1
|
Arat Çelik HE, Yılmaz S, Akşahin İC, Kök Kendirlioğlu B, Çörekli E, Dal Bekar NE, Çelik ÖF, Yorguner N, Targıtay Öztürk B, İşlekel H, Özerdem A, Akan P, Ceylan D, Tuna G. Oxidatively-induced DNA base damage and base excision repair abnormalities in siblings of individuals with bipolar disorder DNA damage and repair in bipolar disorder. Transl Psychiatry 2024; 14:207. [PMID: 38789433 PMCID: PMC11126633 DOI: 10.1038/s41398-024-02901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/26/2024] Open
Abstract
Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLβ). The levels of 8-OH-dG were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1 expressions were downregulated, while POLβ expressions were upregulated in both the patient and sibling groups compared to the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-related diseases and comorbidities in individuals with a genetic predisposition to BD.
Collapse
Affiliation(s)
| | - Selda Yılmaz
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - İzel Cemre Akşahin
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul, Turkey
| | | | - Esma Çörekli
- Department of Psychiatry, School of Medicine, Maltepe University, Istanbul, Turkey
| | - Nazlı Ecem Dal Bekar
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ömer Faruk Çelik
- Department of Medical Biochemistry, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Neşe Yorguner
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul, Turkey
| | | | - Hüray İşlekel
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- Department of Medical Biochemistry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayşegül Özerdem
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Pınar Akan
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- BioIzmir - Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Ceylan
- Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koc University, Istanbul, Turkey.
| | - Gamze Tuna
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- BioIzmir - Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
2
|
Ceylan D, Arat-Çelik HE, Aksahin IC. Integrating mitoepigenetics into research in mood disorders: a state-of-the-art review. Front Physiol 2024; 15:1338544. [PMID: 38410811 PMCID: PMC10895490 DOI: 10.3389/fphys.2024.1338544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, are highly prevalent and stand among the leading causes of disability. Despite the largely elusive nature of the molecular mechanisms underpinning these disorders, two pivotal contributors-mitochondrial dysfunctions and epigenetic alterations-have emerged as significant players in their pathogenesis. This state-of-the-art review aims to present existing data on epigenetic alterations in the mitochondrial genome in mood disorders, laying the groundwork for future research into their pathogenesis. Associations between abnormalities in mitochondrial function and mood disorders have been observed, with evidence pointing to notable changes in mitochondrial DNA (mtDNA). These changes encompass variations in copy number and oxidative damage. However, information on additional epigenetic alterations in the mitochondrial genome remains limited. Recent studies have delved into alterations in mtDNA and regulations in the mitochondrial genome, giving rise to the burgeoning field of mitochondrial epigenetics. Mitochondrial epigenetics encompasses three main categories of modifications: mtDNA methylation/hydroxymethylation, modifications of mitochondrial nucleoids, and mitochondrial RNA alterations. The epigenetic modulation of mitochondrial nucleoids, lacking histones, may impact mtDNA function. Additionally, mitochondrial RNAs, including non-coding RNAs, present a complex landscape influencing interactions between the mitochondria and the nucleus. The exploration of mitochondrial epigenetics offers valuable perspectives on how these alterations impact neurodegenerative diseases, presenting an intriguing avenue for research on mood disorders. Investigations into post-translational modifications and the role of mitochondrial non-coding RNAs hold promise to unravel the dynamics of mitoepigenetics in mood disorders, providing crucial insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Deniz Ceylan
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
| | | | - Izel Cemre Aksahin
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| |
Collapse
|
3
|
Ceylan D, Karacicek B, Tufekci KU, Aksahin IC, Senol SH, Genc S. Mitochondrial DNA oxidation, methylation, and copy number alterations in major and bipolar depression. Front Psychiatry 2023; 14:1304660. [PMID: 38161720 PMCID: PMC10755902 DOI: 10.3389/fpsyt.2023.1304660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Mood disorders are common disabling psychiatric disorders caused by both genetic and environmental factors. Mitochondrial DNA (mtDNA) modifications and epigenetics are promising areas of research in depression since mitochondrial dysfunction has been associated with depression. In this study we aimed to investigate the mtDNA changes in depressive disorder (MDD) and bipolar disorder (BD). Methods Displacement loop methylation (D-loop-met), relative mtDNA copy number (mtDNA-cn) and mtDNA oxidation (mtDNA-oxi) were investigated in DNA samples of individuals with MDD (n = 34), BD (n = 23), and healthy controls (HC; n = 40) using the Real-Time Polymerase Chain Reaction (RT-PCR). Blood samples were obtained from a subset of individuals with MDD (n = 15) during a depressive episode (baseline) and after remission (8th week). Results The study groups exhibited significant differences in D-loop-met (p = 0.020), while relative mtDNA-cn and mtDNA-oxi showed comparable results. During the remission phase (8th week), there were lower levels of relative mtDNA-cn (Z = -2.783, p = 0.005) and D-loop-met (Z = -3.180, p = 0.001) compared to the acute MDD baseline, with no significant change in mtDNA-oxi levels (Z = -1.193, p = 0.233). Conclusion Our findings indicate significantly increased D-loop methylation in MDD compared to BD and HCs, suggesting distinct mtDNA modifications in these conditions. Moreover, the observed alterations in relative mtDNA-cn and D-loop-met during remission suggest a potential role of mtDNA alterations in the pathophysiology of MDD. Future studies may provide valuable insights into the dynamics of mtDNA modifications in both disorders and their response to treatment.
