1
|
Su J, Zhang J, Zhu H, Lu J. Association of anxiety disorder, depression, and bipolar disorder with autoimmune thyroiditis: A bidirectional two-sample mendelian randomized study. J Affect Disord 2024; 368:720-726. [PMID: 39313161 DOI: 10.1016/j.jad.2024.09.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Anxiety disorder, depression, and bipolar disorder are common psychiatric disorders, and their association with autoimmune thyroiditis (AIT) has been of great interest. This study aimed to investigate the potential causal relationship between these psychiatric disorders and AIT. METHODS We used publicly available summary statistics from large-scale genome-wide association studies to select, quality control and cluster genetic variant loci associated with anxiety disorder, depression, bipolar disorder and AIT as instrumental variables (IVs). The Mendelian randomization (MR) study mainly used inverse variance weighting (IVW) combined with MR-egger regression and weighted median estimation (WME) to estimate bidirectional causality between mental disorders and AIT. In addition, we conducted heterogeneity and multivariate tests to verify the validity of IVW. RESULTS Two-sample bidirectional MR analysis revealed a positive causal link between depression and AIT. The forward MR analysis of IVW (OR 1.614, 95 % CI 1.104-2.358, P = 0.013) and WME (OR 2.314, 95 % CI 1.315-4.074, P = 0.004) demonstrated thatdepression potentially elevate the risk of AIT development, while, our investigation did not uncover a causal relationship between anxiety disorder, bipolar disorder and AIT. The results of reverse MR analysis showed that there was no significant causal relationship between AIT and anxiety disorder, depression, and bipolar disorder (P > 0.05). CONCLUSIONS The results of the forward MR analysis suggest a positive association between depression, and AIT risk, while indicating no support for a causal link between anxiety disorder or bipolar disorder and AIT risk based on the current data. Subsequent studies will be essential for elucidating the biological mechanisms and potential confounders underlying these associations.
Collapse
Affiliation(s)
- Jingyang Su
- Department of General internal medicine, Tongde Hospital Affiliated to Zhejiang Chinese Medical University (Tongde Hospital of Zhejiang Province), Hangzhou 310012, China
| | - Jialin Zhang
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), 310007 Hangzhou, China
| | - Hanyu Zhu
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), 310007 Hangzhou, China
| | - Jinhua Lu
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), 310007 Hangzhou, China.
| |
Collapse
|
2
|
Maddox SA, Ponomareva OY, Zaleski CE, Chen MX, Vella KR, Hollenberg AN, Klengel C, Ressler KJ. Evidence for thyroid hormone regulation of amygdala-dependent fear-relevant memory and plasticity. Mol Psychiatry 2024:10.1038/s41380-024-02679-2. [PMID: 39039155 DOI: 10.1038/s41380-024-02679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The amygdala is an established site for fear memory formation, and clinical studies suggest involvement of hormone signaling cascades in development of trauma-related disorders. While an association of thyroid hormone (TH) status and mood disorders is established, the related brain-based mechanisms and the role of TH in anxiety disorders are unknown. Here we examine the role that TH receptor (TR, a nuclear transcriptional repressor when unbound and a transcriptional activator when bound to TH) may have in mediating the initial formation of fear memories in the amygdala. We identified mRNA levels of TR and other TH pathway regulatory genes, including thyrotropin-releasing hormone (Trh), transthyretin (Ttr), thyrotropin-releasing hormone receptor (Trhr), type 2 iodothyronine deiodinase (Dio2), mediator complex subunit 12 (Med12/Trap230) and retinoid X receptor gamma (Rxrg) to be altered in the amygdala following Pavlovian fear conditioning. Using TH agonist and antagonist infusion into the amygdala, we demonstrated that this pathway is both necessary and sufficient for fear memory consolidation. Inhibition of TH signaling with the TR antagonist 1-850 decreased fear memory consolidation; while activation of TR with T3 (triiodothyronine) resulted in increased memory formation. Using a systemic hypothyroid mouse model, we found that intra-amygdala infusions of T3 were sufficient to rescue deficits in fear memory. Finally, we demonstrated that T3 was sufficient to activate TR-specific gene pathways in the amygdala. These findings on the role of activity-dependent TR modulation support a model in which local TH is a critical regulator of fear memory-related plasticity in the amygdala.
Collapse
Affiliation(s)
- Stephanie A Maddox
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Olga Y Ponomareva
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Cole E Zaleski
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Northeastern University, Boston, MA, USA
| | - Michelle X Chen
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- University of Iowa, Iowa City, IA, USA
| | - Kristen R Vella
- Joan and Sanford I. Weill Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Anthony N Hollenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Claudia Klengel
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
| | - Kerry J Ressler
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Soberanes-Chávez P, Trujillo-Barrera J, de Gortari P. Circadian Synchronization of Feeding Attenuates Rats' Food Restriction-Induced Anxiety and Amygdalar Thyrotropin-Releasing Hormone Downregulation. Int J Mol Sci 2024; 25:5857. [PMID: 38892044 PMCID: PMC11172148 DOI: 10.3390/ijms25115857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024] Open
Abstract
Anxiety is a common comorbidity of obesity, resulting from prescribing long-term caloric restriction diets (CRDs); patients with a reduced food intake lose weight but present anxious behaviors, poor treatment adherence, and weight regain in the subsequent 5 years. Intermittent fasting (IF) restricts feeding time to 8 h during the activity phase, reducing patients' weight even with no caloric restriction; it is unknown whether an IF regime with ad libitum feeding avoids stress and anxiety development. We compared the corticosterone blood concentration between male Wistar rats fed ad libitum or calorie-restricted with all-day or IF food access after 4 weeks, along with their anxiety parameters when performing the elevated plus maze (EPM). As the amygdalar thyrotropin-releasing hormone (TRH) is believed to have anxiolytic properties, we evaluated its expression changes in association with anxiety levels. The groups formed were the following: a control which was offered food ad libitum (C-adlib) or 30% of C-adlib's energy requirements (C-CRD) all day, and IF groups provided food ad libitum (IF-adlib) or 30% of C-adlib's requirements (IF-CRD) with access from 9:00 to 17:00 h. On day 28, the rats performed the EPM and, after 30 min, were decapitated to analyze their amygdalar TRH mRNA expression by in situ hybridization and corticosterone serum levels. Interestingly, circadian feeding synchronization reduced the body weight, food intake, and animal anxiety levels in both IF groups, with ad libitum (IF-adlib) or restricted (IF-CRD) food access. The anxiety levels of the experimental groups resulted to be negatively associated with TRH expression, which supported its anxiolytic role. Therefore, the low anxiety levels induced by synchronizing feeding with the activity phase would help patients who are dieting to improve their diet therapy adherence.
Collapse
Affiliation(s)
- Paulina Soberanes-Chávez
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (P.S.-C.); (J.T.-B.)
| | - Jariz Trujillo-Barrera
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (P.S.-C.); (J.T.-B.)
- Escuela de Dietética y Nutrición del ISSSTE, Ciudad de México 14070, Mexico
| | - Patricia de Gortari
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (P.S.-C.); (J.T.-B.)
| |
Collapse
|
4
|
Hochgerner H, Singh S, Tibi M, Lin Z, Skarbianskis N, Admati I, Ophir O, Reinhardt N, Netser S, Wagner S, Zeisel A. Neuronal types in the mouse amygdala and their transcriptional response to fear conditioning. Nat Neurosci 2023; 26:2237-2249. [PMID: 37884748 PMCID: PMC10689239 DOI: 10.1038/s41593-023-01469-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
The amygdala is a brain region primarily associated with emotional response. The use of genetic markers and single-cell transcriptomics can provide insights into behavior-associated cell state changes. Here we present a detailed cell-type taxonomy of the adult mouse amygdala during fear learning and memory consolidation. We perform single-cell RNA sequencing on naïve and fear-conditioned mice, identify 130 neuronal cell types and validate their spatial distributions. A subset of all neuronal types is transcriptionally responsive to fear learning and memory retrieval. The activated engram cells upregulate activity-response genes and coordinate the expression of genes associated with neurite outgrowth, synaptic signaling, plasticity and development. We identify known and previously undescribed candidate genes responsive to fear learning. Our molecular atlas may be used to generate hypotheses to unveil the neuron types and neural circuits regulating the emotional component of learning and memory.
Collapse
Affiliation(s)
- Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shelly Singh
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Muhammad Tibi
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhige Lin
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Niv Skarbianskis
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inbal Admati
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Osnat Ophir
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nuphar Reinhardt
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Amit Zeisel
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
5
|
Islas-Preciado D, López-Rubalcava C, Estrada-Camarena E, de Gortari P, Castro-García M. Effect of chronic unpredictable stress in female Wistar-Kyoto rats subjected to progesterone withdrawal: Relevance for Premenstrual Dysphoric Disorder neurobiology. Psychoneuroendocrinology 2023; 155:106331. [PMID: 37437420 DOI: 10.1016/j.psyneuen.2023.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Premenstrual Dysphoric Disorder (PMDD) is related to an abrupt drop in progesterone and impairments in the HPA axis that cause anxiety. Suffering persons report higher daily-life stress and anxiety proneness that may contribute to developing PMDD, considered a chronic stress-related disorder. Here, we explored the effect of chronic unpredictable stress (CUS) in rats subjected to progesterone withdrawal (PW) and evaluated gene expression of HPA axis activation in the stress-vulnerable Wistar-Kyoto (WKY) rat strain that is prone to anxiety. Ovariectomized WKY rats were randomly assigned to CUS or Standard-housed conditions (SHC) for 30 days. To induce PW, animals received 2 mg/kg of progesterone on day 25th for 5 days; 24 h later, they were tested using the anxiety-like burying behavior test (BBT). After behavioral completion, rats were euthanized, and brains were extracted to measure Crh (PVN) and Nr3c1 (hippocampus) mRNA. Blood corticosterone and vasopressin levels were determined. Results showed that PW exacerbated anxiety-like behaviors through passive coping in CUS-WKY. PW decreased Crh-PVN mRNA and the Nr3c1-hippocampal mRNA expression in SHC. CUS decreased Crh-PVN mRNA compared to SHC, and no further changes were observed by PW or BBT exposure. CUS reduced Nr3c1-hippocampal gene expression compared to SHC animals, and lower Nr3c1 mRNA was detected due to BBT. The PW increased corticosterone in SHC and CUS rats; however, CUS blunted corticosterone when combined with PW+BBT and similarly occurred in vasopressin concentrations. Chronic stress blunts the response of components of the HPA axis regulation when PW and BBT (systemic and psychogenic stressors, respectively) are presented. This response may facilitate less adaptive behaviors through passive coping in stress-vulnerable subjects in a preclinical model of premenstrual anxiety.
