1
|
Prillo J, Zapf L, Espinola CW, Daskalakis ZJ, Blumberger DM. Magnetic Seizure Therapy in Refractory Psychiatric Disorders: A Systematic Review and Meta-Analysis: La thérapie par convulsions magnétiques pour la prise en charge des troubles psychiatriques réfractaires : revue systématique et méta-analyse. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2024:7067437241301005. [PMID: 39654297 PMCID: PMC11629361 DOI: 10.1177/07067437241301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
OBJECTIVE To qualitatively and quantitatively synthesize the literature on the efficacy and safety of magnetic seizure therapy (MST) in psychiatric disorders. METHODS A literature search was conducted of the OVID Medline, OVID EMBASE, PsychINFO, CINAHL, Web of Science and Cochrane databases from inception to 14 January 2024, using subject headings and key words for "magnetic seizure therapy." Randomized controlled trials (RCTs), post-hoc analyses of RCTs, open-label trials, or case series investigating MST in adults with a verified psychiatric diagnosis and reporting on two possible primary outcomes (1) psychiatric symptom reduction (as measured by validated rating scale) or (2) neurocognitive outcomes (as measured by standardized testing), were included. Abstracts, individual case reports, reviews and editorials were excluded. Extracted data included: (1) basic study details; (2) study design; (3) sample size; (4) baseline demographics; (5) outcome data (including secondary outcomes of suicidal ideation and adverse events); and (6) stimulation parameters. Cochrane's risk of bias tool was applied. A quantitative analysis was conducted for the depression studies, using Hedge's g effect sizes. RESULTS A total of 24 studies (n = 377) were eligible for inclusion. Seventeen studies in depression (including three RCTs), four studies in schizophrenia (including one RCT), one study in bipolar disorder, one study in obsessive-compulsive disorder and one study in borderline personality disorder were summarized. We found no significant difference in depressive symptom reduction between MST and electroconvulsive therapy (ECT) in randomized, controlled trials (g = 0.207 towards ECT, 95% confidence interval (CI) -0.132 to 0.545, P = 0.232). We found a significant reduction in depressive symptoms overall with MST in the pooled RCT and open-label analysis (g = 1.749, CI 1.219 to 2.279, P < 0.005). It is suggested that MST has modest cognitive side effects. CONCLUSIONS Large-scale RCTs are necessary to confirm early signals of MST as an effective intervention in psychiatric disorders with a cognitive profile that is potentially more favourable than ECT.
Collapse
Affiliation(s)
- Jake Prillo
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lorina Zapf
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| | - Caroline W. Espinola
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
2
|
Jiang J, Li J, Xu Y, Zhang B, Sheng J, Liu D, Wang W, Yang F, Guo X, Li Q, Zhang T, Tang Y, Jia Y, Wang J, Li C. Does Electroencephalography Seizure Duration Account for an Adequate Treatment of Magnetic Seizure Therapy for Schizophrenia? J ECT 2024:00124509-990000000-00205. [PMID: 39178051 DOI: 10.1097/yct.0000000000001047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
OBJECTIVES A seizure lasting >15 s has been considered to indicate treatment for magnetic seizure therapy (MST), a modification of electroconvulsive therapy (ECT), without much validation. This study aimed to investigate whether this seizure duration was suitable for the treatment of schizophrenia. METHODS Altogether, 34 and 33 in-patients with schizophrenia received 10 sessions of MST and ECT, respectively. Clinical symptoms were assessed using the Positive and Negative Symptom Scale at baseline and at the 4-week follow-up. Electroencephalogram (EEG) was monitored during each MST or ECT treatment using bifrontal electrodes. RESULTS The proportion of participants who achieved the 15-second threshold was only 28.6% in the MST group, with a significant difference between responders and nonresponders. For patients receiving MST, the average EEG seizure duration correlated with the percentage of Positive and Negative Symptom Scale reduction (t(32) = 2.51, P = 0.017, uncorrected; t(32) = 2.00, P = 0.055, corrected with clinical characteristics). The average EEG seizure duration predicted the clinical response at a trend level (Z = 1.76, P = 0.078) with an optimal cutoff of 11.3 seconds. All patients in the ECT group achieved the 15-second threshold. However, their average EEG seizure duration was uncorrelated with clinical improvement. CONCLUSIONS The duration of EEG seizures may be associated with the antipsychotic effects of MST. This association may have been influenced by various clinical and technical factors. More research is needed to define the specific criteria for adequate MST in schizophrenia in order to achieve personalized dosing.