Collapse
Affiliation(s)
- Deniz Ceylan
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Bilge Karacicek
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| | - Kemal Ugur Tufekci
- Brain and Neuroscience Research and Application Center, Izmir Demokrasi University, Izmir, Türkiye
- Vocational School of Health Services, Izmir Democracy University, Izmir, Türkiye
| | - Izel Cemre Aksahin
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| | - Sevin Hun Senol
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| |
Collapse
|
4
|
Reid DM, Barber RC, Jones HP, Thorpe RJ, Sun J, Zhou Z, Phillips NR. Integrative blood-based characterization of oxidative mitochondrial DNA damage variants implicates Mexican American's metabolic risk for developing Alzheimer's disease. Sci Rep 2023; 13:14765. [PMID: 37679478 PMCID: PMC10484983 DOI: 10.1038/s41598-023-41190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Alzheimer's Disease (AD) continues to be a leading cause of death in the US. As the US aging population (ages 65 +) expands, the impact will disproportionately affect vulnerable populations, e.g., Hispanic/Latino population, due to their AD-related health disparities. Age-related regression in mitochondrial activity and ethnic-specific differences in metabolic burden could potentially explain in part the racial/ethnic distinctions in etiology that exist for AD. Oxidation of guanine (G) to 8-oxo-guanine (8oxoG) is a prevalent lesion and an indicator of oxidative stress and mitochondrial dysfunction. Damaged mtDNA (8oxoG) can serve as an important marker of age-related systemic metabolic dysfunction and upon release into peripheral circulation may exacerbate pathophysiology contributing to AD development and/or progression. Analyzing blood samples from Mexican American (MA) and non-Hispanic White (NHW) participants enrolled in the Texas Alzheimer's Research & Care Consortium, we used blood-based measurements of 8oxoG from both buffy coat PBMCs and plasma to determine associations with population, sex, type-2 diabetes, and AD risk. Our results show that 8oxoG levels in both buffy coat and plasma were significantly associated with population, sex, years of education, and reveal a potential association with AD. Furthermore, MAs are significantly burdened by mtDNA oxidative damage in both blood fractions, which may contribute to their metabolic vulnerability to developing AD.
Collapse
Affiliation(s)
- Danielle Marie Reid
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Robert C Barber
- Family Medicine, Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
- Institue for Translational Research, UNT Health Science Center, Fort Worth, TX, USA
| | - Harlan P Jones
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Roland J Thorpe
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Johns Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jie Sun
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Biostatistics and Epidemiology, School of Public Health, UNT Health Science Center, Fort Worth, TX, USA
| | - Nicole R Phillips
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA.
