1
|
Zhu J, Zhang HN, Wu JK, Li FF, Liu YQ, Ning EJ, Yu LQ, Liang S. A low n-6/n-3 PUFA ratio and high level of dietary ɑ-linolenic acid improves sleep behavior in mice with insomnia. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2377-2387. [PMID: 39431184 PMCID: PMC11486881 DOI: 10.1007/s13197-024-06004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 10/22/2024]
Abstract
Camelina sativa oil (CSO) and Semen Ziziphi Spinosae oil (SZSO) are functional oils that have beneficial effects on brain health. This study evaluated the sedative and hypnotic effects of vegetable oils with various n - 6/n - 3 polyunsaturated fatty acids (PUFA) ratios and ɑ-linolenic acid (ALA) contents to mice. The n - 6/n - 3 PUFA ratios of CSO (CSO:SZSO = 1:0, 1.8 g/kg), SZSO (CSO:SZSO = 0:1, 1.8 g/kg), CSO-SZSO-L (CSO:SZSO = 1:1, 1.8 g/kg), and CSO-SZSO-H (CSO:SZSO = 1:1, 3.6 g/kg) were 0.51, 140, 1.69, and 1.69, respectively. The doses of ALA administered to mice with p-chlorophenylalanine-induced insomnia were approximately 0.64, 50 × 10-4, 0.32, and 0.64 g/kg, respectively. The mice were administered CSO, SZSO, and a low-dose combination of CSO and SZSO for seven days with no obvious hypnotic effects. However, the administration of a high-dose combination of CSO and SZSO significantly prolonged sleep duration in mice with induced insomnia and inhibited the serum levels of corticotropin-releasing hormone, adrenocorticotropic hormone, and cortisol. Interestingly, there were no significant effects on the structure and function of the hippocampal tissue. The results indicated that the anti-insomnia effects of these vegetable oils were positively correlated with a low n - 6/n - 3 PUFA ratio and the absolute amount of ALA. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06004-1.
Collapse
Affiliation(s)
- Jie Zhu
- Henan Napu Biotechnology Co., Ltd, Zhengzhou, 450000 Henan China
- Henan Academy of Sciences, Zhengzhou, 450002 Henan China
| | - Hua-nan Zhang
- Henan Napu Biotechnology Co., Ltd, Zhengzhou, 450000 Henan China
| | - Jia-kai Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450000 Henan China
| | - Fei-fei Li
- Henan Academy of Sciences, Zhengzhou, 450002 Henan China
| | - Yu-qing Liu
- Henan Academy of Sciences, Zhengzhou, 450002 Henan China
| | - Er-juan Ning
- Henan Napu Biotechnology Co., Ltd, Zhengzhou, 450000 Henan China
| | - Li-qin Yu
- Henan Napu Biotechnology Co., Ltd, Zhengzhou, 450000 Henan China
- Henan Academy of Sciences, Zhengzhou, 450002 Henan China
| | - Shen Liang
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| |
Collapse
|
2
|
Holsboer F, Ising M. Precision Psychiatry Approach to Treat Depression and Anxiety Targeting the Stress Hormone System - V1b-antagonists as a Case in Point. PHARMACOPSYCHIATRY 2024; 57:263-274. [PMID: 39159843 DOI: 10.1055/a-2372-3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The future of depression pharmacotherapy lies in a precision medicine approach that recognizes that depression is a disease where different causalities drive symptoms. That approach calls for a departure from current diagnostic categories, which are broad enough to allow adherence to the "one-size-fits-all" paradigm, which is complementary to the routine use of "broad-spectrum" mono-amine antidepressants. Similar to oncology, narrowing the overinclusive diagnostic window by implementing laboratory tests, which guide specifically targeted treatments, will be a major step forward in overcoming the present drug discovery crisis.A substantial subgroup of patients presents with signs and symptoms of hypothalamic-pituitary-adrenocortical (HPA) overactivity. Therefore, this stress hormone system was considered to offer worthwhile targets. Some promising results emerged, but in sum, the results achieved by targeting corticosteroid receptors were mixed.More specific are non-peptidergic drugs that block stress-responsive neuropeptides, corticotropin-releasing hormone (CRH), and arginine vasopressin (AVP) in the brain by antagonizing their cognate CRHR1-and V1b-receptors. If a patient's depressive symptomatology is driven by overactive V1b-signaling then a V1b-receptor antagonist should be first-line treatment. To identify the patient having this V1b-receptor overactivity, a neuroendocrine test, the so-called dex/CRH-test, was developed, which indicates central AVP release but is too complicated to be routinely used. Therefore, this test was transformed into a gene-based "near-patient" test that allows immediate identification if a depressed patient's symptomatology is driven by overactive V1b-receptor signaling. We believe that this precision medicine approach will be the next major innovation in the pharmacotherapy of depression.
