1
|
Clément P, Schlage WK, Hoeng J. Recent advances in the development of portable technologies and commercial products to detect Δ 9-tetrahydrocannabinol in biofluids: a systematic review. J Cannabis Res 2024; 6:9. [PMID: 38414071 PMCID: PMC10898188 DOI: 10.1186/s42238-024-00216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The primary components driving the current commercial fascination with cannabis products are phytocannabinoids, a diverse group of over 100 lipophilic secondary metabolites derived from the cannabis plant. Although numerous phytocannabinoids exhibit pharmacological effects, the foremost attention has been directed towards Δ9-tetrahydrocannabinol (THC) and cannabidiol, the two most abundant phytocannabinoids, for their potential human applications. Despite their structural similarity, THC and cannabidiol diverge in terms of their psychotropic effects, with THC inducing notable psychological alterations. There is a clear need for accurate and rapid THC measurement methods that offer dependable, readily accessible, and cost-effective analytical information. This review presents a comprehensive view of the present state of alternative technologies that could potentially facilitate the creation of portable devices suitable for on-site usage or as personal monitors, enabling non-intrusive THC measurements. METHOD A literature survey from 2017 to 2023 on the development of portable technologies and commercial products to detect THC in biofluids was performed using electronic databases such as PubMed, Scopus, and Google Scholar. A systematic review of available literature was conducted using Preferred Reporting Items for Systematic. Reviews and Meta-analysis (PRISMA) guidelines. RESULTS Eighty-nine studies met the selection criteria. Fifty-seven peer-reviewed studies were related to the detection of THC by conventional separation techniques used in analytical laboratories that are still considered the gold standard. Studies using optical (n = 12) and electrochemical (n = 13) portable sensors and biosensors were also identified as well as commercially available devices (n = 7). DISCUSSION The landscape of THC detection technology is predominantly shaped by immunoassay tests, owing to their established reliability. However, these methods have distinct drawbacks, particularly for quantitative analysis. Electrochemical sensing technology holds great potential to overcome the challenges of quantification and present a multitude of advantages, encompassing the possibility of miniaturization and diverse modifications to amplify sensitivity and selectivity. Nevertheless, these sensors have considerable limitations, including non-specific interactions and the potential interference of compounds and substances existing in biofluids. CONCLUSION The foremost challenge in THC detection involves creating electrochemical sensors that are both stable and long-lasting while exhibiting exceptional selectivity, minimal non-specific interactions, and decreased susceptibility to matrix interferences. These aspects need to be resolved before these sensors can be successfully introduced to the market.
Collapse
Affiliation(s)
- Pierrick Clément
- Centre Suisse d'Electronique Et de Microtechnique SA (CSEM), Rue Jaquet-Droz 1, 2002, Neuchâtel, Switzerland.