- Institue for Translational Research, UNT Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
5
|
Gunduz H, Almammadov T, Dirak M, Acari A, Bozkurt B, Kolemen S. A mitochondria-targeted chemiluminescent probe for detection of hydrogen sulfide in cancer cells, human serum and in vivo. RSC Chem Biol 2023; 4:675-684. [PMID: 37654504 PMCID: PMC10467614 DOI: 10.1039/d3cb00070b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
Hydrogen sulfide (H2S) as a critical messenger molecule plays vital roles in regular cell function. However, abnormal levels of H2S, especially mitochondrial H2S, are directly correlated with the formation of pathological states including neurodegenerative diseases, cardiovascular disorders, and cancer. Thus, monitoring fluxes of mitochondrial H2S concentrations both in vitro and in vivo with high selectivity and sensitivity is crucial. In this direction, herein we developed the first ever example of a mitochondria-targeted and H2S-responsive new generation 1,2-dioxetane-based chemiluminescent probe (MCH). Chemiluminescent probes offer unique advantages compared to conventional fluorophores as they do not require external light irradiation to emit light. MCH exhibited a dramatic turn-on response in its luminescence signal upon reacting with H2S with high selectivity. It was used to detect H2S activity in different biological systems ranging from cancerous cells to human serum and tumor-bearing mice. We anticipate that MCH will pave the way for development of new organelle-targeted chemiluminescence agents towards imaging of different analytes in various biological models.
Collapse
Affiliation(s)
- Hande Gunduz
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research, Koç University Istanbul 34450 Turkey
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Toghrul Almammadov
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Musa Dirak
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
| | - Berkan Bozkurt
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Graduate School of Health Sciences, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Koç University Surface Science and Technology Center (KUYTAM) Istanbul 34450 Turkey
| |
Collapse
|
6
|
Reid DM, Barber RC, Jones HP, Thorpe RJ, Sun J, Zhou Z, Phillips NR. Integrative Blood-Based Characterization of Oxidative Mitochondrial DNA Damage Variants Implicates Mexican Americans' Metabolic Risk for Developing Alzheimer's Disease. RESEARCH SQUARE 2023:rs.3.rs-2666242. [PMID: 36993752 PMCID: PMC10055654 DOI: 10.21203/rs.3.rs-2666242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Alzheimer's Disease (AD) continues to be a leading cause of death in the US. As the US aging population (ages 65+) expands, the impact will disproportionately affect vulnerable populations, e.g., Hispanic/Latinx population, due to their AD-related health disparities. Age-related regression in mitochondrial activity and ethnic-specific differences in metabolic burden could potentially explain in part the racial/ethnic distinctions in etiology that exist for AD. Oxidation of guanine (G) to 8-oxo-guanine (8oxoG) is a prevalent lesion and an indicator of oxidative stress and mitochondrial dysfunction. Damaged mtDNA (8oxoG) can serve as an important marker of age-related systemic metabolic dysfunction and upon release into peripheral circulation may exacerbate pathophysiology contributing to AD development and/or progression. Analyzing blood samples from Mexican American (MA) and non-Hispanic White (NHW) participants enrolled in the Texas Alzheimer's Research & Care Consortium, we used blood-based measurements of 8oxoG from both buffy coat PBMCs and plasma to determine associations with population, sex, type-2 diabetes, and AD risk. Our results show that 8oxoG levels in both buffy coat and plasma were significantly associated with population, sex, years of education, and reveal a potential association with AD. Furthermore, MAs are significantly burdened by mtDNA oxidative damage in both blood fractions, which may contribute to their metabolic vulnerability to developing AD.
Collapse
Affiliation(s)
| | | | | | - Roland J Thorpe
- Johns Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health
| | - Jie Sun
- University of North Texas Health Science Center
| | | | | |
Collapse
|
7
|
Çeli K HEA, Tuna G, Ceylan D, Küçükgöncü S. A comparative meta-analysis of peripheral 8-hydroxy-2'-deoxyguanosine (8-OHdG) or 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) levels across mood episodes in bipolar disorder. Psychoneuroendocrinology 2023; 151:106078. [PMID: 36931055 DOI: 10.1016/j.psyneuen.2023.106078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/28/2023] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVE Oxidative DNA damage has been associated with the pathophysiology of bipolar disorder (BD) as one of the common pathways between increased medical comorbidity and premature aging in BD. Previous evidence shows increased levels of oxidatively induced DNA damage markers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) or its tautomer 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), in patients with BD in comparison to healthy individuals. With the current research, we aim to analyze data on peripheral (blood or urine) 8-OHdG/8-oxo-dG levels across mood states of BD using a meta-analytical approach. METHOD A literature search was conducted using the databases PubMed, Scopus, and Web of Science to identify eligible studies (January 1989 to July 2022). Relevant studies were systematically reviewed; a random-effects meta-analysis and a meta-regression analysis were conducted. RESULTS The current meta-analysis included 12 studies consisting of 808 BD patients (390 in euthymia, 156 in mania, 137 in depression, 16 in mixed episode, 109 not specified) and 563 healthy controls. BD patients that were currently depressed had significantly higher levels of 8-OHdG/8-oxo-dG than healthy controls, while euthymic or manic patients did not differ from healthy controls. A meta-regression analysis showed sex distribution (being female) and older age to be significantly related to increased 8-OHdG/8-oxo-dG levels. CONCLUSION Our findings suggest that 8-OHdG/8-oxo-dG may be a state-related marker of depression in BD and may be affected by older age and female gender.