Collapse
Affiliation(s)
| | - Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuanhong Xu
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zhang
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Jianhua Sheng
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dengtang Liu
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Wang
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuzhong Yang
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Guo
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, China
| | - Tianhong Zhang
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuping Jia
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
3
|
Laroy M, Bouckaert F, Ousdal OT, Dols A, Rhebergen D, van Exel E, van Wingen G, van Waarde J, Verdijk J, Kessler U, Bartsch H, Jorgensen MB, Paulson OB, Nordanskog P, Prudic J, Sienaert P, Vandenbulcke M, Oltedal L, Emsell L. Characterization of gray matter volume changes from one week to 6 months after termination of electroconvulsive therapy in depressed patients. Brain Stimul 2024; 17:876-886. [PMID: 39059711 DOI: 10.1016/j.brs.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Increased gray matter volume (GMV) following electroconvulsive therapy (ECT) has been well-documented, with limited studies reporting a subsequent decrease in GMV afterwards. OBJECTIVE This study characterized the reversion pattern of GMV after ECT and its association with clinical depression outcome, using multi-site triple time-point data from the Global ECT-MRI Research Collaboration (GEMRIC). METHODS 86 subjects from the GEMRIC database were included, and GMV in 84 regions-of-interest (ROI) was obtained from automatic segmentation of T1 MRI images at three timepoints: pre-ECT (T0), within one-week post-ECT (T1), and one to six months post-ECT (T2). RM-ANOVAs were used to assess longitudinal changes and LMM analyses explored associations between GMV changes and demographical and clinical characteristics. RESULTS 63 of the 84 ROIs showed a significant increase-and-decrease pattern (RM-ANOVA, Bonferroni corrected p < 0.00059). Post hoc tests indicated a consistent pattern in each of these 63 ROIs: significant increase from T0 to T1inGMV, followed by significant decrease from T1 to T2 and no difference between T0 and T2, except for both amygdalae, right hippocampus and pars triangularis, which showed the same increase and decrease but GMV at T2 remained higher compared to T0. No consistent relationship was found between GMV change pattern and clinical status. CONCLUSION The GEMRIC cohort confirmed a rapid increase of GMV after ECT followed by reversion of GMV one to six months thereafter. The lack of association between the GMV change pattern and depression outcome scores implies a transient neurobiological effect of ECT unrelated to clinical improvement.
Collapse
Affiliation(s)
- Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium.
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| | - Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Annemieke Dols
- Department of Psychiatry, UMC Utrecht, Division Brain, Utrecht, the Netherlands; Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Didi Rhebergen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Mental Health Institute, GGZ Centraal, Amersfoort, the Netherlands
| | - Eric van Exel
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jeroen van Waarde
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands
| | - Joey Verdijk
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands; University of Twente, Department of Clinical Neurophysiology, Enschede, the Netherlands
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hauke Bartsch
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Martin Balslev Jorgensen
- Psychiatric Center Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Olaf B Paulson
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Pia Nordanskog
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joan Prudic
- Department of Psychiatry, Columbia University Irving Medical Center, USA
| | - Pascal Sienaert
- KU Leuven, Department of Neurosciences, Academic Centre for ECT and Neuromodulation, B-3000, Leuven, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium
| |
Collapse
|
4
|
Wang T, Yu M, Gu X, Liang X, Wang P, Peng W, Liu D, Chen D, Huang C, Tan Y, Liu K, Xiang B. Mechanism of electroconvulsive therapy in schizophrenia: a bioinformatics analysis study of RNA-seq data. Psychiatr Genet 2024; 34:54-60. [PMID: 38441120 DOI: 10.1097/ypg.0000000000000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE The molecular mechanism of electroconvulsive therapy (ECT) for schizophrenia remains unclear. The aim of this study was to uncover the underlying biological mechanisms of ECT in the treatment of schizophrenia using a transcriptional dataset. METHODS The peripheral blood mRNA sequencing data of eight patients (before and after ECT) and eight healthy controls were analyzed by integrated co-expression network analysis and the differentially expressed genes were analyzed by cluster analysis. Gene set overlap analysis was performed using the hypergeometric distribution of phypfunction in R. Associations of these gene sets with psychiatric disorders were explored. Tissue-specific enrichment analysis, gene ontology enrichment analysis, and protein-protein interaction enrichment analysis were used for gene set organization localization and pathway analysis. RESULTS We found the genes of the green-yellow module were significantly associated with the effect of ECT treatment and the common gene variants of schizophrenia ( P = 0.0061; family-wise error correction). The genes of the green-yellow module are mainly enriched in brain tissue and mainly involved in the pathways of neurotrophin, mitogen-activated protein kinase and long-term potentiation. CONCLUSION Genes associated with the efficacy of ECT were predominantly enriched in neurotrophin, mitogen-activated protein kinase and long-term potentiation signaling pathways.