Collapse
Affiliation(s)
- D Islas-Preciado
- Lab. de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - C López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados IPN (Cinvestav-IPN), Mexico
| | - E Estrada-Camarena
- Lab. de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico.
| | - P de Gortari
- Lab. de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - M Castro-García
- Lab de Etología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| |
Collapse
|
6
|
Ramot Y, Rottenberg Y, Domb AJ, Kubek MJ, Williams KD, Nyska A. Preclinical In-Vivo Safety of a Novel Thyrotropin-Releasing Hormone-Loaded Biodegradable Nanoparticles After Intranasal Administration in Rats and Primates. Int J Toxicol 2023:10915818231152613. [PMID: 36634266 DOI: 10.1177/10915818231152613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Thyrotropin-releasing hormone (TRH) and TRH-like peptides carry a therapeutic potential for neurological conditions. Nanoparticles (NP) made of the biodegradable polymer, Poly(Sebacic Anhydride) (PSA), have been developed to carry TRH, intended for intranasal administration to patients. There is limited information on the safety of biodegradable polymers when given intranasally, and therefore, we have performed two preclinical safety and toxicity studies in cynomolgus monkeys and rats using TRH-PSA nanoparticles. The rats and monkeys were dosed intranasally for 42 days or 28 days, respectively, and several animals were followed for additional 14 days. Animals received either placebo, vehicle (PSA), or different concentrations of TRH-PSA. No systemic adverse effects were seen. Changes in T3 or T4 concentrations were observed in some TRH-PSA-treated animals, which did not have clinical or microscopic correlates. No effect was seen on TSH or prolactin concentrations. In the monkey study, microscopic changes in the nasal turbinates were observed, which were attributed to incidental mechanical trauma caused during administration. Taken together, the TRH-loaded PSA NPs have proven to be safe, with no local or systemic adverse effects attributed to the drug loaded nanoparticles. These findings provide additional support to the growing evidence of the safety of peptide-loaded NPs for intranasal delivery and pave the way for future clinical trials in humans.
Collapse
Affiliation(s)
- Yuval Ramot
- Faculty of Medicine, 54621Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Dermatology, 58884Hadassah Medical Center, Jerusalem, Israel
| | - Yakir Rottenberg
- Faculty of Medicine, 54621Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Oncology, Hadassah Medical Organization, Jerusalem, Israel
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, 54621The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael J Kubek
- 12250Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin D Williams
- Consultant in Toxicology, WKM Consulting, LLC, Waunakee, WI, USA
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, 26745Tel Aviv and Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Trubacova R, Drastichova Z, Novotny J. Biochemical and physiological insights into TRH receptor-mediated signaling. Front Cell Dev Biol 2022; 10:981452. [PMID: 36147745 PMCID: PMC9485831 DOI: 10.3389/fcell.2022.981452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) is an important endocrine agent that regulates the function of cells in the anterior pituitary and the central and peripheral nervous systems. By controlling the synthesis and release of thyroid hormones, TRH affects many physiological functions, including energy homeostasis. This hormone exerts its effects through G protein-coupled TRH receptors, which signal primarily through Gq/11 but may also utilize other G protein classes under certain conditions. Because of the potential therapeutic benefit, considerable attention has been devoted to the synthesis of new TRH analogs that may have some advantageous properties compared with TRH. In this context, it may be interesting to consider the phenomenon of biased agonism and signaling at the TRH receptor. This possibility is supported by some recent findings. Although knowledge about the mechanisms of TRH receptor-mediated signaling has increased steadily over the past decades, there are still many unanswered questions, particularly about the molecular details of post-receptor signaling. In this review, we summarize what has been learned to date about TRH receptor-mediated signaling, including some previously undiscussed information, and point to future directions in TRH research that may offer new insights into the molecular mechanisms of TRH receptor-triggered actions and possible ways to modulate TRH receptor-mediated signaling.
Collapse
|
8
|
TRH in the nucleus accumbens acts downstream to α-MSH to decrease food intake in rats. Neurosci Lett 2020; 739:135403. [PMID: 32980456 DOI: 10.1016/j.neulet.2020.135403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Abstract
Feeding-regulatory peptides such as thyrotropin-releasing hormone (TRH), α-melanocyte-stimulating hormone (α-MSH) and their receptors are expressed in brain regions involved in the homeostatic and hedonic control of food intake, such as the hypothalamus and the mesolimbic system, respectively. The nucleus accumbens (NAc) is part of the latter, a brain circuit involved in processing reward stimuli and the appetitive motivation of feeding. When TRH or α-MSH are administered in the NAc, both decrease food intake, through activating their respective receptors, TRH-R1 and MC4R. The actions of α-MSH as a homeostatic feeding-regulator involves the increase of hypothalamic TRH expression, thus, we aimed to identify whether TRH signaling in the NAc was also participating in α-MSH-induced reduction of food intake. α-MSH administration in the NAc of 48 h fasted rats reduced their food intake during the 2-h period of refeeding, increased accumbal TRH mRNA expression and decreased that of MC4R. Such downregulated MC4R mRNA levels implied a compensatory decrease of α-MSH actions in the NAc after the previous pathway stimulation. The co-administration of α-MSH along with an antisense oligonucleotide directed against pro-TRH mRNA in the NAc impaired the α-MSH-induced feeding reduction, supporting that the accumbal TRHergic pathway is downstream of α-MSH actions to inhibit feeding. Our results suggested that TRH in the NAc mediates some effects of α-MSH on inhibition of food intake; this supports the role of TRH not only as a homeostatic regulator but also as modulating the motivational aspects of feeding.
Collapse
|
9
|
Xiang Z, Xu XH, Knight GE, Burnstock G. Transient expression of thyrotropin releasing hormone peptide and mRNA in the rat hippocampus following global cerebral ischemia/reperfusion injury. Int J Neurosci 2020; 132:787-801. [PMID: 33080155 DOI: 10.1080/00207454.2020.1840374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The role of extra-hypothalamic thyrotropin-releasing hormone (TRH) has been investigated by pharmacological studies using TRH or its analogues and found to produce a wide array of effects in the central nervous system. METHODS Immunofluorescence, In situ labeling of DNA (TUNEL), in situ hybridization chain reaction and quantitative real-time polymerase chain reaction were used in this study. RESULTS We found that the granular cells of the dentate gyrus expressed transiently a significant amount of TRH-like immunoreactivity and TRH mRNA during the 6-24 h period following global cerebral ischemia/reperfusion injury. TUNEL showed that apoptosis of neurons in the CA1 region occurred from 48 h and almost disappeared at 7 days. TRH administration 30 min before or 24 h after the injury could partially inhibit neuronal loss, and improve the survival of neurons in the CA1 region. CONCLUSION These data suggest that endogenous TRH expressed transiently in the dentate gyrus of the hippocampus may play an important role in the survival of neurons during the early stage of ischemia/reperfusion injury and that delayed application of TRH still produced neuroprotection. This delayed application of TRH has a promising therapeutic significance for clinical situations.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, PR China
| | - Xiao-Hui Xu
- School of Life Science, Shanghai University, Shanghai, People's Republic of China
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, London
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London.,Department of Pharmacology and Therapeutics, The University of Melbourne, Australia
| |
Collapse
|
10
|
Fernández-Teruel A, Tobeña A. Revisiting the role of anxiety in the initial acquisition of two-way active avoidance: pharmacological, behavioural and neuroanatomical convergence. Neurosci Biobehav Rev 2020; 118:739-758. [PMID: 32916193 DOI: 10.1016/j.neubiorev.2020.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/10/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Two-way active avoidance (TWAA) acquisition constitutes a particular case of approach -avoidance conflict for laboratory rodents. The present article reviews behavioural, psychopharmacological and neuroanatomical evidence accumulated along more than fifty years that provides strong support to the contention that anxiety is critical in the transition from CS (conditioned stimulus)-induced freezing to escape/avoidance responses during the initial stages of TWAA acquisition. Thus, anxiolytic drugs of different types accelerate avoidance acquisition, anxiogenic drugs impair it, and avoidance during these initial acquisition stages is negatively associated with other typical measures of anxiety. In addition behavioural and developmental treatments that reduce or increase anxiety/stress respectively facilitate or impair TWAA acquisition. Finally, evidence for the regulation of TWAA acquisition by septo-hippocampal and amygdala-related mechanisms is discussed. Collectively, the reviewed evidence gives support to the initial acquisition of TWAA as a paradigm with considerable predictive and (in particular) construct validity as an approach-avoidance conflict-based rodent anxiety model.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
11
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
12
|
Prokai-Tatrai K, De La Cruz DL, Nguyen V, Ross BP, Toth I, Prokai L. Brain Delivery of Thyrotropin-Releasing Hormone via a Novel Prodrug Approach. Pharmaceutics 2019; 11:E349. [PMID: 31323784 PMCID: PMC6680701 DOI: 10.3390/pharmaceutics11070349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