Collapse
Affiliation(s)
- Hidayet Ece Arat Çeli K
- Maltepe University, Faculty of Medicine, Department of Psychiatry, İstanbul, Turkey; Dokuz Eylül University, Institute of Health Sciences, Department of Neuroscience, İzmir, Turkey
| | - Gamze Tuna
- Dokuz Eylül University, Institute of Health Sciences, Department of Molecular Medicine, İzmir, Turkey
| | - Deniz Ceylan
- Koç University, Faculty of Medicine, Department of Psychiatry, İstanbul, Turkey; Koç University, Research Center for Translational Medicine, İstanbul, Turkey.
| | - Suat Küçükgöncü
- Maltepe University, Faculty of Medicine, Department of Psychiatry, İstanbul, Turkey
| |
Collapse
|
8
|
Ryan KM, McLoughlin DM. PARP1 and OGG1 in Medicated Patients With Depression and the Response to ECT. Int J Neuropsychopharmacol 2022; 26:107-115. [PMID: 36472850 PMCID: PMC9926051 DOI: 10.1093/ijnp/pyac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oxidative stress and oxidation-induced DNA damage may contribute to the pathophysiology of depression. Two key mediators of base excision repair (BER) in response to oxidative damage of DNA are OGG1 and PARP1. Few studies have examined changes in OGG1 or PARP1 mRNA in patients with depression or following antidepressant treatment. We examined PARP1 and OGG1 mRNA levels in patients with depression at baseline/pre-electroconvulsive therapy (baseline/pre-ECT) vs in healthy controls and in patients following a course of ECT. METHODS PARP1 and OGG1 were examined in whole blood samples from medicated patients with depression and controls using quantitative real-time polymerase chain reaction. Exploratory subgroup correlational analyses were performed to determine associations between PARP1 and OGG1 and mood (Hamilton Depression Rating Scale 24-item version) scores as well as with vitamin B3, SIRT1, PGC1α, and tumor necrosis factor alpha levels, as previously reported on in this cohort. RESULTS PARP1 levels were reduced in samples from patients with depression vs controls (P = .03), though no difference was noted in OGG1. ECT had no effect on PARP1 or OGG1. Higher baseline PARP1 weakly correlated with greater mood improvement post ECT (P = .008). Moreover, PARP1 positively correlated with SIRT1 at baseline and post ECT, and positive correlations were noted between change in PARP1 and change in OGG1 with change in tumor necrosis factor alpha post ECT. CONCLUSIONS To our knowledge, this is the first study to examine the effect of ECT on BER enzymes. A better understanding of BER enzymes and DNA repair in depression could unearth new mechanisms relevant to the pathophysiology of this condition and novel antidepressant treatments.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Department of Psychiatry, Trinity College Dublin, St. Patrick’s University Hospital, Dublin, Ireland
| | - Declan M McLoughlin
- Correspondence: Declan M. McLoughlin, PhD, Department of Psychiatry, Trinity College Dublin, St. Patrick’s University Hospital, James Street, Dublin 8, Ireland ()
| |
Collapse
|
9
|
Identification of activity-induced Egr3-dependent genes reveals genes associated with DNA damage response and schizophrenia. Transl Psychiatry 2022; 12:320. [PMID: 35941129 PMCID: PMC9360026 DOI: 10.1038/s41398-022-02069-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Bioinformatics and network studies have identified the immediate early gene transcription factor early growth response 3 (EGR3) as a master regulator of genes differentially expressed in the brains of patients with neuropsychiatric illnesses ranging from schizophrenia and bipolar disorder to Alzheimer's disease. However, few studies have identified and validated Egr3-dependent genes in the mammalian brain. We have previously shown that Egr3 is required for stress-responsive behavior, memory, and hippocampal long-term depression in mice. To identify Egr3-dependent genes that may regulate these processes, we conducted an expression microarray on hippocampi from wildtype (WT) and Egr3-/- mice following electroconvulsive seizure (ECS), a stimulus that induces maximal expression of immediate early genes including Egr3. We identified 69 genes that were differentially expressed between WT and Egr3-/- mice one hour following ECS. Bioinformatic analyses showed that many of these are altered in, or associated with, schizophrenia, including Mef2c and Calb2. Enrichr pathway analysis revealed the GADD45 (growth arrest and DNA-damage-inducible) family (Gadd45b, Gadd45g) as a leading group of differentially expressed genes. Together with differentially expressed genes in the AP-1 transcription factor family genes (Fos, Fosb), and the centromere organization protein Cenpa, these results revealed that Egr3 is required for activity-dependent expression of genes involved in the DNA damage response. Our findings show that EGR3 is critical for the expression of genes that are mis-expressed in schizophrenia and reveal a novel requirement for EGR3 in the expression of genes involved in activity-induced DNA damage response.