Collapse
Affiliation(s)
- Florian Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany
- HMNC Holding GmbH, Munich, Germany
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
3
|
Zhang XX, Sun SY, Ma ZJ, Li ZY, Zhou YS, Yang Y, Rao JX, Zhang P, Kong XY, Li XY, Ge YJ, Chen GH. Changed nocturnal levels of stress-related hormones couple with sleep-wake states in the patients with chronic insomnia disorder: A clinical pilot study. Sleep Med 2024; 117:177-183. [PMID: 38554533 DOI: 10.1016/j.sleep.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/01/2024]
Abstract
OBJECTIVES To explore the relationship between nocturnal levels of stress-related hormones and different sleep-wake states in chronic insomnia disorder (CID) patients. METHODS Thirty-three CID patients and 34 good sleepers were enrolled and completed assessment of sleep log, Pittsburgh Sleep Quality Index and Insomnia Severity Index. During a-overnight polysomnography monitoring, the patients' vein bleeds were continually collected at different time points (pre-sleep, deep-sleep, 5-min or 30-min waking, and morning waking-up). The control subjects' bleeds were collected only at 22:00 and morning waking-up. The serum hormones were detected using enzyme-linked immunosorbent assay. RESULTS Compared with at pre-sleep, the level of cortisol was significantly higher at morning waking-up respectively in two-group subjects (Ps < 0.001), with insignificant inter-group differences in cortisol, corticotropin releasing hormone and copeptin at the two time-points. In the patients, the nocturnal secretion curves of three hormones were similar, with the highest concentration at morning waking-up, followed by 30-min waking, 5-min waking, pre-sleep, and deep-sleep. The patients' cortisol (Z = 79.192, P < 0.001) and copeptin (Z = 12.333, P = 0.015) levels were statistically different at different time-points, with higher cortisol at morning waking-up relative to deep-sleep, pre-sleep and 5-min waking (Ps < 0.05), and at 30-min waking relative to deep-sleep and pre-sleep (Ps < 0.05), and higher copeptin at morning waking-up relative to deep-sleep (P < 0.05). CONCLUSIONS In CID, the nocturnal wakes were instantaneously accompanied by high level, and deep sleep was accompanied by the lowest levels, of stress-related hormones, especially in cortisol, supporting the insomniac hypothesis of increased nocturnal pulse-release of cortisol.
Collapse
Affiliation(s)
- Xiang-Xia Zhang
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), 238000, Anhui Province, China
| | - Shi-Yu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology, First People's Hospital of Huainan, Huainan, 232007, Anhui, China
| | - Zi-Jie Ma
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), 238000, Anhui Province, China
| | - Zong-Yin Li
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), 238000, Anhui Province, China
| | - Yu-Shun Zhou
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), 238000, Anhui Province, China
| | - Ye Yang
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), 238000, Anhui Province, China
| | - Ji-Xian Rao
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), 238000, Anhui Province, China
| | - Ping Zhang
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), 238000, Anhui Province, China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), 238000, Anhui Province, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), 238000, Anhui Province, China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), 238000, Anhui Province, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), 238000, Anhui Province, China.