Using thyrotropin-releasing hormone (TRH) as a model, we explored whether synergistic combination of lipoamino acid(s) and a linker cleaved by prolyl oligopeptidase (POP) can be used as a promoiety for prodrug design for the preferential brain delivery of the peptide. A representative prodrug based on this design principle was synthesized, and its membrane affinity and in vitro metabolic stability, with or without the presence of a POP inhibitor, were studied. The in vivo formation of TRH from the prodrug construct was probed by utilizing the antidepressant effect of the peptide, as well as its ability to increase acetylcholine (ACh) synthesis and release. We found that the prototype prodrug showed excellent membrane affinity and greatly increased metabolic stability in mouse blood and brain homogenate compared to the parent peptide, yet a POP inhibitor completely prevented prodrug metabolism in brain homogenate. In vivo, administration of the prodrug triggered antidepressant-like effect, and microdialysis sampling showed greatly increased ACh release that was also antagonized upon a POP inhibitor treatment. Altogether, the obtained promising exploratory data warrant further investigations on the utility of the prodrug approach introduced here for brain-enhanced delivery of small peptides with neurotherapeutic potential.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Daniel L De La Cruz
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Vien Nguyen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
13
|
Valdés-Moreno MI, Alcántara-Alonso V, Estrada-Camarena E, Mengod G, Amaya MI, Matamoros-Trejo G, de Gortari P. Phosphodiesterase-7 inhibition affects accumbal and hypothalamic thyrotropin-releasing hormone expression, feeding and anxiety behavior of rats. Behav Brain Res 2017; 319:165-173. [PMID: 27864049 DOI: 10.1016/j.bbr.2016.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022]
Abstract
Thyrotropin-releasing hormone (TRH) has anorexigenic and anxiolytic functions when injected intraventricularly. Nucleus accumbens (NAcc) is a possible brain region involved, since it expresses proTRH. TRH from hypothalamic paraventricular nucleus (PVN) has a food intake-regulating role. TRHergic pathways of NAcc and PVN are implicated in anxiety and feeding. Both behaviors depend on cAMP and phosphorylated-cAMP response element binding protein (pCREB) intracellular levels. Intracellular levels of cAMP are controlled by the degrading activity of phosphodiesterases (PDEs). Since TRH transcription is activated by pCREB, a specific inhibitor of PDE7B may regulate TRH-induced effects on anxiety and feeding. We evaluated the effectiveness of an intra-accumbal and intraperitoneal (i.p.) administration of a PDE7 inhibitor (BRL-50481) on rats' anxiety-like behavior and food intake; also on TRH mRNA and protein expression in NAcc and PVN to define its mediating role on the PDE7 inhibitor-induced behavioral changes. Accumbal injection of 4μg/0.3μL of PDE7 inhibitor decreased rats' anxiety. The i.p. injection of 0.2mg/kg of the inhibitor was able to increase the PVN TRH mRNA expression and to decrease feeding but did not change animals' anxiety levels; in contrast, 2mg/kg b.w inhibitor enhanced accumbal TRH mRNA, induced anxiolysis with no change in food intake. PDE7 inhibitor induced anxiolytic and anorexigenic like behavior depending on the dose used. Results supported hypothalamic TRH mediated feeding-reduction effects, and accumbal TRH mediation of inhibitor-induced anxiolysis. Thus, an i.p dose of this inhibitor might be reducing anxiety with no change in feeding, which could be useful for obese patients.
Collapse
Affiliation(s)
- M I Valdés-Moreno
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico; School of Dietetics and Nutrition ISSSTE, Callejón Vía San Fernando 12, Col. San Pedro Apóstol, 14070 México City, Mexico
| | - V Alcántara-Alonso
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico
| | - E Estrada-Camarena
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico
| | - G Mengod
- Department of Neurochemistry and Neuropharmachology, Institut d'Investigacions Biòmediques de Barcelona, CSIC, IDIBAPS, CIBERNED, c/Rosselló 161, 6a, E 08036 Barcelona, Spain
| | - M I Amaya
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico
| | - G Matamoros-Trejo
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico
| | - P de Gortari
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico.
| |
Collapse
|
14
|
Chatzitomaris A, Hoermann R, Midgley JE, Hering S, Urban A, Dietrich B, Abood A, Klein HH, Dietrich JW. Thyroid Allostasis-Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming. Front Endocrinol (Lausanne) 2017; 8:163. [PMID: 28775711 PMCID: PMC5517413 DOI: 10.3389/fendo.2017.00163] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus-pituitary-thyroid feedback control is a dynamic, adaptive system. In situations of illness and deprivation of energy representing type 1 allostasis, the stress response operates to alter both its set point and peripheral transfer parameters. In contrast, type 2 allostatic load, typically effective in psychosocial stress, pregnancy, metabolic syndrome, and adaptation to cold, produces a nearly opposite phenotype of predictive plasticity. The non-thyroidal illness syndrome (NTIS) or thyroid allostasis in critical illness, tumors, uremia, and starvation (TACITUS), commonly observed in hospitalized patients, displays a historically well-studied pattern of allostatic thyroid response. This is characterized by decreased total and free thyroid hormone concentrations and varying levels of thyroid-stimulating hormone (TSH) ranging from decreased (in severe cases) to normal or even elevated (mainly in the recovery phase) TSH concentrations. An acute versus chronic stage (wasting syndrome) of TACITUS can be discerned. The two types differ in molecular mechanisms and prognosis. The acute adaptation of thyroid hormone metabolism to critical illness may prove beneficial to the organism, whereas the far more complex molecular alterations associated with chronic illness frequently lead to allostatic overload. The latter is associated with poor outcome, independently of the underlying disease. Adaptive responses of thyroid homeostasis extend to alterations in thyroid hormone concentrations during fetal life, periods of weight gain or loss, thermoregulation, physical exercise, and psychiatric diseases. The various forms of thyroid allostasis pose serious problems in differential diagnosis of thyroid disease. This review article provides an overview of physiological mechanisms as well as major diagnostic and therapeutic implications of thyroid allostasis under a variety of developmental and straining conditions.
Collapse
Affiliation(s)
- Apostolos Chatzitomaris
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- *Correspondence: Apostolos Chatzitomaris,
| | - Rudolf Hoermann
- Private Consultancy, Research and Development, Yandina, QLD, Australia
| | | | - Steffen Hering
- Department for Internal Medicine, Cardiology, Endocrinology, Diabetes and Medical Intensive Care Medicine, Krankenhaus Bietigheim-Vaihingen, Bietigheim-Bissingen, Germany
| | - Aline Urban
- Department for Anesthesiology, Intensive Care and Palliative Medicine, Eastern Allgäu-Kaufbeuren Hospitals, Kaufbeuren, Germany
| | | | - Assjana Abood
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
| | - Harald H. Klein
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| | - Johannes W. Dietrich
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| |
Collapse
|
15
|
Zarif H, Petit-Paitel A, Heurteaux C, Chabry J, Guyon A. TRH modulates glutamatergic synaptic inputs on CA1 neurons of the mouse hippocampus in a biphasic manner. Neuropharmacology 2016; 110:69-81. [PMID: 27060411 DOI: 10.1016/j.neuropharm.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
Abstract
Thyrotropin Releasing Hormone (TRH) is a tripeptide that induces the release of Thyroid Stimulating Hormone (TSH) in the blood. Besides its role in the thyroid system, TRH has been shown to regulate several neuronal systems in the brain however its role in hippocampus remains controversial. Using electrophysiological recordings in acute mouse brain slices, we show that TRH depresses glutamate responses at the CA3-CA1 synapse through an action on NMDA receptors, which, as a consequence, decreases the ability of the synapse to establish a long term potentiation (LTP). TRH also induces a late increase in AMPA/kainate responses. Together, these results suggest that TRH plays an important role in the modulation of hippocampal neuronal activities, and they contribute to a better understanding of the mechanisms by which TRH impacts synaptic function underlying emotional states, learning and memory processes.
Collapse
Affiliation(s)
- Hadi Zarif
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Agnès Petit-Paitel
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Joëlle Chabry
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Alice Guyon
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France.
| |
Collapse
|
16
|
TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology 2015; 97:346-56. [DOI: 10.1016/j.neuropharm.2015.03.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/25/2015] [Indexed: 01/08/2023]
|
17
|
Pekary AE, Sattin A, Lloyd RL. Ketamine modulates TRH and TRH-like peptide turnover in brain and peripheral tissues of male rats. Peptides 2015; 69:66-76. [PMID: 25882008 DOI: 10.1016/j.peptides.2015.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/10/2023]
Abstract
Major depression is the largest single healthcare burden with treatments of slow onset and often limited efficacy. Ketamine, a NMDA antagonist used extensively as a pediatric and veterinary anesthetic, has recently been shown to be a rapid acting antidepressant, making it a potential lifesaver for suicidal patients. Side effects and risk of abuse limit the chronic use of ketamine. More complete understanding of the neurobiochemical mechanisms of ketamine should lead to safer alternatives. Some of the physiological and pharmacological actions of ketamine are consistent with increased synthesis and release of TRH (pGlu-His-Pro-NH2), and TRH-like peptides (pGlu-X-Pro-NH2) where "X" can be any amino acid residue. Moreover, TRH-like peptides are themselves potential therapeutic agents for the treatment of major depression, anxiety, bipolar disorder, epilepsy, Alzheimer's and Parkinson's diseases. For these reasons, male Sprague-Dawley rats were anesthetized with 162 mg/kg ip ketamine and then infused intranasally with 20 μl of sterile saline containing either 0 or 5 mg/ml Glu-TRH. One, 2 or 4h later, the brain levels of TRH and TRH-like peptides were measured in various brain regions and peripheral tissues. At 1h in brain following ketamine only, the levels of TRH and TRH-like peptides were significantly increased in 52 instances (due to increased biosynthesis and/or decreased release) or decreased in five instances. These changes, listed by brain region in order of decreasing number of significant increases (↑) and/or decreases (↓), were: hypothalamus (9↑); piriform cortex (8↑); entorhinal cortex (7↑); nucleus accumbens (7↑); posterior cingulate (5↑); striatum (4↑); frontal cortex (2↑,3↓); amygdala (3↑); medulla oblongata (1↑,2↓); cerebellum (2↑); hippocampus (2↑); anterior cingulate (2↑). The corresponding changes in peripheral tissues were: adrenals (8↑); epididymis (4↑); testis (1↑,3↓); pancreas (1↑); prostate (1↑). We conclude that TRH and TRH-like peptides may be downstream mediators of the rapid antidepressant actions of ketamine.