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Strasse 21, 51429, Bergisch Gladbach, Germany
| | - Julia Hoeng
- Biology Consultant, Max-Baermann-Strasse 21, 51429, Bergisch Gladbach, Germany
- Vectura Fertin Pharma, C/O Jagotec AG, Messeplatz 10, 4058, Basel, Switzerland
| |
Collapse
|
2
|
Babayeva M, Loewy ZG. Cannabis Pharmacogenomics: A Path to Personalized Medicine. Curr Issues Mol Biol 2023; 45:3479-3514. [PMID: 37185752 PMCID: PMC10137111 DOI: 10.3390/cimb45040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Zvi G Loewy
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
3
|
The Pharmacogenetics of Cannabis in the Treatment of Chronic Pain. Genes (Basel) 2022; 13:genes13101832. [PMID: 36292717 PMCID: PMC9601332 DOI: 10.3390/genes13101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The increase in the medical use of cannabis has revealed a number of beneficial effects, a variety of adverse side effects and great inter-individual variability. Association studies connecting consumption, addiction and side effects related to recreational cannabis use have led to the identification of several polymorphic genes that may play a role in the pharmacodynamics and pharmacokinetics of cannabis. Method: In total, 600 patients treated with cannabis were genotyped for several candidate polymorphic genes (single-nucleotide polymorphism; SNP), encoding receptors CNR1 and TRPV1; for the ABCB1 transporter; for biotransformation, bioactivation and biosynthesis; and CYP3A4, COMT and UGT2B7 conjugation. Results: Three polymorphic genes (ABCB1, TRPV1 and UGT2B7) were identified as being significantly associated with decline in pain after treatment with cannabis. Patients simultaneously carrying the most favourable allele combinations showed a greater reduction (polygenic effect) in pain compared to those with a less favourable combination. Considering genotype combinations, we could group patients into good responders, intermediate responders and poor or non-responders. Results suggest that genetic makeup is, at the moment, a significant predictive factor of the variability in response to cannabis. Conclusions: This study proves, for the first time, that certain polymorphic candidate genes may be associated with cannabis effects, both in terms of pain management and side effects, including therapy dropout. Significance: Our attention to pharmacogenetics began in 2008, with the publication of a first study on the association between genetic polymorphisms and morphine action in pain relief. The study we are presenting is the first observational study conducted on a large number of patients involving several polymorphic candidate genes. The data obtained suggest that genetic makeup can be a predictive factor in the response to cannabis therapy and that more extensive and planned studies are needed for the opening of new scenarios for the personalization of cannabis therapy.
Collapse
|
4
|
Association between ABCB1 rs2235048 Polymorphism and THC Pharmacokinetics and Subjective Effects following Smoked Cannabis in Young Adults. Brain Sci 2022; 12:brainsci12091189. [PMID: 36138925 DOI: 10.3390/brainsci12091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic influences on acute responses to psychoactive drugs may contribute to individual variability in addiction risk. ABCB1 is a human gene that encodes P-glycoprotein, an ATP-dependent efflux pump that may influence the pharmacokinetics of delta-9-tetrahydrocannabinol (THC), the primary psychoactive component of cannabis. Using data from 48 young adults (aged 19-25 years) reporting 1-4 days of cannabis use per week who completed a placebo-controlled human laboratory experiment, we tested the hypothesis that the rs2235048 polymorphism of ABCB1 would influence acute responses to smoked cannabis. C-allele carriers reported on average greater frequency of weekly cannabis use compared to the TT genotype carriers (TC/CC mean ± SEM = 2.74 ± 0.14, TT = 1.85 ± 0.24, p = 0.004). After smoking a single cannabis cigarette to their desired high, C-allele carriers had higher area-under-the-curve (AUC) of both THC metabolites (11-OH-THC TC/CC = 7.18 ± 9.64, TT = 3.28 ± 3.40, p = 0.05; THC-COOH TC/CC = 95.21 ± 116.12, TT = 45.92 ± 42.38, p = 0.043), and these results were impact by self-reported ethnicity. There were no significant differences in self-reported subjective drug effects except for a greater AUC of visual analogue scale rating of drug liking (TC/CC = 35,398.33 ± 37,233.72, TT = 15,895.56 ± 13,200.68, p = 0.017). Our preliminary findings suggest that further work in a larger sample should investigate whether human ABCB1 influences cannabis-related phenotypes and plays a role in the risk of developing a cannabis use disorder.