| |
Collapse
|
4
|
Dressle RJ, Riemann D. Hyperarousal in insomnia disorder: Current evidence and potential mechanisms. J Sleep Res 2023; 32:e13928. [PMID: 37183177 DOI: 10.1111/jsr.13928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Insomnia disorder is among the most frequent mental disorders, making research on its aetiology and pathophysiology particularly important. A unifying element of many aetiological and pathophysiological models is that they support or even centre on the role of some form of hyperarousal. In this theoretical review, we aim to summarise the current evidence on hyperarousal in insomnia. Hyperarousal is discussed as a state of relatively increased arousal in physiological, cortical and cognitive-emotional domains. Regarding physiological hyperarousal, there is no conclusive evidence for the involvement of autonomous variables such as heart rate and heart rate variability, whereas recent evidence points to a pathophysiological role of neuroendocrine variables. In addition, current literature supports a central involvement of cortical arousal, that is, high-frequency electroencephalographic activity. An increasingly important focus in the literature is on the role of other microstructural sleep parameters, especially the existence of microarousals during sleep. Beyond that, a broad range of evidence exists supporting the role of cognitive-emotional hyperarousal in the form of insomnia-related thought and worries, and their concomitant emotional symptoms. Besides being a state marker of insomnia, hyperarousal is considered crucial for the predisposition to insomnia and for the development of comorbid mental disorders. Thus, beyond presenting evidence from cross-sectional studies on markers of hyperarousal in insomnia, hypotheses about the mechanisms of hyperarousal are presented. Nevertheless, longitudinal studies are needed to further elucidate the mechanism of hyperarousal throughout the course of the disorder, and future studies should also focus on similarities and differences in hyperarousal across different diagnostic entities.
Collapse
Affiliation(s)
- Raphael J Dressle
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Tseng YT, Zhao B, Chen S, Ye J, Liu J, Liang L, Ding H, Schaefke B, Yang Q, Wang L, Wang F, Wang L. The subthalamic corticotropin-releasing hormone neurons mediate adaptive REM-sleep responses to threat. Neuron 2022; 110:1223-1239.e8. [PMID: 35065715 DOI: 10.1016/j.neuron.2021.12.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 01/25/2023]
Abstract
When an animal faces a threatening situation while asleep, rapid arousal is the essential prerequisite for an adequate response. Here, we find that predator stimuli induce immediate arousal from REM sleep compared with NREM sleep. Using in vivo neural activity recording and cell-type-specific manipulations, we identify neurons in the medial subthalamic nucleus (mSTN) expressing corticotropin-releasing hormone (CRH) that mediate arousal and defensive responses to acute predator threats received through multiple sensory modalities across REM sleep and wakefulness. We observe involvement of the same neurons in the normal regulation of REM sleep and the adaptive increase in REM sleep induced by sustained predator stress. Projections to the lateral globus pallidus (LGP) are the effector pathway for the threat-coping responses and REM-sleep expression. Together, our findings suggest adaptive REM-sleep responses could be protective against threats and uncover a critical component of the neural circuitry at their basis.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Binghao Zhao
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shanping Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialin Ye
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lisha Liang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Ding
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Bernhard Schaefke
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Qin Yang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Lina Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| |
Collapse
|
6
|
Dressle RJ, Feige B, Spiegelhalder K, Schmucker C, Benz F, Mey NC, Riemann D. HPA axis activity in patients with chronic insomnia: A systematic review and meta-analysis of case-control studies. Sleep Med Rev 2022; 62:101588. [DOI: 10.1016/j.smrv.2022.101588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