Collapse
Affiliation(s)
- A Eugene Pekary
- Research Services, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Center for Ulcer Research and Education, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Department of Medicine, University of California, Los Angeles, CA 90073, United States.
| | - Albert Sattin
- Research Services, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Psychiatry Services, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Departments of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA 90073, United States; Brain Research Institute, University of California, Los Angeles, CA 90073, United States
| | - Robert L Lloyd
- Department of Psychology, University of Minnesota, 332 Bohannon Hall, 10 University Drive, Duluth, MN 55812-2494, United States
| |
Collapse
|
18
|
Wilkinson AV, Koehly LM, Vandewater EA, Yu RK, Fisher-Hoch SP, Prokhorov AV, Kohl HW, Spitz MR, Shete S. Demographic, psychosocial, and genetic risk associated with smokeless tobacco use among Mexican heritage youth. BMC MEDICAL GENETICS 2015; 16:43. [PMID: 26111525 PMCID: PMC4636823 DOI: 10.1186/s12881-015-0188-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/11/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Despite well-established negative health consequences of smokeless tobacco use (STU), the number and variety of alternative non-combustible tobacco products on the market have increased tremendously over the last 10 years, as has the market share of these products relative to cigarettes. While STU among non-Hispanic white youth has decreased over the last 10 years, the prevalence has remained constant among Hispanic youth. Here we examine demographic, psychosocial, and genetic risk associated with STU among Mexican heritage youth. METHODS Participants (50.5 % girls) reported on psychosocial risk factors in 2008-09 (n = 1,087, mean age = 14.3 years), and smokeless tobacco use in 2010-11 (mean age = 16.7 years). Participants provided a saliva sample that was genotyped for genes in the dopamine, serotonin and opioid pathways. RESULTS Overall 62 (5.7 %) participants reported lifetime STU. We identified five single nucleotide polymorphisms that increased the risk for lifetime use. Specifically, rs2023902 on SERGEF (OR = 1.93; 95 % CI: 1.05-3.53), rs16941667 on ALDH2 (OR = 3.14; 95 % CI: 1.65-5.94), and rs17721739 on TPH1 (OR = 1.71; 95 % CI: 1.00-2.91) in the dopamine pathway, rs514912 on TRH-DE (OR = 1.84; 95 % CI: 1.25-2.71) in the serotonin pathway, and rs42451417 on the serotonin transporter gene, SLC6A4 (OR = 3.53; 95 % CI: 1.56-7.97). After controlling for genetic risk, being male (OR = 1.86; 95 % CI: 1.02-3.41), obesity status (OR = 2.22; 95 % CI: 1.21-4.09), and both higher levels of anxiety (OR = 1.04; 95 % CI: 1.01-1.08) and social disinhibition (OR = 1.26; 95 % CI: 1.07-1.48) were associated with increased use. High subjective social status (OR = 0.78; 95 % CI: 0.64-0.93) was protective against use, while higher parental education (OR = 2.01; 95 % CI: 1.03-3.93) was associated with increased use. CONCLUSIONS These data suggest that use of genetic risk, along with psychosocial, demographic, and behavioral risk factors may increase our ability to identify youth at increased risk for STU, which in turn may improve our ability to effectively target prevention messages to Mexican heritage youth.
Collapse
Affiliation(s)
- Anna V Wilkinson
- Michael & Susan Dell Center for Healthy Living & The University of Texas School of Public Health, Austin Regional Campus, 1616 Guadalupe St., Suite 6.300, Austin, TX, 78701, USA.
| | - Laura M Koehly
- Social and Behavioral Division, National Human Genome Research Institute, Bethesda, MD, USA.
| | - Elizabeth A Vandewater
- Michael & Susan Dell Center for Healthy Living & The University of Texas School of Public Health, Austin Regional Campus, 1616 Guadalupe St., Suite 6.300, Austin, TX, 78701, USA.
| | - Robert K Yu
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Susan P Fisher-Hoch
- The University of Texas School of Public Health Brownsville Regional Campus, Brownsville, TX, USA.
| | - Alexander V Prokhorov
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Harold W Kohl
- Michael & Susan Dell Center for Healthy Living & The University of Texas School of Public Health, Austin Regional Campus, 1616 Guadalupe St., Suite 6.300, Austin, TX, 78701, USA.
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA.
| | | | - Sanjay Shete
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Joseph-Bravo P, Jaimes-Hoy L, Charli JL. Regulation of TRH neurons and energy homeostasis-related signals under stress. J Endocrinol 2015; 224:R139-59. [PMID: 25563352 DOI: 10.1530/joe-14-0593] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Energy homeostasis relies on a concerted response of the nervous and endocrine systems to signals evoked by intake, storage, and expenditure of fuels. Glucocorticoids (GCs) and thyroid hormones are involved in meeting immediate energy demands, thus placing the hypothalamo-pituitary-thyroid (HPT) and hypothalamo-pituitary-adrenal axes at a central interface. This review describes the mode of regulation of hypophysiotropic TRHergic neurons and the evidence supporting the concept that they act as metabolic integrators. Emphasis has been be placed on i) the effects of GCs on the modulation of transcription of Trh in vivo and in vitro, ii) the physiological and molecular mechanisms by which acute or chronic situations of stress and energy demands affect the activity of TRHergic neurons and the HPT axis, and iii) the less explored role of non-hypophysiotropic hypothalamic TRH neurons. The partial evidence gathered so far is indicative of a contrasting involvement of distinct TRH cell types, manifested through variability in cellular phenotype and physiology, including rapid responses to energy demands for thermogenesis or physical activity and nutritional status that may be modified according to stress history.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| |
Collapse
|
20
|
Silva VC, Giusti-Paiva A. Sickness behavior is delayed in hypothyroid mice. Brain Behav Immun 2015; 45:109-17. [PMID: 25524131 DOI: 10.1016/j.bbi.2014.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 01/23/2023] Open
Abstract
Sickness behavior is an expression of a motivational state triggered by activation of the peripheral innate immune system, whereby an organism reprioritizes its functions to fight infection. The relationship between thyroid hormone and immune cells is complex, and additional insights are needed about the involvement of the cross-talk between thyroid hormone, the central nervous system and immune function, as demonstrated by the consequences to sickness behavior. The aim of this work was to evaluate sickness behavior in hypothyroid mice. Control mice and mice treated with propylthiouracil (PTU) for 30days (0.05%; added to drinking water) received a single dose of LPS (200μg/kg; i.p.) or saline, and the behavioral response was assessed for 24h. We provide evidence that thyroid status acts a modulator for the development of depressive-like and exploratory behaviors in mice that are subjected to an immunological challenge because the PTU pretreatment delayed the LPS-induced behavioral changes observed in an open field test and in a forced swimming test. This response was observed concomitantly with a lower thermal index until 4h after the LPS administration. This result demonstrates that thyroid status modifies behavioral responses to immune challenge and suggests that thyroid hormones are essential for the manifestation of sickness behavior during endotoxemia.
Collapse
Affiliation(s)
- Vanessa Cardoso Silva
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Brazil; Universidade Federal de Juiz de Fora, Campus Governador Valadares, Minas Gerais, Brazil
| | - Alexandre Giusti-Paiva
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Leone S, Shohreh R, Manippa F, Recinella L, Ferrante C, Orlando G, Salvatori R, Vacca M, Brunetti L. Behavioural phenotyping of male growth hormone-releasing hormone (GHRH) knockout mice. Growth Horm IGF Res 2014; 24:192-197. [PMID: 25028079 DOI: 10.1016/j.ghir.2014.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/22/2014] [Indexed: 12/01/2022]
Abstract
OBJECTIVE GH-releasing hormone (GHRH) is a key regulator of GH secretion. The role of GH in anxiety is somewhat contradictory. The aim of this study is to elucidate the consequences of lack of GHRH on emotional behaviour in a mouse model of GH deficiency due to removal of the GHRH gene (GHRH knock out, GHRHKO). DESIGN Homozygous GHRHKO and wild type male mice were utilized for this study. The emotional behaviour was measured through a battery of behavioural tests (locomotor activity/open field, light-dark exploration, elevated plus maze, forced swim test, tail suspension test). To correlate the emotional behaviour with brain neurochemistry, we evaluated thyrotropin-releasing hormone (TRH) gene expression in hypothalamic tissue by real-time PCR, and the levels of norepinephrine (NE), dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) in prefrontal cortex by HPLC analysis. RESULTS GHRHKO mice showed increased exploratory activity. In the open field test (P<0.005), light-dark box (P<0.005) and elevated plus maze (P<0.05), GHRHKO mice demonstrated a decrease in anxiety-related behaviour. In addition, GHRHKO mice showed reduced immobility time with respect to control in forced swim test and tail suspension test (P<0.0001). The gene expression of hypothalamic TRH (P<0.05) was increased, while NE levels in prefrontal cortex were decreased compared to control (P<0.05). CONCLUSION These results suggest that in male mice GHRH deficiency brings about an increased physical activity and decreased anxiety- and depression-related behaviour, possibly related to increased TRH and decreased NE levels in the brain.
