aberrant social behavior which is observed in autistic patients.In this chapter we review and provide insight into the intricate integration of various genetic, epigenetic, and environmental factors which play a major role in the pathogenesis of this disorder and the mechanistic approach behind this integration.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
20
|
Developmental Vitamin D Deficiency Produces Behavioral Phenotypes of Relevance to Autism in an Animal Model. Nutrients 2019; 11:nu11051187. [PMID: 31137843 PMCID: PMC6566814 DOI: 10.3390/nu11051187] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/11/2023] Open
Abstract
Emerging evidence suggests that gestational or developmental vitamin D (DVD) deficiency is associated with an increased risk of autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder characterized by impairments in social interaction, lack of verbal and non-verbal communications, stereotyped repetitive behaviors and hyper-activities. There are several other clinical features that are commonly comorbid with ASD, including olfactory impairments, anxiety and delays in motor development. Here we investigate these features in an animal model related to ASD-the DVD-deficient rat. Compared to controls, both DVD-deficient male and female pups show altered ultrasonic vocalizations and stereotyped repetitive behavior. Further, the DVD-deficient animals had delayed motor development and impaired motor control. Adolescent DVD-deficient animals had impaired reciprocal social interaction, while as adults, these animals were hyperactive. The DVD-deficient model is associated with a range of behavioral features of interest to ASD.
Collapse
|
21
|
Hajisoltani R, Karimi SA, Rahdar M, Davoudi S, Borjkhani M, Hosseinmardi N, Behzadi G, Janahmadi M. Hyperexcitability of hippocampal CA1 pyramidal neurons in male offspring of a rat model of autism spectrum disorder (ASD) induced by prenatal exposure to valproic acid: A possible involvement of Ih channel current. Brain Res 2019; 1708:188-199. [DOI: 10.1016/j.brainres.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
|
22
|
Kuo HY, Liu FC. Molecular Pathology and Pharmacological Treatment of Autism Spectrum Disorder-Like Phenotypes Using Rodent Models. Front Cell Neurosci 2018; 12:422. [PMID: 30524240 PMCID: PMC6262306 DOI: 10.3389/fncel.2018.00422] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a high prevalence rate. The core symptoms of ASD patients are impaired social communication and repetitive behavior. Genetic and environmental factors contribute to pathophysiology of ASD. Regarding environmental risk factors, it is known that valproic acid (VPA) exposure during pregnancy increases the chance of ASD among offspring. Over a decade of animal model studies have shown that maternal treatment with VPA in rodents recapitulates ASD-like pathophysiology at a molecular, cellular and behavioral level. Here, we review the prevailing theories of ASD pathogenesis, including excitatory/inhibitory imbalance, neurotransmitter dysfunction, dysfunction of mTOR and endocannabinoid signaling pathways, neuroinflammation and epigenetic alterations that have been associated with ASD. We also describe the evidence linking neuropathological changes to ASD-like behavioral abnormalities in maternal VPA-treated rodents. In addition to obtaining an understanding of the neuropathological mechanisms, the VPA-induced ASD-like animal models also serve as a good platform for testing pharmacological reagents that might be use treating ASD. We therefore have summarized the various pharmacological studies that have targeted the classical neurotransmitter systems, the endocannabinoids, the Wnt signal pathway and neuroinflammation. These approaches have been shown to often be able to ameliorate the ASD-like phenotypes induced by maternal VPA treatments.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
23
|
Bhandari R, Paliwal JK, Kuhad A. Naringenin and its nanocarriers as potential phytotherapy for autism spectrum disorders. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
24
|
Daghsni M, Rima M, Fajloun Z, Ronjat M, Brusés JL, M'rad R, De Waard M. Autism throughout genetics: Perusal of the implication of ion channels. Brain Behav 2018; 8:e00978. [PMID: 29934975 PMCID: PMC6085908 DOI: 10.1002/brb3.978] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) comprises a group of neurodevelopmental psychiatric disorders characterized by deficits in social interactions, interpersonal communication, repetitive and stereotyped behaviors and may be associated with intellectual disabilities. The description of ASD as a synaptopathology highlights the importance of the synapse and the implication of ion channels in the etiology of these disorders. METHODS A narrative and critical review of the relevant papers from 1982 to 2017 known by the authors was conducted. RESULTS Genome-wide linkages, association studies, and genetic analyses of patients with ASD have led to the identification of several candidate genes and mutations linked to ASD. Many of the candidate genes encode for proteins involved in neuronal development and regulation of synaptic function including ion channels and actors implicated in synapse formation. The involvement of ion channels in ASD is of great interest as they represent attractive therapeutic targets. In agreement with this view, recent findings have shown that drugs modulating ion channel function are effective for the treatment of certain types of patients with ASD. CONCLUSION This review describes the genetic aspects of ASD with a focus on genes encoding ion channels and highlights the therapeutic implications of ion channels in the treatment of ASD.