Collapse
Affiliation(s)
| | - Minglan Yu
- Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province
| | - Xiaochu Gu
- Clinical Laboratory, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu Province
| | | | | | | | - Dongmei Liu
- Department of Psychiatry, Yibin Fourth People's Hospital, Yibin
| | - Dechao Chen
- Department of Psychiatry, Yibin Fourth People's Hospital, Yibin
| | | | - Youguo Tan
- Department of Psychiatry, Zigong Mental Health Center, Zigong, Sichuan Province, China
| | | | | |
Collapse
|
5
|
Chen S, Sheng J, Yang F, Qiao Y, Wang W, Wen H, Yang Q, Chen X, Tang Y. Magnetic Seizure Therapy vs Modified Electroconvulsive Therapy in Patients With Bipolar Mania: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e247919. [PMID: 38683612 PMCID: PMC11059045 DOI: 10.1001/jamanetworkopen.2024.7919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024] Open
Abstract
Importance Bipolar mania is a common disabling illness. Electroconvulsive therapy (ECT) is an effective treatment for patients with severe mania, though it is limited by the risk of cognitive adverse effects. Magnetic seizure therapy (MST) as an alternative treatment to ECT for bipolar mania has not yet been reported. Objective To compare the effectiveness and cognitive adverse effects of MST and ECT in bipolar mania. Design, Setting, and Participants This randomized clinical trial was conducted at the Shanghai Mental Health Center from July 1, 2017, through April 26, 2021. Forty-eight patients with bipolar mania were recruited and randomly allocated to receive MST or ECT. The data analysis was performed from June 5, 2021, through August 30, 2023. Interventions Patients completed 2 or 3 sessions of MST or ECT per week for a total of 8 to 10 sessions. The MST was delivered at 100% device output with a frequency of 75 Hz over the vertex. Main Outcomes and Measures The primary outcomes were reduction of total Young Manic Rating Scale (YMRS) score and response rate (more than 50% reduction of the total YMRS score compared with baseline). An intention-to-treat (ITT) analysis and repeated-measures analyses of variance were conducted for the primary outcomes. Results Twenty patients in the ECT group (mean [SD] age, 31.6 [8.6] years; 12 male [60.0%]) and 22 patients in the MST group (mean [SD] age, 34.8 [9.8] years; 15 male [68.2%]) were included in the ITT analysis. The response rates were 95.0% (95% CI, 85.4%-100%) in the ECT group and 86.4% (95% CI, 72.1%-100%) in the MST group. The YMRS reduction rate (z = -0.82; 95% CI, -0.05 to 0.10; P = .41) and response rate (χ2 = 0.18; 95% CI, -0.13 to 0.31; P = .67) were not significantly different between the groups. The time-by-group interaction was significant for the language domain (F1,24 = 7.17; P = .01), which was well preserved in patients receiving MST but worsened in patients receiving ECT. No serious adverse effects were reported in either group. Conclusions and Relevance These findings suggest that MST is associated with a high response rate and fewer cognitive impairments in bipolar mania and that it might be an alternative therapy for the treatment of bipolar mania. Trial Registration ClinicalTrials.gov Identifier: NCT03160664.