Collapse
Affiliation(s)
- Sheila Leone
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Rugia Shohreh
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Fabio Manippa
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | | | | | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michele Vacca
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| |
Collapse
|
22
|
Vasudevan N, Morgan M, Pfaff D, Ogawa S. Distinct behavioral phenotypes in male mice lacking the thyroid hormone receptor α1 or β isoforms. Horm Behav 2013; 63:742-51. [PMID: 23567476 PMCID: PMC3726275 DOI: 10.1016/j.yhbeh.2013.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 11/29/2022]
Abstract
Thyroid hormones influence both neuronal development and anxiety via the thyroid hormone receptors (TRs). The TRs are encoded by two different genes, TRα and TRβ. The loss of TRα1 is implicated in increased anxiety in males, possibly via a hippocampal increase in GABAergic activity. We compared both social behaviors and two underlying and related non-social behaviors, state anxiety and responses to acoustic and tactile startle in the gonadally intact TRα1 knockout (α1KO) and TRβ (βKO) male mice to their wild-type counterparts. For the first time, we show an opposing effect of the two TR isoforms, TRα1 and TRβ, in the regulation of state anxiety, with α1 knockout animals (α1KO) showing higher levels of anxiety and βKO males showing less anxiety compared to respective wild-type mice. At odds with the increased anxiety in non-social environments, α1KO males also show lower levels of responsiveness to acoustic and tactile startle stimuli. Consistent with the data that T4 is inhibitory to lordosis in female mice, we show subtly increased sex behavior in α1KO male mice. These behaviors support the idea that TRα1 could be inhibitory to ERα driven transcription that ultimately impacts ERα driven behaviors such as lordosis. The behavioral phenotypes point to novel roles for the TRs, particularly in non-social behaviors such as state anxiety and startle.
Collapse
Affiliation(s)
- Nandini Vasudevan
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA.
| | | | | | | |
Collapse
|
23
|
Gutiérrez-Mariscal M, Sánchez E, García-Vázquez A, Rebolledo-Solleiro D, Charli JL, Joseph-Bravo P. Acute response of hypophysiotropic thyrotropin releasing hormone neurons and thyrotropin release to behavioral paradigms producing varying intensities of stress and physical activity. ACTA ACUST UNITED AC 2012; 179:61-70. [PMID: 22960404 DOI: 10.1016/j.regpep.2012.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/04/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
The activity of the hypothalamus-pituitary-thyroid (HPT) axis is essential for energy homeostasis and is differentially modulated by physical and by psychological stress. Contradictory effects of stressful behavioral paradigms on TSH or thyroid hormone release are due to type, length and controllability of the stressor. We hypothesized that an additional determinant of the activity of the HPT axis is the energy demand due to physical activity. We thus evaluated the response of thyrotropin releasing hormone (TRH) neurons of the hypothalamic paraventricular nucleus (PVN) in Wistar male rats submitted to the elevated plus maze (EPM), the open field test (OFT), or restraint, and sacrificed within 1h after test completion; the response to OFT was compared during light (L) or dark (D) phases. Locomotion and anxiety behaviors were similar if animals were tested in L or D phases but their relation to the biochemical parameters differed. All paradigms increased serum corticosterone concentration; the levels of corticotropin releasing hormone receptor 1 and of glucocorticoid receptor (GR) mRNAs in the PVN were enhanced after restraint or OFT-L. Levels of proTRH mRNA increased in the PVN after exposure to EPM-L or OFT-D; serum levels of thyrotropin (TSH) and T(4) only after OFT-D. In contrast, restraint decreased TRH mRNA and serum TSH levels, while it increased TRH content in the mediobasal hypothalamus, implying reduced release. Expression of proTRH in the PVN varied proportionally to the degree of locomotion in OFT-D, while inversely to anxiety in the EPM-L, and to corticosterone in EPM-L and OFT-D. TRH mRNA levels were analyzed by in situ hybridization in the rostral, middle and caudal zones of the PVN in response to OFT-D; they increased in the middle PVN, where most TRH hypophysiotropic neurons reside; levels correlated positively with the velocity attained in the periphery of the OF and negatively, with anxiety. Variations of serum TSH levels correlated positively with locomotor activity in EPM-L and OFT-L or -D, while negatively to serum corticosterone levels in all paradigms. These results support the proposal that the hypophysiotropic PVN TRH neurons are activated by short term physical activity but that this response may be blunted by the inhibitory effect of stress.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Mariscal
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca MOR, México
| | | | | | | | | | | |
Collapse
|
24
|
The genetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2012; 136:375-400. [PMID: 22944042 DOI: 10.1016/j.pharmthera.2012.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/21/2012] [Indexed: 12/15/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are among the most widely prescribed drugs in psychiatry. Based on the fact that SSRIs increase extracellular monoamine levels in the brain, the monoamine hypothesis of depression was introduced, postulating that depression is associated with too low serotonin, dopamine and noradrenaline levels. However, several lines of evidence indicate that this hypothesis is too simplistic and that depression and the efficacy of SSRIs are dependent on neuroplastic changes mediated by changes in gene expression. Because a coherent view on global gene expression is lacking, we aim to provide an overview of the effects of SSRI treatment on the final targets of 5-HT receptor signal transduction pathways, namely the transcriptional regulation of genes. We address gene polymorphisms in humans that affect SSRI efficacy, as well as in vitro studies employing human-derived cells. We also discuss the molecular targets affected by SSRIs in animal models, both in vivo and in vitro. We conclude that serotonin transporter gene variation in humans affects the efficacy and side-effects of SSRIs, whereas SSRIs generally do not affect serotonin transporter gene expression in animals. Instead, SSRIs alter mRNA levels of genes encoding serotonin receptors, components of non-serotonergic neurotransmitter systems, neurotrophic factors, hypothalamic hormones and inflammatory factors. So far little is known about the epigenetic and age-dependent molecular effects of SSRIs, which might give more insights in the working mechanism(s) of SSRIs.
Collapse
|
25
|
Gutiérrez-Mariscal M, Sánchez E, Rebolledo-Solleiro D, García-Vázquez AI, Cote-Vélez A, Acasuso-Rivero C, Charli JL, Joseph-Bravo P. The acute response of the amygdalar TRH system to psychogenic stressors varies dependent on the paradigm and circadian condition. Brain Res 2012; 1452:73-84. [PMID: 22464182 DOI: 10.1016/j.brainres.2012.02.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Central administration of thyrotropin releasing hormone (TRH) reduces anxiety; amygdalar TRH expression is inversely proportional to the anxious behavior displayed in the elevated plus maze performed during the dark phase (EPM-D). To better understand the role of TRH in amygdala function, we evaluated the expression of TRH and the elements involved in its transmission in various stressful paradigms and how they associated with behavior. Wistar male rats were exposed to restraint (RES), EPM, or the open field test (OFT) and sacrificed 0-60 min afterwards; OFT, RES and EPM were performed during the light (L), and OFT during the dark phase. Restraint increased amygdalar levels of proCRH mRNA, without change in proTRH. All paradigms augmented corticosterone release, highest after OFT-L that also enhanced proCRH mRNA levels and decreased those of proTRH. OFT-D activated the TRH system. Levels of anxiety or locomotion were similar in animals tested in light or dark phases but their association with biochemical parameters differed. ProTRH expression and TRH release correlated positively with decreased anxiety in EPM-L and in OFT-D. No association with anxiety was detected in OFT-L where proCRH and proTRH expression correlated with locomotion supporting their involvement in arousal. The responses of TRH amygdalar systems appeared modulated by the extent of the stress response and by the circadian conditions. Increased proTRH expression of animals exposed to OFT-D was specifically observed in the cortical nucleus of the amygdala, area involved in processing fear stimuli; these TRH neurons may thus be part of a circuit with anxiolytic properties.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Mariscal
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, MOR., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kamath J, Feinn R, Winokur A. Thyrotropin-releasing hormone as a treatment for cancer-related fatigue: a randomized controlled study. Support Care Cancer 2011; 20:1745-53. [PMID: 21947558 DOI: 10.1007/s00520-011-1268-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/06/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Fatigue is a common and often disabling symptom for cancer patients. To date, no pharmacological interventions have shown reliable efficacy in treatment of cancer-related fatigue (CF). Thyrotropin-releasing hormone (TRH), a key regulator of homeostasis, exerts arousing and analeptic actions in instances of behavioral depression. In the present pilot, randomized, placebo-controlled, crossover study, we investigated the efficacy and safety of TRH as a treatment for CF. METHODS Patients with cancer experiencing significant fatigue without medically reversible causes were enrolled in this study. The primary outcome measure was the visual analog scale for energy (VAS-E) assessed at 3, 7, and 24 h post-study medication administration. Secondary outcome measures included the profile of mood states (POMS) questionnaire, a 6-min walking test, the hospital anxiety and depression scale, the Leeds sleep questionnaire, and assessment of quality of life using the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F). RESULTS Eight patients completed the study. TRH administration was associated with significant improvement in fatigue level as measured by the VAS-E, the fatigue and vigor subscales of the POMS, and the fatigue subscale of FACIT-F (p < 0.05). It was also associated with a positive impact on quality of life. TRH administration was associated with transient increases in blood pressure and heart rate. CONCLUSIONS TRH administration was efficacious, safe, and tolerable in the treatment of CF with a positive impact on quality of life. These results provide a crucial impetus for pursuing TRH therapeutics to treat CF.