Collapse
|
10
|
Kucuker MU, Ozerdem A, Ceylan D, Cabello-Arreola A, Ho AMC, Joseph B, Webb LM, Croarkin PE, Frye MA, Veldic M. The role of base excision repair in major depressive disorder and bipolar disorder. J Affect Disord 2022; 306:288-300. [PMID: 35306122 DOI: 10.1016/j.jad.2022.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND In vivo and in vitro studies suggest that inflammation and oxidative damage may contribute to the pathogenesis of major depressive disorder (MDD) and bipolar disorder (BD). Imbalance between DNA damage and repair is an emerging research area examining pathophysiological mechanisms of these major mood disorders. This systematic review sought to review DNA repair enzymes, with emphasis on the base excision repair (BER), in mood disorders. METHODS We conducted a comprehensive literature search of Ovid MEDLINE® Epub Ahead of Print, Ovid MEDLINE® In-Process & Other Non-Indexed Citations, Ovid MEDLINE® Daily, EMBASE (1947), and PsycINFO for studies investigating the alterations in base excision repair in patients with MDD or BD. RESULTS A total of 1364 records were identified. 1352 records remained after duplicates were removed. 24 records were selected for full-text screening and a remaining 12 articles were included in the qualitative synthesis. SNPs (single nucleotide polymorphisms) of several BER genes have been shown to be associated with MDD and BD. However, it was difficult to draw conclusions from BER gene expression studies due to conflicting findings and the small number of studies. LIMITATIONS All studies were correlational so it was not possible to draw conclusions regarding causality. CONCLUSION Future studies comparing DNA repair during the manic or depressive episode to remission will give us a better insight regarding the role of DNA repair in mood disorders. These alterations might be utilized as diagnostic and prognostic biomarkers as well as measuring treatment response.
Collapse
Affiliation(s)
- Mehmet Utku Kucuker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Aysegul Ozerdem
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Deniz Ceylan
- Department of Psychiatry and Psychology, Koc University, Istanbul, Turkey
| | - Alejandra Cabello-Arreola
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Scottsdale, AZ, USA
| | - Ada M C Ho
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Boney Joseph
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Lauren M Webb
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Jorgensen A, Köhler-Forsberg K, Henriksen T, Weimann A, Brandslund I, Ellervik C, Poulsen HE, Knudsen GM, Frokjaer VG, Jorgensen MB. Systemic DNA and RNA damage from oxidation after serotonergic treatment of unipolar depression. Transl Psychiatry 2022; 12:204. [PMID: 35577781 PMCID: PMC9110351 DOI: 10.1038/s41398-022-01969-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Previous studies have indicated that antidepressants that inhibit the serotonin transporter reduces oxidative stress. DNA and RNA damage from oxidation is involved in aging and a range of age-related pathophysiological processes. Here, we studied the urinary excretion of markers of DNA and RNA damage from oxidation, 8-oxodG and 8-oxoGuo, respectively, in the NeuroPharm cohort of 100 drug-free patients with unipolar depression and in 856 non-psychiatric community controls. Patients were subsequently treated for 8 weeks with escitalopram in flexible doses of 5-20 mg; seven of these switched to duloxetine by week 4, as allowed by the protocol. At week 8, 82 patients were followed up clinically and with measurements of 8-oxodG/8-oxoGuo. Contextual data were collected in patients, including markers of cortisol excretion and low-grade inflammation. The intervention was associated with a substantial reduction in both 8-oxodG/8-oxoGuo excretion (25% and 10%, respectively). The change was not significantly correlated to measures of clinical improvement. Both markers were strongly and negatively correlated to cortisol, as measured by the area under the curve for the full-day salivary cortisol excretion. Surprisingly, patients had similar levels of 8-oxodG excretion and lower levels of 8-oxoGuo excretion at baseline compared to the controls. We conclude that intervention with serotonin reuptake inhibitors in unipolar depression is associated with a reduction in systemic DNA and RNA damage from oxidation. To our knowledge, this to date the largest intervention study to characterize this phenomenon, and the first to include a marker of RNA oxidation.