Collapse
|
5
|
Tagen M, Klumpers LE. Review of delta-8-tetrahydrocannabinol (Δ 8 -THC): Comparative pharmacology with Δ 9 -THC. Br J Pharmacol 2022; 179:3915-3933. [PMID: 35523678 DOI: 10.1111/bph.15865] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
The use of the intoxicating cannabinoid delta-8-tetrahydrocannabinol (Δ8 -THC) has grown rapidly over the last several years. There have been dozens of Δ8 -THC studies dating back over many decades, yet no review articles have comprehensively covered these findings. In this review, we summarize the pharmacological studies of Δ8 -THC, including receptor binding, cell signalling, in vivo cannabimimetic activity, clinical activity and pharmacokinetics. We give special focus to studies that directly compared Δ8 -THC to its more commonly studied isomer, Δ9 -THC. Overall, the pharmacokinetics and pharmacodynamics of Δ8 -THC and Δ9 -THC are very similar. Δ8 -THC is a partial agonist of the cannabinoid CB1 receptor and has cannabimimetic activity in both animals and humans. The reduced potency of Δ8 -THC in clinical studies compared with Δ9 -THC can be explained by weaker cannabinoid CB1 receptor affinity, although there are other plausible mechanisms that may contribute. We highlight the gaps in our knowledge of Δ8 -THC pharmacology where further studies are needed, particularly in humans.
Collapse
Affiliation(s)
| | - Linda E Klumpers
- Verdient Science LLC, Denver, Colorado.,Tomori Pharmacology Inc., Denver, Colorado, USA.,Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.,Anebulo Pharmaceuticals Inc., Austin, Texas, USA
| |
Collapse
|
6
|
Fantauzzi MF, Aguiar JA, Tremblay BJM, Mansfield MJ, Yanagihara T, Chandiramohan A, Revill S, Ryu MH, Carlsten C, Ask K, Stämpfli M, Doxey AC, Hirota JA. Expression of endocannabinoid system components in human airway epithelial cells: impact of sex and chronic respiratory disease status. ERJ Open Res 2020; 6:00128-2020. [PMID: 33344628 PMCID: PMC7737429 DOI: 10.1183/23120541.00128-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabis smoking is the dominant route of delivery, with the airway epithelium functioning as the site of first contact. The endocannabinoid system is responsible for mediating the physiological effects of inhaled phytocannabinoids. The expression of the endocannabinoid system in the airway epithelium and contribution to normal physiological responses remains to be defined. To begin to address this knowledge gap, a curated dataset of 1090 unique human bronchial brushing gene expression profiles was created. The dataset included 616 healthy subjects, 136 subjects with asthma, and 338 subjects with COPD. A 32-gene endocannabinoid signature was analysed across all samples with sex and disease-specific analyses performed. Immunohistochemistry and immunoblots were performed to probe in situ and in vitro protein expression. CB1, CB2, and TRPV1 protein signal is detectable in human airway epithelial cells in situ and in vitro, justifying examining the downstream endocannabinoid pathway. Sex status was associated with differential expression of 7 of 32 genes. In contrast, disease status was associated with differential expression of 21 of 32 genes in people with asthma and 26 of 32 genes in people with COPD. We confirm at the protein level that TRPV1, the most differentially expressed candidate in our analyses, was upregulated in airway epithelial cells from people with asthma relative to healthy subjects. Our data demonstrate that the endocannabinoid system is expressed in human airway epithelial cells with expression impacted by disease status and minimally by sex. The data suggest that cannabis consumers may have differential physiological responses in the respiratory mucosa.