Collapse
Affiliation(s)
- Jayesh Kamath
- Department of Psychiatry, University of Connecticut Health Center, 10 Talcott Notch Road, Farmington, CT, USA.
| | | | | |
Collapse
|
27
|
Sattin A, Pekary AE, Blood J. Rapid modulation of TRH and TRH-like peptide release in rat brain and peripheral tissues by prazosin. Peptides 2011; 32:1666-76. [PMID: 21718733 DOI: 10.1016/j.peptides.2011.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/11/2011] [Accepted: 06/13/2011] [Indexed: 11/28/2022]
Abstract
Hyperresponsiveness to norepinephrine contributes to post-traumatic stress disorder (PTSD). Prazosin, a brain-active blocker of α(1)-adrenoceptors, originally used for the treatment of hypertension, has been reported to alleviate trauma nightmares, sleep disturbance and improve global clinical status in war veterans with PTSD. Thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH(2)) may play a role in the pathophysiology and treatment of neuropsychiatric disorders such as major depression, and PTSD (an anxiety disorder). To investigate whether TRH or TRH-like peptides (pGlu-X-Pro-NH(2), where "X" can be any amino acid residue) participate in the therapeutic effects of prazosin, male rats were injected with prazosin and these peptides then measured in brain and endocrine tissues. Prazosin stimulated TRH and TRH-like peptide release in those tissues with high α(1)-adrenoceptor levels suggesting that these peptides may play a role in the therapeutic effects of prazosin.
Collapse
Affiliation(s)
- Albert Sattin
- Psychiatry Services, VA Greater Los Angeles Healthcare System, CA 90073, USA
| | | | | |
Collapse
|
28
|
Alterations in the central CRF system of two different rat models of comorbid depression and functional gastrointestinal disorders. Int J Neuropsychopharmacol 2011; 14:666-83. [PMID: 20860876 DOI: 10.1017/s1461145710000994] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clinical evidence suggests comorbidity between depression and irritable bowel syndrome (IBS). Early-life stress and genetic predisposition are key factors in the pathophysiology of both IBS and depression. Thus, neonatal maternal separation (MS), and the Wistar-Kyoto (WKY) rat, a genetically stress-sensitive rat strain, are two animal models of depression that display increased visceral hypersensitivity and alterations in the hypothalamic-pituitary-adrenal axis. Corticotrophin-releasing factor (CRF) is the primary peptide regulating this axis, acting through two receptors: CRF1 and CRF2. The central CRF system is also a key regulator in the stress response. However, there is a paucity of studies investigating alterations in the central CRF system of adult MS or WKY animals. Using in-situ hybridization we demonstrate that CRF mRNA is increased in the paraventricular nucleus (PVN) of WKY rats and the dorsal raphé nucleus (DRN) of MS animals, compared to Sprague-Dawley and non-separated controls, respectively. Additionally, CRF1 mRNA was higher in the PVN, amygdala and DRN of both animal models, along with high levels of CRF1 mRNA in the hippocampus of WKY animals compared to control animals. Finally, CRF2 mRNA was lower in the DRN of MS and WKY rats compared to control animals, and in the hippocampus and amygdala of MS rats. These results show that the central CRF system is altered in both animal models. Such alterations may affect HPA axis regulation, contribute to behavioural changes associated with stress-related disorders, and alter the affective component of visceral pain modulation, which is enhanced in IBS patients.
Collapse
|
29
|
Bousquet-Moore D, Mains RE, Eipper BA. Peptidylgycine α-amidating monooxygenase and copper: a gene-nutrient interaction critical to nervous system function. J Neurosci Res 2011; 88:2535-45. [PMID: 20648645 DOI: 10.1002/jnr.22404] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peptidylgycine alpha-amidating monooxygenase (PAM), a highly conserved copper-dependent enzyme, is essential for the synthesis of all amidated neuropeptides. Biophysical studies revealed that the binding of copper to PAM affects its structure, and cell biological studies demonstrated that the endocytic trafficking of PAM was sensitive to copper. We review data indicating that genetic reduction of PAM expression and mild copper deficiency in mice cause similar alterations in several physiological functions known to be regulated by neuropeptides: thermal regulation, seizure sensitivity, and anxiety-like behavior.
Collapse
|
30
|
Creb and Sp/Krüppel response elements cooperate to control rat TRH gene transcription in response to cAMP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:191-9. [PMID: 21266205 DOI: 10.1016/j.bbagrm.2011.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 12/17/2022]
Abstract
Expression of hypophysiotropic TRH, that controls thyroid axis activity, is increased by cold exposure; this effect is mimicked in rat hypothalamic cells incubated with norepinephrine or cAMP analogs. TRH proximal promoter contains three putative CRE: Site-4 or CRE-1 that overlaps an element recognized by thyroid hormone receptors, CRE-2 with adjacent sequences GC box or CACCC recognized by Sp/Krüppel factors (extended CRE-2), and AP-1 sites flanking a GRE(1/2). To evaluate the role of each element in the cAMP response, these sites were mutated or deleted in rat TRH promoter linked to luciferase gene (TRH-luc) and co-transfected with β-gal expression vector in various cell lines; C6 cells gave the highest response to forskolin. Basal activity was most affected by mutations or deletion of CRE-2 site, or CACCC (50-75% of wild type-WT). Forskolin-induced 3× stimulation in WT which decreased 25% with CRE-1 or AP-1 deletions, but 50% when CRE-2 or its 5' adjacent GC box was altered. SH-SY5Y cells co-transfected with CREB-expression vector increased dB-cAMP response in the wild type but not in the CRE-2 mutated plasmid; cotransfecting CREB-A (a dominant negative expression vector) strongly diminished basal or cAMP response. Primary cultures of hypothalamic cells transfected with plasmids containing deletions of CRE-1, CRE-2, or extended CRE-2 failed to respond to forskolin when CRE-2 was modified. These results corroborate the CRE-2 site as the main cAMP-response element of rat TRH promoter, not exclusive of transcription factors of hypothalamic cells, and stress the relevance of adjacent Sp-1 sites, important mediators of some metabolic hormones.
Collapse
|
31
|
The systemic inhibition of nitric oxide production rapidly regulates TRH mRNA concentration in the paraventricular nucleus of the hypothalamus and serum TSH concentration. Studies in control and cold-stressed rats. Brain Res 2011; 1367:188-97. [DOI: 10.1016/j.brainres.2010.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/03/2010] [Accepted: 10/05/2010] [Indexed: 01/24/2023]
|
32
|
Haploinsufficiency in peptidylglycine alpha-amidating monooxygenase leads to altered synaptic transmission in the amygdala and impaired emotional responses. J Neurosci 2010; 30:13656-69. [PMID: 20943906 DOI: 10.1523/jneurosci.2200-10.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mammalian amygdala expresses various neuropeptides whose signaling has been implicated in emotionality. Many neuropeptides require amidation for full activation by peptidylglycine α-amidating monooxygenase (PAM), a transmembrane vesicular cuproenzyme and regulator of the secretory pathway. Mice heterozygous for the Pam gene (PAM(+/-)) exhibit physiological and behavioral abnormalities related to specific peptidergic pathways. In the present study, we evaluated emotionality and examined molecular and cellular responses that characterize neurophysiological differences in the PAM(+/-) amygdala. PAM(+/-) mice presented with anxiety-like behaviors in the zero maze that were alleviated by diazepam. PAM(+/-) animals were deficient in short- and long-term contextual and cued fear conditioning and required higher shock intensities to establish fear-potentiated startle than their wild-type littermates. Immunohistochemical analysis of the amygdala revealed PAM expression in pyramidal neurons and local interneurons that synthesize GABA. We performed whole-cell recordings of pyramidal neurons in the PAM(+/-) amygdala to elucidate neurophysiological correlates of the fear behavioral phenotypes. Consistent with these observations, thalamic afferent synapses in the PAM(+/-) lateral nucleus were deficient in long-term potentiation. This deficit was apparent in the absence and presence of the GABA(A) receptor antagonist picrotoxin and was abolished when both GABA(A) and GABA(B) receptors were blocked. Both evoked and spontaneous excitatory signals were enhanced in the PAM(+/-) lateral nucleus. Phasic GABAergic signaling was also augmented in the PAM(+/-) amygdala, and this difference comprised activity-independent and -dependent components. These physiological findings represent perturbations in the PAM(+/-) amygdala that may underlie the aberrant emotional responses in the intact animal.
Collapse
|
33
|
Abstract
SummaryThe physiological role of thyreoliberin (TRH) is the preservation of homeostasis within four systems (i) the hypothalamic-hypophsysiotropic neuroendocrine system, (ii) the brain stem/midbrain/spinal cord system, (iii) the limbic/cortical system, and (iv) the chronobiological system. Thus TRH, via various cellular mechanisms, regulates a wide range of biological processes (arousal, sleep, learning, locomotive activity, mood) and possesses the potential for unique and widespread applications for treatment of human illnesses. Since the therapeutic potential of TRH is limited by its pharmacological profile (enzymatic instability, short half-life, undesirable effects), several synthetic analogues of TRH were constructed and studied in mono- or adjunct therapy of central nervous system (CNS) disturbances. The present article summarizes the current state of understanding of the physiological role of TRH and describes its putative role in clinical indications in CNS maladies with a focus on the action of TRH analogues.