|
7
|
De Guzman RM, Rosinger ZJ, Parra KE, Jacobskind JS, Justice NJ, Zuloaga DG. Alterations in corticotropin-releasing factor receptor type 1 in the preoptic area and hypothalamus in mice during the postpartum period. Horm Behav 2021; 135:105044. [PMID: 34507241 PMCID: PMC8653990 DOI: 10.1016/j.yhbeh.2021.105044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 01/24/2023]
Abstract
Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine, and behavioral responses to stress, as well as behavioral changes during the maternal period. Previous work in our lab reported higher levels of CRFR1 in female, compared to male, mice within the rostral anteroventral periventricular nucleus (AVPV/PeN), a brain region involved in maternal behaviors. In this study, we used CRFR1-GFP reporter mice to investigate whether the reproductive status (postpartum vs. nulliparous) of acutely stressed females affects levels of CRFR1 in the AVPV/PeN and other regions involved in maternal functions. Compared to nulliparous, postpartum day 14 females showed increased AVPV/PeN CRFR1-GFP immunoreactivity and an elevated number of restraint stress-activated AVPV/PeN CRFR1 cells as assessed by immunohistochemical co-localization of CRFR1-GFP and phosphorylated CREB (pCREB). The medial preoptic area (MPOA) and paraventricular hypothalamus (PVN) of postpartum mice showed modest decreases in CRFR1-GFP immunoreactivity, while increased CRFR1-GFP/pCREB co-expressing cells were found in the PVN following restraint stress relative to nulliparous mice. Tyrosine hydroxylase (TH) and CRFR1-GFP co-localization was also assessed in the AVPV/PeN and other regions and revealed a decrease in co-localized neurons in the AVPV/PeN and ventral tegmental area of postpartum mice. Corticosterone analysis of restrained mice revealed blunted peak, but elevated recovery, levels in postpartum compared to nulliparous mice. Finally, we investigated projection patterns of AVPV/PeN CRFR1 neurons using female CRFR1-Cre mice and revealed dense efferent projections to several preoptic, hypothalamic, and hindbrain regions known to control stress-associated and maternal functions. Together, these findings contribute to our understanding of the neurobiology that might underlie changes in stress-related functions during the postpartum period.
Collapse
Affiliation(s)
- Rose M De Guzman
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Zachary J Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Katherine E Parra
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States.
| |
Collapse
|
8
|
Abstract
Stress system dysfunction is a typical characteristic of acute depression and other mood disorders. The exact pattern of factors predisposing for stress-related mental disorders is yet to be unraveled. However, corticosteroid receptor function plays an important role for appropriate or dysfunctional neuroendocrine responses to stress exposure and hence in resilience or risk for the development and course of both, depression and anxiety disorders. Solid neuroscience data strongly support that both neuropeptides, corticotropin-releasing hormone (CRH) and vasopressin (AVP), are central in coordinating humoral and behavioral adaptation to stress. Other neuropeptides, including oxytocin, neuropeptide S, neuropeptide Y, and orexin, are also considered important contributors. Attempts to turn neuropeptide biology into treatments for stress-related disorders need to consider that neuropeptide receptors are specific drug targets for certain patient populations rather than universal targets for all patients, like biogenic amine systems. That is why most negative clinical trials testing neuropeptide receptor antagonists have been in fact failed trials by design, because no companion tests were used to identify which patients with depression are most likely to benefit from a specific neuropeptide receptor-targeting drug treatment. Therefore, the most important future research task is discovery and development of appropriate companion tests that will allow the successful transfer of the precious treasure of neuropeptide system-targeting drugs into clinics.