Collapse
Affiliation(s)
- Anders Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark. .,Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark. .,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Kristin Köhler-Forsberg
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Trine Henriksen
- grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark
| | - Allan Weimann
- grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark
| | - Ivan Brandslund
- grid.459623.f0000 0004 0587 0347Department of Clinical Immunology and Biochemistry, Lillebælt Hospital, Vejle, Denmark ,grid.10825.3e0000 0001 0728 0170Faculty of Health Science, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Christina Ellervik
- grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.38142.3c000000041936754XHarvard Medical School, Boston, USA
| | - Henrik E. Poulsen
- grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark ,grid.4973.90000 0004 0646 7373Department of Cardiology, Copenhagen University Hospital Hillerød, Copenhagen, Denmark ,grid.4973.90000 0004 0646 7373Department of Endocrinology, Copenhagen University Hospital Hillerød, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vibe G. Frokjaer
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin B. Jorgensen
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Ruiz NAL, Del Ángel DS, Brizuela NO, Peraza AV, Olguín HJ, Soto MP, Guzmán DC. Inflammatory Process and Immune System in Major Depressive Disorder. Int J Neuropsychopharmacol 2022; 25:46-53. [PMID: 34724041 PMCID: PMC8756095 DOI: 10.1093/ijnp/pyab072] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most common psychiatric illnesses in the general population. In mental disorders, the activation of inflammatory pathways in the brain is a major producer of excitotoxicity and an inducer of oxidative stress. The occurrence of these 2 events is partly responsible for the neuronal damage inherent in patients with mental disorders. In the case of MDD, the release of hormone and increase in pro-inflammatory cytokines in plasma and indicators of oxidative stress have been identified as consequences of this event. The most important affectations in patients with MDD are changes in their cognitive and executive functions due to brain inflammation. Hence, these biomarkers can serve as diagnostic and severity classification tools and treatment. In this work, we described the communication pathway between the immune and neuroendocrine systems in MDD and suggested possible therapeutic options for the disease.
Collapse
Affiliation(s)
| | | | - Norma Osnaya Brizuela
- Laboratory of Neurosciences, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | | | | | | | - David Calderón Guzmán
- Laboratory of Neurosciences, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| |
Collapse
|
13
|
Eriksen JKD, Coello K, Stanislaus S, Kjærstad HL, Sletved KSO, McIntyre RS, Faurholt-Jepsen M, Miskowiak KK, Poulsen HE, Kessing LV, Vinberg M. Associations between childhood maltreatment and oxidative nucleoside damage in affective disorders. Eur Psychiatry 2022; 65:e46. [PMID: 35950327 PMCID: PMC9486829 DOI: 10.1192/j.eurpsy.2022.2300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Childhood maltreatment is an established risk factor for incident unipolar disorder and bipolar disorder. It is separately observed that affective disorders (AD) are also associated with higher nucleoside damage by oxidation. Childhood maltreatment may induce higher levels of nucleoside damage by oxidation and thus contribute to the development of AD; however, this relation is only sparsely investigated. Methods In total, 860 participants (468 patients with AD, 151 unaffected first-degree relatives, and 241 healthy control persons) completed the Childhood Trauma Questionnaire (CTQ). The association between CTQ scores and markers of systemic DNA and RNA damage by oxidation as measured by urinary excretion of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo) levels, respectively, was investigated. Results In multiple regression models adjusted for sex- and age, 8-oxodG and 8-oxoGuo levels were found to be higher in individuals who had experienced more childhood maltreatment. These associations persisted in models additionally adjusted for body mass index, alcohol, and current smoking status. Emotional abuse, sexual abuse, and emotional neglect were principally responsible for the foregoing associations. Conclusions Our findings of an association between childhood maltreatment and oxidative stress markers suggest that childhood maltreatment overall, notably emotional abuse and emotional neglect, is associated with enhanced systemic damage to DNA and RNA in adulthood. Further, individuals with AD reported a higher prevalence of childhood maltreatment, which may induce higher levels of nucleoside damage by oxidation in adulthood, possibly leading to increased risk of developing AD. Longitudinal studies are needed to clarify this relationship further.