Collapse
|
34
|
Shukla PK, Sittig LJ, Andrus BM, Schaffer DJ, Batra KK, Redei EE. Prenatal thyroxine treatment disparately affects peripheral and amygdala thyroid hormone levels. Psychoneuroendocrinology 2010; 35:791-7. [PMID: 20005050 PMCID: PMC2875313 DOI: 10.1016/j.psyneuen.2009.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 09/25/2009] [Accepted: 10/22/2009] [Indexed: 11/18/2022]
Abstract
A prenatal hypothyroid state is associated with behavioral abnormalities in adulthood. Wistar Kyoto (WKY) rats exhibit hypothyroidism and increased depressive and anxiety-like behaviors. Thus, the WKY could illuminate the mechanisms by which the reversal of developmental hypothyroidism in humans and animals results in adult behavioral improvement. We examined the outcome of maternal thyroxine (T4) treatment on thyroid hormone-regulated functions and adult behavior of the WKY offspring. Pregnant WKY dams completed gestation with and without T4 administration and their adult male offspring were tested. Measures included depressive and anxiety-like behaviors, and thyroid hormone (TH) concentrations in both plasma and specific brain regions. In addition, the expression of two proteins affecting thyroid hormone trafficking and metabolism, monocarboxylate transporter 8 (MCT-8) and iodothyronine deiodinase type III (Dio3), and of several behavior-altering molecules, glucocorticoid receptor (GR), prepro-thyrotropin releasing hormone (prepro-TRH) and corticotrophin releasing hormone (CRH), were determined in the hippocampus and amygdala of the offspring. Prenatal T4 treatment of WKYs did not affect adult depressive behavior but increased anxiety-like behavior and decreased plasma levels of THs. In the hippocampus of males treated with T4 in utero, Dio3 and MCT-8 protein levels were increased, while in the amygdala, there were increases of free T4, MCT-8, GR, prepro-TRH protein and CRH mRNA levels. These results show that T4 administration in utero programs adult peripheral and amygdalar thyroid hormone levels divergently, and that the resulting upregulation of anxiety-related genes in the amygdala could be responsible for the exacerbated anxiety-like behavior seen in WKYs after prenatal T4 treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva E. Redei
- Corresponding author: Eva E. Redei, Department of Psychiatry and Behavioral Sciences, The Asher Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, (312) 908-1791 (phone), (312) 503-0466 (fax),
| |
Collapse
|
35
|
Carr GV, Lucki I. Comparison of the kappa-opioid receptor antagonist DIPPA in tests of anxiety-like behavior between Wistar Kyoto and Sprague Dawley rats. Psychopharmacology (Berl) 2010; 210:295-302. [PMID: 20369354 PMCID: PMC3370387 DOI: 10.1007/s00213-010-1832-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 03/10/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE Recent evidence suggests a role for the dynorphin/kappa-opioid receptor (KOR) system in the expression of stress-induced behaviors. Wistar Kyoto (WKY) rats exhibit increased depression-like and anxiety-like responses in behavioral tests compared to other strains and may be a model of comorbid depression and anxiety characterized by increased activity within the dynorphin/KOR system. Though KOR antagonists produce antidepressant-like effects in WKY rats, their effects in tests of anxiety-like behavior have not been examined in the WKY strain. OBJECTIVE The aim of the current study was to investigate the effects of the KOR antagonist 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl]acetamide hydrochloride (DIPPA) on the behavior of WKY rats and Sprague Dawley (SD) rats in tests of anxiety-like behavior. METHODS The novelty-induced hypophagia and defensive burying tests were used to measure anxiety-like behavior in WKY and SD rats and determine the effects of DIPPA on anxiety-like behavior in both strains. RESULTS WKY rats displayed greater amounts of anxiety-like behavior compared to SD rats. DIPPA produced anxiolytic-like effects in both tests in both strains. CONCLUSIONS WKY rats display more anxiety-like behavior at baseline compared to SD rats, and DIPPA produced anxiolytic-like effects in both WKY and SD rats. These findings support previous research suggesting that KOR antagonists possess anxiolytic-like properties and may potentially represent a novel class of treatments for mood disorders.
Collapse
Affiliation(s)
- Gregory V. Carr
- Department of Psychiatry, University of Pennsylvania, 125 South 31st Street, Room 2204, Philadelphia, PA, USA
| | - Irwin Lucki
- Department of Psychiatry, University of Pennsylvania, 125 South 31st Street, Room 2204, Philadelphia, PA, USA,Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Díaz-Gallardo MY, Cote-Vélez A, Charli JL, Joseph-Bravo P. A rapid interference between glucocorticoids and cAMP-activated signalling in hypothalamic neurones prevents binding of phosphorylated cAMP response element binding protein and glucocorticoid receptor at the CRE-Like and composite GRE sites of thyrotrophin-releasing hormone gene promoter. J Neuroendocrinol 2010; 22:282-93. [PMID: 20136691 DOI: 10.1111/j.1365-2826.2010.01966.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucocorticoids or cAMP increase, within minutes, thyrotrophin-releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is prevented if cells are simultaneously incubated with both drugs. Rat TRH promoter contains a CRE site at -101/-94 bp and a composite GRE element (cGRE) at -218/-197 bp. Nuclear extracts of hypothalamic cells incubated with 8Br-cAMP or dexamethasone, and not their combination, bind to oligonucleotides containing the CRE or cGRE sequences. Adjacent to CRE are Sp/Krüppel response elements, and flanking the GRE half site, two AP1 binding sites. The present study aimed to identify the hypothalamic transcription factors that bind to these sites. We verified that the effects of glucocorticoid were not mimicked by corticosterone-bovine serum albumin. Footprinting and chromatin immunoprecipitation (ChIP) assays were used to examine the interaction of cAMP- and glucocorticoid-mediated regulation of TRH transcription at the CRE and cGRE regions of the TRH promoter. Nuclear extracts from hypothalamic cells incubated for 1 h with cAMP or glucocorticoids protected CRE. The GRE half site was recognised by nuclear proteins from cells stimulated with glucocorticoids and, for the adjacent AP-1 sites, by nuclear proteins from cells stimulated with cAMP or phorbol esters. Protection of CRE or cGRE was lost if cells were coincubated with dexamethasone and 8Br-cAMP. ChIP assays revealed phospho-CREB, c-Jun, Sp1, c-Fos and GR antibodies bound the TRH promoter of cells treated with cAMP or glucocorticoids; anti:RNA-polymerase II immunoprecipitated TRH promoter in a similar proportion as anti:pCREB or anti:GR. Recruitment of pCREB, SP1 or GR was lost when cells were exposed simultaneously to 8Br-cAMP and glucocorticoids. The data show that while pCREB and Sp1 bind to CRE-2, or GR to cGRE of the TRH promoter, the mutual antagonism between cAMP and glucocorticoid signalling, which prevent their binding to TRH promoter, could serve as a mechanism by which glucocorticoids rapidly suppress cAMP and noradrenaline-stimulated TRH transcription.
Collapse
Affiliation(s)
- M Y Díaz-Gallardo
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | | | | | | |
Collapse
|
37
|
Siqueira CC, Rossoni RR, Schenberg LC. Dorsal periaqueductal gray matter-evoked panic-like behaviors are markedly inhibited by a low peripheral dose of thyrotropin releasing hormone. Psychoneuroendocrinology 2010; 35:262-71. [PMID: 19631472 DOI: 10.1016/j.psyneuen.2009.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 05/08/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
Stimulation of the dorsal periaqueductal gray matter (DPAG) produces defensive behaviors which are reminiscent of panic attacks. Recent evidence from our laboratory showed that DPAG-evoked defensive behaviors are markedly attenuated in short-term methimazole-induced hypothyroidism. It is not clear, however, whether these effects were due to an increase in thyrotropin releasing hormone (TRH), a decrease in thyroid hormones or to the overall effects of hypothyroidism. Accordingly, here we examined whether the peripheral injection of TRH has any effect either on the panic-like behaviors induced by electrical stimulation of DPAG or anxiety-like behaviors of rats exposed to the elevated plus-maze (EPM). Rats whose stimulation of DPAG produced flight responses (galloping or jumping) with intensities below 60 microA were injected with 1 microg/kg TRH (i.p.) and stimulated 10min after that. The day after, rats were treated with saline and subjected to the same stimulation procedure. Threshold curves were fitted through the logistic model and compared by likelihood-ratio chi(2) tests. TRH and saline effects on EPM performance were appraised in separate groups. Compared to saline-sessions, TRH-injected rats presented thresholds significantly higher for immobility (40%), trotting (33%), galloping (34%), jumping (39%) and exophthalmus (43%). In contrast, TRH had no effects on EPM arm exploration. TRH selective inhibition of DPAG-evoked defensive behaviors adds new evidence that panic attacks may be attenuated by increased levels of this hormone in hypothyroidism.
Collapse
Affiliation(s)
- Carla Coelho Siqueira
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória-ES, Brazil
| | | | | |
Collapse
|
38
|
Bousquet-Moore D, Prohaska JR, Nillni EA, Czyzyk T, Wetsel WC, Mains RE, Eipper BA. Interactions of peptide amidation and copper: novel biomarkers and mechanisms of neural dysfunction. Neurobiol Dis 2009; 37:130-40. [PMID: 19815072 DOI: 10.1016/j.nbd.2009.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/10/2009] [Accepted: 09/27/2009] [Indexed: 01/14/2023] Open
Abstract
Mammalian genomes encode only a small number of cuproenzymes. The many genes involved in coordinating copper uptake, distribution, storage and efflux make gene/nutrient interactions especially important for these cuproenzymes. Copper deficiency and copper excess both disrupt neural function. Using mice heterozygous for peptidylglycine alpha-amidating monooxygenase (PAM), a cuproenzyme essential for the synthesis of many neuropeptides, we identified alterations in anxiety-like behavior, thermoregulation and seizure sensitivity. Dietary copper supplementation reversed a subset of these deficits. Wildtype mice maintained on a marginally copper-deficient diet exhibited some of the same deficits observed in PAM(+/-) mice and displayed alterations in PAM metabolism. Altered copper homeostasis in PAM(+/-) mice suggested a role for PAM in the cell type specific regulation of copper metabolism. Physiological functions sensitive to genetic limitations of PAM that are reversed by supplemental copper and mimicked by copper deficiency may serve as indicators of marginal copper deficiency.