Collapse
Affiliation(s)
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
9
|
Labad J, Salvat-Pujol N, Armario A, Cabezas Á, de Arriba-Arnau A, Nadal R, Martorell L, Urretavizcaya M, Monreal JA, Crespo JM, Vilella E, Palao DJ, Menchón JM, Soria V. The Role of Sleep Quality, Trait Anxiety and Hypothalamic-Pituitary-Adrenal Axis Measures in Cognitive Abilities of Healthy Individuals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207600. [PMID: 33086584 PMCID: PMC7589840 DOI: 10.3390/ijerph17207600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
Sleep plays a crucial role in cognitive processes. Sleep and wake memory consolidation seem to be regulated by glucocorticoids, pointing out the potential role of the hypothalamic-pituitary-adrenal (HPA) axis in the relationship between sleep quality and cognitive abilities. Trait anxiety is another factor that is likely to moderate the relationship between sleep and cognition, because poorer sleep quality and subtle HPA axis abnormalities have been reported in people with high trait anxiety. The current study aimed to explore whether HPA axis activity or trait anxiety moderate the relationship between sleep quality and cognitive abilities in healthy individuals. We studied 203 healthy individuals. We measured verbal and visual memory, working memory, processing speed, attention and executive function. Sleep quality was assessed with the Pittsburgh Sleep Quality Index. Trait anxiety was assessed with the State-Trait Anxiety Inventory. HPA axis measures included the cortisol awakening response (CAR), diurnal cortisol slope and cortisol levels during the day. Multiple linear regression analyses explored the relationship between sleep quality and cognition and tested potential moderating effects by HPA axis measures and trait anxiety. Poor sleep quality was associated with poorer performance in memory, processing speed and executive function tasks. In people with poorer sleep quality, a blunted CAR was associated with poorer verbal and visual memory and executive functions, and higher cortisol levels during the day were associated with poorer processing speed. Trait anxiety was a moderator of visual memory and executive functioning. These results suggest that subtle abnormalities in the HPA axis and higher trait anxiety contribute to the relationship between lower sleep quality and poorer cognitive functioning in healthy individuals.
Collapse
Affiliation(s)
- Javier Labad
- Consorci Sanitari del Maresme, 08340 Mataró, Spain;
- Institut d’Investigació i Innovació Parc Taulí (I3PT), 08208 Sabadell, Spain; (J.A.M.); (D.J.P.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
| | - Neus Salvat-Pujol
- Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
| | - Antonio Armario
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ángel Cabezas
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43206 Reus, Spain;
| | - Aida de Arriba-Arnau
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
| | - Roser Nadal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lourdes Martorell
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43206 Reus, Spain;
| | - Mikel Urretavizcaya
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - José Antonio Monreal
- Institut d’Investigació i Innovació Parc Taulí (I3PT), 08208 Sabadell, Spain; (J.A.M.); (D.J.P.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
| | - José Manuel Crespo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Elisabet Vilella
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43206 Reus, Spain;
| | - Diego José Palao
- Institut d’Investigació i Innovació Parc Taulí (I3PT), 08208 Sabadell, Spain; (J.A.M.); (D.J.P.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
| | - José Manuel Menchón
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Virginia Soria
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain
- Correspondence:
| |
Collapse
|
10
|
Künzel H, Schüssler P, Yassouridis A, Uhr M, Kluge M, Steiger A. The renin secretion profile under the influence of sleep deprivation and the neuropeptides CRH and GHRH. Psychoneuroendocrinology 2020; 120:104799. [PMID: 32682174 DOI: 10.1016/j.psyneuen.2020.104799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
It is already known that during normal sleep plasma renin activity (PRA) shows oscillations with decreases during rapid-eye-movement (REM) sleep and increases during non-REM (NREM) sleep. We also know that renin correlates positively with slow-wave sleep (SWS). Sleep deprivation is known to enhance significantly SWS and slow wave activity (SWA, known as δ power). Based on these findings we addressed the question whether and to which extent sleep deprivation may affect the synchronization found between PRA and REM sleep during normal sleep and whether this synchronization is affected by other sleep regulating factors. To investigate these questions we compared sleep EEG and sleep-related free renin levels in 48 normal women and men 19-69 years old between nights before and after 40 h of sleep deprivation. During the recovery night, four bolus injections of either GHRH, CRH or placebo were injected via long catheter around sleep onset. When compared to baseline after each of the treatments SWS, SWA and renin levels increased. The characteristical oscillation profiles of renin during normal sleep were also preserved after sleep deprivation. Similar to normal sleep our data support also a distinct link between nocturnal renin secretion and SWS after sleep deprivation and that independent of the applied treatments.