Collapse
Affiliation(s)
- Shan Chen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Xuhui Mental Health Center, Shanghai, China
| | - Jianhua Sheng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuzhong Yang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Qiao
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiao Yang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Chen
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Neuroimaging Core, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wu H, Jiang J, Cao X, Wang J, Li C. Magnetic seizure therapy for people with schizophrenia. Cochrane Database Syst Rev 2023; 6:CD012697. [PMID: 37272857 PMCID: PMC10241155 DOI: 10.1002/14651858.cd012697.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Schizophrenia is one of the most common and disabling mental disorders. About 20% of people with schizophrenia do not respond to antipsychotics, which are the mainstay of the treatment for schizophrenia today, and need to seek other treatment options. Magnetic seizure therapy (MST) is one of the novel non-invasive brain stimulation techniques that are being investigated in recent years. OBJECTIVES: To evaluate the efficacy and tolerability of MST for people with schizophrenia. SEARCH METHODS On 6 March 2022, we searched the Cochrane Schizophrenia Group's Study-Based Register of Trials which is based on CENTRAL, CINAHL, ClinicalTrials.Gov, Embase, ISRCTN, MEDLINE, PsycINFO, PubMed, and WHO ICTRP. SELECTION CRITERIA All randomised controlled trials (RCTs) comparing MST alone or plus standard care with ECT or any other interventions for people with schizophrenia. DATA COLLECTION AND ANALYSIS: We performed reference screening, study selection, data extraction and risk of bias and quality assessment in duplicate. We calculated the risk ratios (RRs) and their 95% confidence intervals (CIs) for binary outcomes and the mean difference (MD) and their 95% CIs for continuous outcomes. We used the original risk of bias tool for risk of bias assessment and created a Summary of findings table using GRADE. MAIN RESULTS We included one four-week study with 79 adults in acute schizophrenia, comparing MST plus standard care to ECT plus standard care in this review. We rated the overall risk of bias as high due to high risk of bias in the domains of selective reporting and other biases (early termination and baseline imbalance) and unclear risk of bias in the domain of blinding of participants and personnel. We found that MST and ECT may not differ in improving the global state (n = 79, risk ratio (RR) 1.12, 95% confidence interval (CI) 0.73 to 1.70), overall (n = 79, mean difference (MD) -0.20, 95% CI -8.08 to 7.68), the positive symptoms (n = 79, MD 1.40, 95% CI -1.97 to 4.77) and the negative symptoms (n = 79, MD -1.00, 95% CI -3.85 to 1.85) in people with schizophrenia. We found that MST compared to ECT may cause less delayed memory deficit and less cognitive deterioration (n = 79, number of people with a delayed memory deficit, RR 0.63, 95% CI 0.41 to 0.96; n = 79, mean change in global cognitive function, MD 5.80, 95% CI 0.80 to 10.80), but also may improve more cognitive function (n = 47, number of people with any cognitive improvement, RR 3.30, 95% CI 1.29 to 8.47). We found that there may be no difference between the two groups in terms of leaving the study early due to any reason (n = 79, RR 2.51, 95% CI 0.73 to 8.59), due to adverse effects (n = 79, RR 3.35, 95% CI 0.39 to 28.64) or due to inefficacy (n = 79, RR 2.52, 95% CI 0.11 to 60.10). Since all findings were based on one study with high risk of bias and the confidence in the evidence was very low, we were not sure these comparable or favourable effects of MST over ECT were its true effects. AUTHORS' CONCLUSIONS: Due to the paucity of data, we cannot draw any conclusion on the efficacy and tolerability of MST for people with schizophrenia. Well-designed RCTs are warranted to answer the question.