Collapse
Affiliation(s)
- Matthew F Fantauzzi
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | | | | | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Toyoshi Yanagihara
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Abiram Chandiramohan
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Spencer Revill
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Min Hyung Ryu
- Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Martin Stämpfli
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Andrew C Doxey
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,Dept of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Dept of Biology, University of Waterloo, Waterloo, ON, Canada.,Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Suhre W, O'Reilly-Shah V, Van Cleve W. Cannabis use is associated with a small increase in the risk of postoperative nausea and vomiting: a retrospective machine-learning causal analysis. BMC Anesthesiol 2020; 20:115. [PMID: 32423445 PMCID: PMC7236204 DOI: 10.1186/s12871-020-01036-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cannabis legalization may contribute to an increased frequency of chronic use among patients presenting for surgery. At present, it is unknown whether chronic cannabis use modifies the risk of postoperative nausea and vomiting (PONV). METHODS This study was a retrospective cohort study conducted at 2 academic medical centers. Twenty-seven thousand three hundred eighty-eight adult ASA 1-3 patients having general anesthesia for non-obstetric, non-cardiac procedures and receiving postoperative care in the Post Anesthesia Care Unit (PACU) were analyzed in the main dataset, and 16,245 patients in the external validation dataset. The main predictor was patient reported use of cannabis in any form collected during pre-anesthesia evaluation and recorded in the chart. The primary outcome was documented PONV of any severity prior to PACU discharge, including administration of rescue medications in PACU. Relevant clinical covariates (risk factors for PONV, surgical characteristics, administered prophylactic antiemetic drugs) were also recorded. RESULTS 10.0% of patients in the analytic dataset endorsed chronic cannabis use. Using Bayesian Additive Regression Trees (BART), we estimated that the relative risk for PONV associated with daily cannabis use was 1.19 (95 CI% 1.00-1.45). The absolute marginal increase in risk of PONV associated with daily cannabis use was 3.3% (95% CI 0.4-6.4%). We observed a lesser association between current, non-daily use of cannabis (RR 1.07, 95% CI 0.94-1.21). An internal validation analysis conducted using propensity score adjustment and Bayesian logistic modeling indicated a similar size and magnitude of the association between cannabis use and PONV (OR 1.15, 90% CI 0.98-1.33). As an external validation, we used data from another hospital in our care system to create an independent model that demonstrated essentially identical associations between cannabis use and PONV. CONCLUSIONS Cannabis use is associated with an increased relative risk and a small increase in the marginal probability of PONV.
Collapse
Affiliation(s)
- Wendy Suhre
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| | - Vikas O'Reilly-Shah
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific St, Seattle, WA, 98195, USA
- Perioperative & Pain Initiatives in Quality, Safety, and Outcome, Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific St, Seattle, WA, 98195, USA
- Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA, 98105, USA
| | - Wil Van Cleve
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific St, Seattle, WA, 98195, USA
- Perioperative & Pain Initiatives in Quality, Safety, and Outcome, Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific St, Seattle, WA, 98195, USA
| |
Collapse
|
8
|
Banister SD, Arnold JC, Connor M, Glass M, McGregor IS. Dark Classics in Chemical Neuroscience: Δ 9-Tetrahydrocannabinol. ACS Chem Neurosci 2019; 10:2160-2175. [PMID: 30689342 DOI: 10.1021/acschemneuro.8b00651] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cannabis ( Cannabis sativa) is the most widely used illicit drug in the world, with an estimated 192 million users globally. The main psychoactive component of cannabis is (-)- trans-Δ9-tetrahydrocannabinol (Δ9-THC), a compound with a diverse range of pharmacological actions. The unique and distinctive intoxication caused by Δ9-THC primarily reflects partial agonist action at central cannabinoid type 1 (CB1) receptors. Δ9-THC is an approved therapeutic treatment for a range of conditions, including chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis, and is being investigated in indications such as anorexia nervosa, agitation in dementia, and Tourette's syndrome. It is available as a regulated pharmaceutical in products such as Marinol, Sativex, and Namisol as well as in an ever-increasing range of unregistered medicinal and recreational cannabis products. While cannabis is an ancient medicament, contemporary use is embroiled in legal, scientific, and social controversy, much of which relates to the potential hazards and benefits of Δ9-THC itself. Robust contemporary debate surrounds the therapeutic value of Δ9-THC in different diseases, its capacity to produce psychosis and cognitive impairment, and the addictive and "gateway" potential of the drug. This review will provide a profile of the chemistry, pharmacology, and therapeutic uses of Δ9-THC as well as the historical and societal import of this unique, distinctive, and ubiquitous psychoactive substance.
Collapse
Affiliation(s)
- Samuel D. Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Science and School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C. Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Science and Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Iain S. McGregor
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Science and School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|