Collapse
Affiliation(s)
- H Künzel
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany; Max-Planck-Institut für Psychiatrie München, Germany.
| | - P Schüssler
- Max-Planck-Institut für Psychiatrie München, Germany; Universität Regensburg, Klinik und Poliklinik für Psychiatrie, Germany
| | - A Yassouridis
- Max-Planck-Institut für Psychiatrie München, Germany
| | - M Uhr
- Max-Planck-Institut für Psychiatrie München, Germany
| | - M Kluge
- Max-Planck-Institut für Psychiatrie München, Germany; Universität Leipzig, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Germany
| | - A Steiger
- Max-Planck-Institut für Psychiatrie München, Germany
| |
Collapse
|
11
|
Künzel H, Kluge M, Zeising M, Schopohl J, Yassouridis A, Stalla GK, Steiger A. Sleep in pituitary insufficient patients compared to patients with depression and healthy controls at baseline and after challenge with CRH. J Psychiatr Res 2020; 129:124-128. [PMID: 32912592 DOI: 10.1016/j.jpsychires.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
Sleep disturbances are prevalent in both patients with pituitary insufficiency and with depression. The role of corticotropin releasing hormone (CRH), involved in sleep regulation, has not been fully clarified. Pituitary insufficiency is an ideal model for studying sleep-endocrine effects since no consecutive hormone releases and feedback effects occur after hormone administration. 11 male patients with a chronic insufficiency of the anterior pituitary gland (PI) and under stable hormonal substitution were studied during three consecutive nights in the sleep laboratory. The first night served for adapting to laboratory setting, during the second night placebo was administered and during the third night 4 × 50 μg CRH were injected in pulsatile fashion. Sleep parameters were additionally compared with those of 15 healthy male controls (C) and 15 male patients with depression (D). CRH administration was associated with a numerical increase of wake time (115 ± 15 to 131 ± 13 min) and a decrease of REM sleep (89 ± 8 to 80 ± 8 min), REM latency (69 ± 14 to 55 ± 9 min) and slow wave sleep (66 ± 16 to 57 ± 15 min). Yet, none of these changes reached statistical significance. PI showed a worse sleep profile as compared to both control groups, e.g. indicated by a significantly lower sleep efficiency index (PI:0.80 ± 0.03 vs. C:0.94 ± 0.01 vs. D:0.87 ± 0.03). In conclusion sleep-EEG changes after CRH in PI patients resemble those found in in part in patients with depression. Sleep in anterior pituitary insufficiency was impaired despite full hormonal substitution possibly suggesting an alteration of the receptor organisation of brain structures involved in sleep regulation.
Collapse
Affiliation(s)
- Heike Künzel
- Max Planck Institute of Psychiatry, Munich, Germany; Ludwig-Maximilians-University, Department of Internal Medicine, Psychosomatic Out-Patient-Clinic, Munich, Germany.