Collapse
|
14
|
Liu Y, Wang H, Gui S, Zeng B, Pu J, Zheng P, Zeng L, Luo Y, Wu Y, Zhou C, Song J, Ji P, Wei H, Xie P. Proteomics analysis of the gut-brain axis in a gut microbiota-dysbiosis model of depression. Transl Psychiatry 2021; 11:568. [PMID: 34744165 PMCID: PMC8572885 DOI: 10.1038/s41398-021-01689-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness. Increasing evidence from both animal and human studies suggested that the gut microbiota might be involved in the onset of depression via the gut-brain axis. However, the mechanism in depression remains unclear. To explore the protein changes of the gut-brain axis modulated by gut microbiota, germ-free mice were transplanted with gut microbiota from MDD patients to induce depression-like behaviors. Behavioral tests were performed following fecal microbiota transplantation. A quantitative proteomics approach was used to examine changes in protein expression in the prefrontal cortex (PFC), liver, cecum, and serum. Then differential protein analysis and weighted gene coexpression network analysis were used to identify microbiota-related protein modules. Our results suggested that gut microbiota induced the alteration of protein expression levels in multiple tissues of the gut-brain axis in mice with depression-like phenotype, and these changes of the PFC and liver were model specific compared to chronic stress models. Gene ontology enrichment analysis revealed that the protein changes of the gut-brain axis were involved in a variety of biological functions, including metabolic process and inflammatory response, in which energy metabolism is the core change of the protein network. Our data provide clues for future studies in the gut-brain axis on protein level and deepen the understanding of how gut microbiota cause depression-like behaviors.
Collapse
Affiliation(s)
- Yiyun Liu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Gui
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Benhua Zeng
- grid.410570.70000 0004 1760 6682Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Juncai Pu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zeng
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Luo
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - You Wu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- grid.203458.80000 0000 8653 0555College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ping Ji
- grid.203458.80000 0000 8653 0555College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Goh XX, Tang PY, Tee SF. 8-Hydroxy-2'-Deoxyguanosine and Reactive Oxygen Species as Biomarkers of Oxidative Stress in Mental Illnesses: A Meta-Analysis. Psychiatry Investig 2021; 18:603-618. [PMID: 34340273 PMCID: PMC8328836 DOI: 10.30773/pi.2020.0417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/06/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Mental illnesses may be caused by genetic and environmental factors. Recent studies reported that mental illnesses were accompanied by higher oxidative stress level. However, the results were inconsistent. Thus, present meta-analysis aimed to analyse the association between oxidative DNA damage indicated by 8-hydroxy-2'-deoxyguanosine (8-OHdG) or 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which has been widely used as biomarker of oxidative stress, and mental illnesses, including schizophrenia, bipolar disorder and depression. As oxidative DNA damage is caused by reactive oxygen species (ROS), systematic review and meta-analysis were also conducted to analyse the relationship between ROS and these three mental illnesses. METHODS Studies from 1964 to 2020 (for oxidative DNA damage) and from 1907 to 2021 (for ROS) in Pubmed and Scopus databases were selected and analysed using Comprehensive Meta-Analysis version 2 respectively. Data were subjected to meta-analysis for examining the effect sizes of the results. Publication bias assessments, heterogeneity assessments and subgroup analyses based on biological specimens, patient status, illness duration and medication history were also conducted. RESULTS This meta-analysis revealed that oxidative DNA damage was significantly higher in patients with schizophrenia and bipolar disorder based on random-effects models whereas in depressed patients, the level was not significant. Since heterogeneity was present, results based on random-effects model was preferred. Our results also showed that oxidative DNA damage level was significantly higher in lymphocyte and urine of patients with schizophrenia and bipolar disorder respectively. Besides, larger effect size was observed in inpatients and those with longer illness duration and medication history. Significant higher ROS was also observed in schizophrenic patients but not in depressive patients. CONCLUSION The present meta-analysis found that oxidative DNA damage was significantly higher in schizophrenia and bipolar disorder but not in depression. The significant association between deoxyguanosines and mental illnesses suggested the possibility of using 8-OHdG or 8-oxodG as biomarker in measurement of oxidative DNA damage and oxidative stress. Higher ROS level indicated the involvement of oxidative stress in schizophrenia. The information from this study may provide better understanding on pathophysiology of mental illnesses.
