1
|
Song P, Xu H, Ye H, Du X, Zhai Y, Bao X, Mehmood I, Tanigawa H, Niu W, Tu Z, Chen P, Zhang T, Zhao X, Yu X. A new function of offset response in the primate auditory cortex: marker of temporal integration. Commun Biol 2024; 7:1350. [PMID: 39424927 PMCID: PMC11489726 DOI: 10.1038/s42003-024-07058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Offset responses are traditionally viewed as indicators of sound cessation. Here, we investigate offset responses to auditory click trains, examining how they are modulated by inter-click intervals (ICIs) and train duration. Using extracellular recordings and electrocorticography (ECoG) in non-human primates, alongside electroencephalography (EEG) in humans, we show that offset responses are significantly influenced by both ICI and train length, thereby establishing them as markers of temporal integration. We introduce the concept of the 'Neuronal Integrative Window' (NIW), defined as the temporal span during which neurons integrate stimuli to produce or modulate the temporal integration signal. Our data reveal that on the neuronal level, the auditory cortex (AC) exhibits a more expansive NIW than the medial geniculate body (MGB), integrating stimuli over longer durations and showing a preference for larger ICIs. Furthermore, our results indicate that offset responses could serve as potential biomarkers for neurological and psychiatric conditions, highlighted by their sensitivity to pharmacological modulation with ketamine. This study advances our understanding of auditory temporal processing and proposes a novel approach for assessing and monitoring brain health.
Collapse
Affiliation(s)
- Peirun Song
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoxuan Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hangting Ye
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xinyu Du
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuying Zhai
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuehui Bao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ishrat Mehmood
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hisashi Tanigawa
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wanqiu Niu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiyi Tu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei Chen
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Zhang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Xiongjie Yu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Giannopoulos AE, Zioga I, Luft CDB, Papageorgiou P, Papageorgiou GN, Kapsali F, Kontoangelos K, Capsalis CN, Papageorgiou C. Unravelling brain connectivity patterns in body dysmorphic disorder during decision-making on visual illusions: A graph theoretical approach. Psychiatry Res 2023; 325:115256. [PMID: 37216795 DOI: 10.1016/j.psychres.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Body dysmorphic disorder (BDD) is characterized by an excessive preoccupation with perceived defects in physical appearance, and is associated with compulsive checking. Visual illusions are illusory or distorted subjective perceptions of visual stimuli, which are induced by specific visual cues or contexts. While previous research has investigated visual processing in BDD, the decision-making processes involved in visual illusion processing remain unknown. The current study addressed this gap by investigating the brain connectivity patterns of BDD patients during decision-making about visual illusions. Thirty-six adults - 18 BDD (9 female) and 18 healthy controls (10 female) - viewed 39 visual illusions while their EEG was recorded. For each image, participants were asked to indicate (1) whether they perceived the illusory features of the images; and (2) their degree of confidence in their response. Our results did not uncover group-level differences in susceptibility to visual illusions, supporting the idea that higher-order differences, as opposed to lower-level visual impairments, can account for the visual processing differences that have previously been reported in BDD. However, the BDD group had lower confidence ratings when they reported illusory percepts, reflecting increased feelings of doubt. At the neural level, individuals with BDD showed greater theta band connectivity while making decisions about the visual illusions, likely reflecting higher intolerance to uncertainty and thus increased performance monitoring. Finally, control participants showed increased left-to-right and front-to-back directed connectivity in the alpha band, which may suggest more efficient top-down modulation of sensory areas in control participants compared to individuals with BDD. Overall, our findings are consistent with the idea that higher-order disruptions in BDD are associated with increased performance monitoring during decision-making, which may be related to constant mental rechecking of responses.