| | - Michael Kluge
- Max Planck Institute of Psychiatry, Munich, Germany; Universität Leipzig, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Germany
| | - Marcel Zeising
- Max Planck Institute of Psychiatry, Munich, Germany; Klinikum Ingolstadt, Zentrum für Psychische Gesundheit, Germany
| | - Jochen Schopohl
- Ludwig-Maximilians-University, Department of Internal Medicine, Psychosomatic Out-Patient-Clinic, Munich, Germany
| | | | - Günther-Karl Stalla
- Ludwig-Maximilians-University, Department of Internal Medicine, Psychosomatic Out-Patient-Clinic, Munich, Germany; Medicover Neuroendocrinology, Munich, Germany
| | - Axel Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
12
|
Rosinger ZJ, De Guzman RM, Jacobskind JS, Saglimbeni B, Malone M, Fico D, Justice NJ, Forni PE, Zuloaga DG. Sex-dependent effects of chronic variable stress on discrete corticotropin-releasing factor receptor 1 cell populations. Physiol Behav 2020; 219:112847. [PMID: 32081812 DOI: 10.1016/j.physbeh.2020.112847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/25/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
Anxiety and depression are strikingly more prevalent in women compared with men. Dysregulation of corticotropin-releasing factor (CRF) binding to its cognate receptor (CRFR1) is thought to play a critical role in the etiology of these disorders. In the present study, we investigated whether there were sex differences in the effects of chronic variable stress (CVS) on CRFR1 cells using CRFR1-GFP reporter mice experiencing a 9-day CVS paradigm. Brains were collected from CVS and stress naïve female and male mice following exposure to the open field test. This CVS paradigm effectively increased anxiety-like behavior in female and male mice. In addition, we assessed changes in activation of CRFR1 cells (co-localization with c-Fos and phosphorylated CREB (pCREB)) in stress associated brain structures, including two sexually dimorphic CRFR1 cell groups in the anteroventral periventricular nucleus (AVPV/PeN; F>M) and paraventricular hypothalamus (PVN; M>F). CVS increased CRFR1-GFP cell number as well as the number of CRFR1/pCREB co-expressing cells in the female but not male AVPV/PeN. In the PVN, the number of CRFR1/pCREB co-expressing cells was overall greater in males regardless of treatment and CVS resulted in a male-specific reduction of CRFR1/c-Fos cells. In addition, CVS induced a female-specific reduction in CRFR1/c-Fos cells within the anteroventral bed nucleus of the stria terminalis and both sexes exhibited a reduction in CRFR1/c-Fos co-expressing cells following CVS within the ventral basolateral amygdala. Overall, these sex-specific effects of CVS on CRFR1 populations may have implications for sex differences in stress-induction of mood disorders.
Collapse
Affiliation(s)
- Zachary J Rosinger
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Rose M De Guzman
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Brianna Saglimbeni
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Margaret Malone
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Danielle Fico
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, United States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY 12222, United States.
| |
Collapse
|
13
|
Steiger A, Pawlowski M. Depression and Sleep. Int J Mol Sci 2019; 20:ijms20030607. [PMID: 30708948 PMCID: PMC6386825 DOI: 10.3390/ijms20030607] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
Impaired sleep is both a risk factor and a symptom of depression. Objective sleep is assessed using the sleep electroencephalogram (EEG). Characteristic sleep-EEG changes in patients with depression include disinhibition of rapid eye movement (REM) sleep, changes of sleep continuity, and impaired non-REM sleep. Most antidepressants suppress REM sleep both in healthy volunteers and depressed patients. Various sleep-EEG variables may be suitable as biomarkers for diagnosis, prognosis, and prediction of therapy response in depression. In family studies of depression, enhanced REM density, a measure for frequency of rapid eye movements, is characteristic for an endophenotype. Cordance is an EEG measure distinctly correlated with regional brain perfusion. Prefrontal theta cordance, derived from REM sleep, appears to be a biomarker of antidepressant treatment response. Some predictive sleep-EEG markers of depression appear to be related to hypothalamo-pituitary-adrenocortical system activity.
Collapse
Affiliation(s)
- Axel Steiger
- Max Planck Institute of Psychiatry, Research Group Sleep Endocrinology, 80804 Munich, Germany.
| | - Marcel Pawlowski
- Max Planck Institute of Psychiatry, Research Group Sleep Endocrinology, 80804 Munich, Germany.