Collapse
Affiliation(s)
- Marwa Daghsni
- L'institut du Thorax, INSERM UMR1087/CNRS UMR6291, Université de Nantes, Nantes, France.,Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, 1007, Tunis, Tunisie
| | - Mohamad Rima
- Department of Neuroscience, Institute of Biology Paris-Seine, CNRS UMR 8246, INSERM U1130, Sorbonne Universités, Paris, France
| | - Ziad Fajloun
- Azm Center for Research in Biotechnology and Its Application, Lebanese University, Tripoli, Lebanon
| | - Michel Ronjat
- L'institut du Thorax, INSERM UMR1087/CNRS UMR6291, Université de Nantes, Nantes, France.,LabEx Ion Channels Science and Therapeutics, Nice, France
| | - Juan L Brusés
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY, USA
| | - Ridha M'rad
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, 1007, Tunis, Tunisie.,Service des Maladies Congénitales et Héréditaires, Hôpital Charles Nicolle, Tunis, Tunisie
| | - Michel De Waard
- L'institut du Thorax, INSERM UMR1087/CNRS UMR6291, Université de Nantes, Nantes, France.,LabEx Ion Channels Science and Therapeutics, Nice, France
| |
Collapse
|
25
|
Ali A, Cui X, Alexander S, Eyles D. The placental immune response is dysregulated developmentally vitamin D deficient rats: Relevance to autism. J Steroid Biochem Mol Biol 2018; 180:73-80. [PMID: 29408533 DOI: 10.1016/j.jsbmb.2018.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 01/09/2023]
Abstract
Emerging evidence suggests that maternal or developmental vitamin D (DVD) deficiency is a risk factor for Autism Spectrum Disorders. A well-established association has also been found between gestational infection and increased incidence of autism. Placenta mediates the maternal immune response in respect to the foetus. The placenta is also a major source of vitamin D and locally produced vitamin D is an essential regulator of immune function during pregnancy. Here we investigate the effects of DVD-deficiency on baseline placental immune status and in response to the well-known viral and bacterial immune activating agents polyriboinosinic-polyribocytidylic acid (poly(I:C) and lipopolysaccharide (LPS). We show DVD-deficiency does not affect baseline inflammatory cytokines in placenta. However, when challenged with poly(I:C) but not LPS, DVD-deficient placentas from male foetuses had higher production of IL-6 and 1L-1β compared to control placentas. This suggests the developing DVD-deficient male foetus may be particularly vulnerable to maternal viral exposures. This in turn may have adverse implications for the developing male brain. In conclusion, a dysregulated placental immune response may provide a plausible mechanism for both the epidemiological links between DVD-deficiency and increased male incidence of developmental conditions such as autism.
Collapse
Affiliation(s)
- Asad Ali
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Suzanne Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Brisbane, QLD, 4076, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Brisbane, QLD, 4076, Australia.
| |
Collapse
|
26
|
El-Ansary A, Al-Salem HS, Asma A, Al-Dbass A. Glutamate excitotoxicity induced by orally administered propionic acid, a short chain fatty acid can be ameliorated by bee pollen. Lipids Health Dis 2017; 16:96. [PMID: 28532421 PMCID: PMC5440900 DOI: 10.1186/s12944-017-0485-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rodent models may guide investigations towards identifying either environmental neuro-toxicants or drugs with neuro-therapeutic effects. This work aims to study the therapeutic effects of bee pollen on brain glutamate excitotoxicity and the impaired glutamine-glutamate- gamma amino butyric acid (GABA) circuit induced by propionic acid (PPA), a short chain fatty acid, in rat pups. METHODS Twenty-four young male Western Albino rats 3-4 weeks of age, and 45-60 g body weight were enrolled in the present study. They were grouped into four equal groups: Group 1, the control received phosphate buffered saline at the same time of PPA adminstration; Group 2, received 750 mg/kg body weight divided into 3 equal daily doses and served as acute neurotoxic dose of PPA; Group 3, received 750 mg/kg body weight divided in 10 equal doses of 75 mg/kg body weight/day, and served as the sub-acute group; and Group 4, the therapeutic group, was treated with bee pollen (50 mg/kg body weight) for 30 days after acute PPA intoxication. GABA, glutamate and glutamine were measured in the brain homogenates of the four groups. RESULTS The results showed that PPA caused multiple signs of excitotoxicity, as measured by the elevation of glutamate and the glutamate/glutamine ratio and the decrease of GABA, glutamine and the GABA/glutamate ratio. Bee pollen was effective in counteracting the neurotoxic effects of PPA to a certain extent. CONCLUSION In conclusion, bee pollen demonstrates ameliorating effects on glutamate excitotoxicity and the impaired glutamine-glutamate-GABA circuit as two etiological mechanisms in PPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh, Saudi Arabia. .,Autism Research and Treatment Center, Riyadh, Saudi Arabia. .,Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia. .,Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Huda S Al-Salem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alqahtani Asma
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-Dbass
- Department of Biochemistry, Science College, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|