Collapse
Affiliation(s)
- Anastasios E Giannopoulos
- School of Electrical & Computer Engineering, National Technical University of Athens, 9, Iroon Polytechniou Str., Zografou Athens 15773, Greece.
| | - Ioanna Zioga
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 74 Vas. Sophias Ave., Athens 11528, Greece
| | - Caroline Di Bernardi Luft
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Panos Papageorgiou
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | | | - Fotini Kapsali
- Psychiatric Hospital of Attica, 374 Athinon Ave., Athens 12462, Greece
| | - Konstantinos Kontoangelos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 74 Vas. Sophias Ave., Athens 11528, Greece
| | - Christos N Capsalis
- School of Electrical & Computer Engineering, National Technical University of Athens, 9, Iroon Polytechniou Str., Zografou Athens 15773, Greece
| | - Charalabos Papageorgiou
- University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", (UMHRI), Athens, Greece
| |
Collapse
|
3
|
Giannopoulos AE, Zioga I, Papageorgiou P, Pervanidou P, Makris G, Chrousos GP, Stachtea X, Capsalis C, Papageorgiou C. Evaluating the Modulation of the Acoustic Startle Reflex in Children and Adolescents via Vertical EOG and EEG: Sex, Age, and Behavioral Effects. Front Neurosci 2022; 16:798667. [PMID: 35464323 PMCID: PMC9019526 DOI: 10.3389/fnins.2022.798667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Acoustic startle reflex (ASR) constitutes a reliable, cross-species indicator of sensorimotor and inhibitory mechanisms, showing distinct signature in cognitive aging, sex, and psychopathological characterization. ASR can be modulated by the prepulse inhibition (PPI) paradigm, which comprises the suppression of reactivity to a startling stimulus (pulse) following a weak prepulse (30- to 500-ms time difference), being widely linked to inhibitory capabilities of the sensorimotor system. If the prepulse–pulse tones are more clearly separated (500–2,000 ms), ASR amplitude is enhanced, termed as prepulse facilitation (PPF), reflecting sustained or selective attention. Our study aimed to investigate early-life sensorimotor sex/age differences using Electroencephalographic recordings to measure muscular and neural ASR in a healthy young population. Sixty-three children and adolescents aged 6.2–16.7 years (31 females) took part in the experiment. Neural ASR was assessed by two different analyses, namely, event-related potentials (ERPs) and first-derivative potentials (FDPs). As expected, PPF showed enhanced responses compared with PPI, as indicated by eyeblink, ERP and FDP measures, confirming the gating effect hypothesis. Sex-related differences were reflected in FDPs, with females showing higher ASR than males, suggesting increased levels of poststartle excitability. Intragroup age effects were evaluated via multipredictor regression models, noticing positive correlation between age versus eyeblink and ERP responses. Attention-related ERPs (N100 and P200) showed distinct patterns in PPI versus PPF, potentially indicative for alternative attentional allocation and block-out of sensory overload. Screening measures of participants’ neurodevelopmental (assessed by Wechsler Intelligence Scale for Children) and behavioral (assessed by Child Behavior Checklist) markers were also associated with increased N100/P200 responses, presumably indexing synergy between perceptual consistency, personality profiling, and inhibitory performance. Conclusively, modulation of ASR by PPI and PPF is associated with biological sex and internal/external personality traits in childhood and adolescence, potentially useful to guide symptomatology and prevention of psychopathology.
Collapse
Affiliation(s)
- Anastasios E. Giannopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
- *Correspondence: Anastasios E. Giannopoulos,
| | - Ioanna Zioga
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
- First Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panos Papageorgiou
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Makris
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P. Chrousos
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Xanthi Stachtea
- Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS” (UMHRI), University Mental Health, Athens, Greece
| | - Christos Capsalis
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Charalabos Papageorgiou
- Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS” (UMHRI), University Mental Health, Athens, Greece
| |
Collapse
|
4
|
Giannopoulos AE, Zioga I, Kontoangelos K, Papageorgiou P, Kapsali F, Capsalis CN, Papageorgiou C. Deciding on Optical Illusions: Reduced Alpha Power in Body Dysmorphic Disorder. Brain Sci 2022; 12:brainsci12020293. [PMID: 35204056 PMCID: PMC8870663 DOI: 10.3390/brainsci12020293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Body dysmorphic disorder (BDD) is a psychiatric disorder characterized by excessive preoccupation with imagined defects in appearance. Optical illusions induce illusory effects that distort the presented stimulus, thus leading to ambiguous percepts. Using electroencephalography (EEG), we investigated whether BDD is related to differentiated perception during illusory percepts. METHODS A total of 18 BDD patients and 18 controls were presented with 39 optical illusions together with a statement testing whether or not they perceived the illusion. After a delay period, they were prompted to answer whether the statement was right/wrong and their degree of confidence in their answer. We investigated differences of BDD patients on task performance and self-reported confidence and analyzed the brain oscillations during decision-making using nonparametric cluster statistics. RESULTS Behaviorally, the BDD group exhibited reduced confidence when responding incorrectly, potentially attributed to higher levels of doubt. Electrophysiologically, the BDD group showed significantly reduced alpha power at the fronto-central and parietal scalp areas, suggesting impaired allocation of attention. Interestingly, the lower the alpha power of the identified cluster, the higher the BDD severity, as assessed by BDD psychometrics. CONCLUSIONS Results evidenced that alpha power during illusory processing might serve as a quantitative EEG biomarker of BDD, potentially associated with reduced inhibition of task-irrelevant areas.