- Centre of Mental Health, 85049 Ingolstadt, Germany.
| |
Collapse
|
14
|
Rosinger ZJ, Jacobskind JS, Bulanchuk N, Malone M, Fico D, Justice NJ, Zuloaga DG. Characterization and gonadal hormone regulation of a sexually dimorphic corticotropin-releasing factor receptor 1 cell group. J Comp Neurol 2018; 527:1056-1069. [PMID: 30499109 DOI: 10.1002/cne.24588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Corticotropin-releasing factor binds with high affinity to CRF receptor 1 (CRFR1) and is implicated in stress-related mood disorders such as anxiety and depression. Using a validated CRFR1-green fluorescent protein (GFP) reporter mouse, our laboratory recently discovered a nucleus of CRFR1 expressing cells that is prominent in the female rostral anteroventral periventricular nucleus (AVPV/PeN), but largely absent in males. This sex difference is present in the early postnatal period and remains dimorphic into adulthood. The present investigation sought to characterize the chemical composition and gonadal hormone regulation of these sexually dimorphic CRFR1 cells using immunohistochemical procedures. We report that CRFR1-GFP-ir cells within the female AVPV/PeN are largely distinct from other dimorphic cell populations (kisspeptin, tyrosine hydroxylase). However, CRFR1-GFP-ir cells within the AVPV/PeN highly co-express estrogen receptor alpha as well as glucocorticoid receptor. A single injection of testosterone propionate or estradiol benzoate on the day of birth completely eliminates the AVPV/PeN sex difference, whereas adult gonadectomy has no effect on CRFR1-GFP cell number. These results indicate that the AVPV/PeN CRFR1 is regulated by perinatal but not adult gonadal hormones. Finally, female AVPV/PeN CRFR1-GFP-ir cells are activated following an acute 30-min restraint stress, as assessed by co-localization of CRFR1-GFP cells with phosphorylated (p) CREB. CRFR1-GFP/pCREB cells were largely absent in the male AVPV/PeN. Together, these data indicate a stress and gonadal hormone responsive nucleus that is unique to females and may contribute to sex-specific stress responses.
Collapse
Affiliation(s)
| | | | - Nicole Bulanchuk
- Department of Psychology, University at Albany, Albany, New York
| | - Margaret Malone
- Department of Psychology, University at Albany, Albany, New York
| | - Danielle Fico
- Department of Psychology, University at Albany, Albany, New York
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, Texas
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, New York
| |
Collapse
|
15
|
Rosinger ZJ, Jacobskind JS, Park SG, Justice NJ, Zuloaga DG. Distribution of corticotropin-releasing factor receptor 1 in the developing mouse forebrain: A novel sex difference revealed in the rostral periventricular hypothalamus. Neuroscience 2017; 361:167-178. [PMID: 28823817 DOI: 10.1016/j.neuroscience.2017.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine and behavioral responses to stress and has been implicated in the pathophysiology of several disorders including anxiety, depression, and addiction. Using a validated CRFR1 reporter mouse line (bacterial artificial chromosome identified by green fluorescence protein (BAC GFP-CRFR1)), we investigated the distribution of CRFR1 in the developing mouse forebrain. Distribution of CRFR1 was investigated at postnatal days (P) 0, 4, and 21 in male and female mice. CRFR1 increased with age in several regions including the medial amygdala, arcuate nucleus, paraventricular hypothalamus, medial septum, CA1 hippocampal area, and the lateral habenula. Regions showing decreased CRFR1 expression with increased age include the intermediate portion of the periventricular hypothalamic nucleus, and CA3 hippocampal area. We report a sexually dimorphic expression of CRFR1 within the rostral portion of the anteroventral periventricular nucleus of the hypothalamus (AVPV/PeN), a region known to regulate ovulation, reproductive and maternal behaviors. Females had a greater number of CRFR1-GFP-ir cells at all time points in the AVPV/PeN and CRFR1-GFP-ir was nearly absent in males by P21. Overall, alterations in CRFR1-GFP-ir distribution based on age and sex may contribute to observed age- and sex-dependent differences in stress regulation.
Collapse
Affiliation(s)
| | | | - Shannon G Park
- University at Albany, Department of Psychology, Albany, NY 12222, USA
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, USA.
| |
Collapse
|