Collapse
Affiliation(s)
- Danielle Bousquet-Moore
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Jantas D, Jaworska-Feil L, Lipkowski AW, Lason W. Effects of TRH and its analogues on primary cortical neuronal cell damage induced by various excitotoxic, necrotic and apoptotic agents. Neuropeptides 2009; 43:371-85. [PMID: 19666192 DOI: 10.1016/j.npep.2009.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 11/17/2022]
Abstract
The tripeptide thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH2) has been shown to possess neuroprotective activity in in vitro and in vivo models. Since its potential utility is limited by relatively rapid metabolism, metabolically stabilized analogues have been constructed. In the present study we investigated the influence of TRH and its three stable analogues: Montirelin (MON, CG-3703), RGH-2202 (L-6-keto-piperidine-2carbonyl-l-leucyl-l-prolinamide) and Z-TRH (N-carbobenzyloxy-pGlutamyl-Histydyl-Proline) in various models of mouse cortical neuronal cell injury. Twenty four hour pre-treatment with TRH and its analogues in low micromolar concentrations attenuated the neuronal cell death evoked by excitatory amino acids (EAAs: glutamate, NMDA, kainate, quisqualate) and hydrogen peroxide. All the peptides showed neuroprotective action on staurosporine (St)-evoked apoptotic neuronal cell death, but this effect was caspase-3 independent. Interestingly, in mixed neuronal-glial cell preparations only MON decreased St- and glutamate-evoked neurotoxicity. None of the peptides inhibited the doxorubicin- and lactacystin-induced neuronal cortical cell death, agents acting via activation of death receptor (FAS) or inhibition of proteasome function, respectively. Furthermore, we found that neither inhibitors of PI3-K (wortmannin, LY 294002) nor MAPK/ERK1/2 (PD 098059, U 0126) were able to inhibit neuroprotective properties of TRH and MON in St model of apoptosis. The protection mediated by TRH and MON it that model was also not connected with influence of peptides on the pro-apoptotic GSK-3beta and JNK protein kinase expression and activity. Further studies showed that calpains, calcium-activated proteases were induced by Glu, but not by St in cortical neurons. Moreover, the Glu-evoked increase in spectrin alpha II cleavage product induced by calpains was blocked by TRH. The obtained data showed that the potency of TRH and its analogues in inhibiting EAAs- and H(2)O(2)-induced neuronal cell death from the highest to lowest activity was: MON>TRH>Z-TRH>RHG. Interestingly, all peptides were active against St-induced apoptosis, however, on concentration basis MON was far more potent than the other peptides. None of the peptides inhibited Dox- and LC-evoked apoptotic cell death. Additionally, the data exclude potential role of pro-survival (PI3-K/Akt and MAPK/ERK1/2) and pro-apoptotic (GSK-3beta and JNK) pathways in neuroprotective effects of TRH and its analogues on St-induced neuronal apoptosis. Moreover, the results point to involvement of the inhibition of calpains in the TRH neuroprotective effect in Glu model of neuronal cell death.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, PL 31-343 Krakow, Poland.
| | | | | | | |
Collapse
|
40
|
TRH-receptor-type-2-deficient mice are euthyroid and exhibit increased depression and reduced anxiety phenotypes. Neuropsychopharmacology 2009; 34:1601-8. [PMID: 19078951 PMCID: PMC2669701 DOI: 10.1038/npp.2008.217] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thyrotropin-releasing hormone (TRH) is a neuropeptide that initiates its effects in mice by interacting with two G-protein-coupled receptors, TRH receptor type 1 (TRH-R1) and TRH receptor type 2 (TRH-R2). Two previous reports described the effects of deleting TRH-R1 in mice. TRH-R1 knockout mice exhibit hypothyroidism, hyperglycemia, and increased depression and anxiety-like behavior. Here we report the generation of TRH-R2 knockout mice. The phenotype of these mice was characterized using gross and histological analyses along with blood hematological assays and chemistries. Standard metabolic tests to assess glucose and insulin tolerance were performed. Behavioral testing included elevated plus maze, open field, tail suspension, forced swim, and novelty-induced hypophagia tests. TRH-R2 knockout mice are euthyroid with normal basal and TRH-stimulated serum levels of thyroid-stimulating hormone (thyrotropin), are normoglycemic, and exhibit normal development and growth. Female, but not male, TRH-R2 knockout mice exhibit moderately increased depression-like and reduced anxiety-like phenotypes. Because the behavioral changes in TRH-R1 knockout mice may have been caused secondarily by their hypothyroidism whereas TRH-R2 knockout mice are euthyroid, these data provide the first evidence for the involvement of the TRH/TRH-R system, specifically extrahypothalamic TRH/TRH-R2, in regulating mood and affect.
Collapse
|
41
|
Involvement of CRH-R2 receptor in eating behavior and in the response of the HPT axis in rats subjected to dehydration-induced anorexia. Psychoneuroendocrinology 2009; 34:259-272. [PMID: 18951722 DOI: 10.1016/j.psyneuen.2008.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 12/31/2022]
Abstract
Wistar rats subjected to dehydration-induced anorexia (DIA), with 2.5% NaCl solution as drinking water for 7 days, decrease by 80% their food intake and present some changes common to pair-fed food restricted rats (FFR) such as: weight loss, decreased serum leptin and expression of orexigenic arcuate peptides, increasing the anorexigenic ones and serum corticosterone levels. In contrast, the response of the HPT axis differs: DIA animals have increased TRH expression in PVN and present primary as opposed to the tertiary hypothyroidism of the FFR. Exclusive to DIA is the activation of CRHergic neurons in the lateral hypothalamus (LH) that project to PVN. Since TRH neurons of the PVN contain CRH receptors, we hypothesized that the differences in the response of the HPT axis to DIA could be due to CRH regulating TRHergic neurons. CRH effect was first evaluated on TRH expression of cultured hypothalamic cells where TRH mRNA levels increased after 1h with 0.1nM of CRH. We then measured the mRNA levels of CRH receptors in the PVN of male and female rats subjected to DIA; only those of CRH-R2 were modulated (down-regulated). The CRH-R2 antagonist antisauvagine-30 was therefore injected into the PVN of male rats, during the 7 days of DIA. Antisauvagine-30 induced a higher food intake than controls, and impeded the changes produced by DIA on the HPT axis: PVN TRH mRNA, and serum TH and TSH levels were decreased to similar values of FFR animals. Results corroborate the anorexigenic effect of CRH and show its role, acting through CRH-R2 receptors, in the activation of TRHergic PVN neurons caused by DIA. These new data further supports clinical trials with CRH-R2 antagonists in anorexia nervosa patients.
Collapse
|
42
|
López JM, Domínguez L, González A. Immunohistochemical localization of thyrotropin-releasing hormone in the brain of reptiles. J Chem Neuroanat 2008; 36:251-63. [DOI: 10.1016/j.jchemneu.2008.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 01/31/2023]
|
43
|
The PKC and ERK/MAPK Pathways Regulate Glucocorticoid Action on TRH Transcription. Neurochem Res 2008; 33:1582-91. [DOI: 10.1007/s11064-008-9698-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
|
44
|
Jaimes-Hoy L, Joseph-Bravo P, de Gortari P. Differential response of TRHergic neurons of the hypothalamic paraventricular nucleus (PVN) in female animals submitted to food-restriction or dehydration-induced anorexia and cold exposure. Horm Behav 2008; 53:366-77. [PMID: 18191132 DOI: 10.1016/j.yhbeh.2007.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/22/2022]
Abstract
TRH neurons of the hypothalamic paraventricular nucleus (PVN), regulate pituitary-thyroid axis (HPT). Fasting activates expression of orexigenic peptides from the arcuate nucleus, increases corticosterone while reduces leptin, and pro-TRH mRNA levels despite low serum thyroid hormone concentration (tertiary hypothyroidism). TRH synthesis is positively regulated by anorexigenic peptides whose expression is reduced in fasting. The model of dehydration-induced anorexia (DIA) leads to decreased voluntary food intake but peptide expression in the arcuate is similar to forced-food restriction (FFR), where animals remain hungered. We compared the response of HPT axis of female Wistar rats submitted to DIA (2.5% saline solution, food ad libitum, 7 days) with FFR (provided with the amount of food ingested by DIA) and naïve (N) group fed ad libitum, as well as their response to acute cold exposure. Pro-TRH and pro-CRH mRNA levels in the PVN were measured by RT-PCR, TRH content, serum concentration of TSH and thyroid hormones by radioimmunoassay. DIA rats reduced 80% their food consumption compared to N, decreased PVN pro-CRH expression, serum estradiol and leptin levels, increased corticosterone similar to FFR. HPT axis of DIA animals failed to adapt: FFR presented tertiary hypothyroidism and DIA, primary. Response to cold stimulation leading to increased pro-TRH mRNA levels and TRH release was preserved under reduced energy availability in FFR rats but not in DIA, although the dynamics of hormonal release differed: TSH release augmented only in naïve; thyroxine in all but highest in DIA, and triiodothyronine in FFR and DIA suggesting a differential regulation of deiodinases.
Collapse
Affiliation(s)
- Lorraine Jaimes-Hoy
- División de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría RFM, México D.F., México
| | | | | |
Collapse
|