Collapse
Affiliation(s)
- Anastasios E. Giannopoulos
- School of Electrical & Computer Engineering, National Technical University of Athens, 15780 Athens, Greece;
- Correspondence: ; Tel.: +30-6982045009
| | - Ioanna Zioga
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands;
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 11528 Athens, Greece;
| | - Konstantinos Kontoangelos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 11528 Athens, Greece;
| | - Panos Papageorgiou
- Department of Electrical and Computer Engineering, University of Patras, 26334 Patras, Greece;
| | | | - Christos N. Capsalis
- School of Electrical & Computer Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Charalabos Papageorgiou
- Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, University Mental Health, 11527 Athens, Greece;
| |
Collapse
|
5
|
Giannopoulos AE, Spantideas ST, Capsalis C, Papageorgiou P, Kapsalis N, Kontoangelos K, Papageorgiou C. Instantaneous radiated power of brain activity: application to prepulse inhibition and facilitation for body dysmorphic disorder. Biomed Eng Online 2021; 20:108. [PMID: 34689781 PMCID: PMC8543766 DOI: 10.1186/s12938-021-00946-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background Global measures of neuronal activity embrace the advantage of a univariate, holistic and unique description of brain activity, reducing the spatial dimensions of electroencephalography (EEG) analysis at the cost of lower precision in localizing effects. In this work, the instantaneous radiated power (IRP) is proposed as a new whole-brain descriptor, reflecting the cortical activity from an exclusively electromagnetic perspective. Considering that the brain consists of multiple elementary dipoles, the whole-brain IRP takes into account the radiational contribution of all cortical sources. Unlike conventional EEG analyses that evaluate a large number of scalp or source locations, IRP reflects a whole-brain, event-related measure and forces the analysis to focus on a single time-series, thus efficiently reducing the EEG spatial dimensions and multiple comparisons. Results To apply the developed methodology in real EEG data, two groups (25 controls vs 30 body dysmorphic disorder, BDD, patients) were matched for age and sex and tested in a prepulse inhibition (PPI) and facilitation (PPF) paradigm. Two global brain descriptors were extracted for between-groups and between-conditions comparison purposes, namely the global field power (GFP) and the whole-brain IRP. Results showed that IRP can replicate the expected condition differences (with PPF being greater than PPI responses), exhibiting also reduced levels in BDD compared to control group overall. There were also similar outcomes using GFP and IRP, suggesting consistency between the two measures. Finally, regression analysis showed that the PPI-related IRP (during N100 time-window) is negatively correlated with BDD psychometric scores. Conclusions Investigating the brain activity with IRP significantly reduces the data dimensionality, giving insights about global brain synchronization and strength. We conclude that IRP can replicate the existing evidence regarding sensorimotor gating effects, revealing also group electrophysiological alterations. Finally, electrophysiological IRP responses exhibited correlations with BDD psychometrics, potentially useful as supplementary tool in BDD symptomatology.
Collapse
Affiliation(s)
- Anastasios E Giannopoulos
- School of Electrical & Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Postal Code 15780, Athens, Greece.
| | - Sotirios T Spantideas
- School of Electrical & Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Postal Code 15780, Athens, Greece
| | - Christos Capsalis
- School of Electrical & Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Postal Code 15780, Athens, Greece
| | - Panos Papageorgiou
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | - Nikolaos Kapsalis
- School of Electrical & Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Postal Code 15780, Athens, Greece
| | - Konstantinos Kontoangelos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 74 Vas. Sophias Ave., 11528, Athens, Greece
| | - Charalabos Papageorgiou
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 74 Vas. Sophias Ave., 11528, Athens, Greece.,University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", (UMHRI), Athens, Greece
| |
Collapse
|