Collapse
Affiliation(s)
- Hui Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Section for Evidence Based Medicine in Psychiatry and Psychotherapy, Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Department of EEG Source Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Becker CR, Milad MR. Contemporary Approaches Toward Neuromodulation of Fear Extinction and Its Underlying Neural Circuits. Curr Top Behav Neurosci 2023; 64:353-387. [PMID: 37658219 DOI: 10.1007/7854_2023_442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Neuroscience and neuroimaging research have now identified brain nodes that are involved in the acquisition, storage, and expression of conditioned fear and its extinction. These brain regions include the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), amygdala, insular cortex, and hippocampus. Psychiatric neuroimaging research shows that functional dysregulation of these brain regions might contribute to the etiology and symptomatology of various psychopathologies, including anxiety disorders and post traumatic stress disorder (PTSD) (Barad et al. Biol Psychiatry 60:322-328, 2006; Greco and Liberzon Neuropsychopharmacology 41:320-334, 2015; Milad et al. Biol Psychiatry 62:1191-1194, 2007a, Biol Psychiatry 62:446-454, b; Maren and Quirk Nat Rev Neurosci 5:844-852, 2004; Milad and Quirk Annu Rev Psychol 63:129, 2012; Phelps et al. Neuron 43:897-905, 2004; Shin and Liberzon Neuropsychopharmacology 35:169-191, 2009). Combined, these findings indicate that targeting the activation of these nodes and modulating their functional interactions might offer an opportunity to further our understanding of how fear and threat responses are formed and regulated in the human brain, which could lead to enhancing the efficacy of current treatments or creating novel treatments for PTSD and other psychiatric disorders (Marin et al. Depress Anxiety 31:269-278, 2014; Milad et al. Behav Res Ther 62:17-23, 2014). Device-based neuromodulation techniques provide a promising means for directly changing or regulating activity in the fear extinction network by targeting functionally connected brain regions via stimulation patterns (Raij et al. Biol Psychiatry 84:129-137, 2018; Marković et al. Front Hum Neurosci 15:138, 2021). In the past ten years, notable advancements in the precision, safety, comfort, accessibility, and control of administration have been made to the established device-based neuromodulation techniques to improve their efficacy. In this chapter we discuss ten years of progress surrounding device-based neuromodulation techniques-Electroconvulsive Therapy (ECT), Transcranial Magnetic Stimulation (TMS), Magnetic Seizure Therapy (MST), Transcranial Focused Ultrasound (TUS), Deep Brain Stimulation (DBS), Vagus Nerve Stimulation (VNS), and Transcranial Electrical Stimulation (tES)-as research and clinical tools for enhancing fear extinction and treating PTSD symptoms. Additionally, we consider the emerging research, current limitations, and possible future directions for these techniques.
Collapse
Affiliation(s)
- Claudia R Becker
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Li K, Long J, Deng W, Cheng B, Wang J. Electroconvulsive therapy for obsessive-compulsive disorder: A retrospective study. Front Psychiatry 2022; 13:1040443. [PMID: 36440390 PMCID: PMC9682229 DOI: 10.3389/fpsyt.2022.1040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Background Chronic mental diseases such as obsessive-compulsive disorder (OCD) are associated with a high disability rate. Some patients still do not improve their symptoms even with adequate cognitive-behavioral therapy and drug treatment. In the treatment of OCD, electroconvulsive therapy (ECT) is not considered a neuromodulation modality with sufficient evidence. Objective This retrospective study aimed to determine the efficacy and associated risk factors of ECT in OCD patients. Materials and methods The study included 21 OCD patients who underwent ECT at a high-volume center in China between January 2009 and December 2020. The demographics and clinical characteristics of the patients were assessed using descriptive statistics. Based on Clinical Global Impressions-Improvement scale, patients were categorized into response and non-response groups. Clinical and demographic characteristics of two groups of patients were compared. Results An analysis of 21 patients was conducted. In total, 12 patients (57.1%) responded to ECT, 11 patients (52.4%) reported side effects, and an average of 7 ECT sessions were administered. In terms of demographic, there was no statistically significant difference between the two groups. It is noteworthy that the non-response group reported more depression and schizophrenia related disorders comorbidities than the response group (χ2 = 6.252, P = 0.041). Conclusion The effectiveness of ECT in treating OCD is limited, especially in patients with refractory symptoms. Comorbidity with other mental disorders may affect the efficacy of ECT.
Collapse
Affiliation(s)
- Kun Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiang Long
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|