Collapse
Affiliation(s)
- Xue Xin Goh
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| |
Collapse
|
16
|
Pousa PA, Souza RM, Melo PHM, Correa BHM, Mendonça TSC, Simões-e-Silva AC, Miranda DM. Telomere Shortening and Psychiatric Disorders: A Systematic Review. Cells 2021; 10:1423. [PMID: 34200513 PMCID: PMC8227190 DOI: 10.3390/cells10061423] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Telomeres are aging biomarkers, as they shorten while cells undergo mitosis. The aim of this study was to evaluate whether psychiatric disorders marked by psychological distress lead to alterations to telomere length (TL), corroborating the hypothesis that mental disorders might have a deeper impact on our physiology and aging than it was previously thought. A systematic search of the literature using MeSH descriptors of psychological distress ("Traumatic Stress Disorder" or "Anxiety Disorder" or "depression") and telomere length ("cellular senescence", "oxidative stress" and "telomere") was conducted on PubMed, Cochrane Library and ScienceDirect databases. A total of 56 studies (113,699 patients) measured the TL from individuals diagnosed with anxiety, depression and posttraumatic disorders and compared them with those from healthy subjects. Overall, TL negatively associates with distress-related mental disorders. The possible underlying molecular mechanisms that underly psychiatric diseases to telomere shortening include oxidative stress, inflammation and mitochondrial dysfunction linking. It is still unclear whether psychological distress is either a cause or a consequence of telomere shortening.
Collapse
Affiliation(s)
- Pedro A. Pousa
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Raquel M. Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Paulo Henrique M. Melo
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Bernardo H. M. Correa
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Tamires S. C. Mendonça
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Ana Cristina Simões-e-Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Débora M. Miranda
- Department of Pediatrics, Laboratory of Molecular Medicine, UFMG, Belo Horizonte, Minas Gerais 30130-100, Brazil
| |
Collapse
|
17
|
Szopa A, Bogatko K, Herbet M, Serefko A, Ostrowska M, Wośko S, Świąder K, Szewczyk B, Wlaź A, Skałecki P, Wróbel A, Mandziuk S, Pochodyła A, Kudela A, Dudka J, Radziwoń-Zaleska M, Wlaź P, Poleszak E. The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies. Int J Mol Sci 2021; 22:ijms22041840. [PMID: 33673282 PMCID: PMC7918707 DOI: 10.3390/ijms22041840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The purpose of the study was to investigate whether the co-administration of Mg2+ and Zn2+ with selective A1 and A2A receptor antagonists might be an interesting antidepressant strategy. Forced swim, tail suspension, and spontaneous locomotor motility tests in mice were performed. Further, biochemical and molecular studies were conducted. The obtained results indicate the interaction of DPCPX and istradefylline with Mg2+ and Zn2+ manifested in an antidepressant-like effect. The reduction of the BDNF serum level after co-administration of DPCPX and istradefylline with Mg2+ and Zn2+ was noted. Additionally, Mg2+ or Zn2+, both alone and in combination with DPCPX or istradefylline, causes changes in Adora1 expression, DPCPX or istradefylline co-administered with Zn2+ increases Slc6a15 expression as compared to a single-drug treatment, co-administration of tested agents does not have a more favourable effect on Comt expression. Moreover, the changes obtained in Ogg1, MsrA, Nrf2 expression show that DPCPX-Mg2+, DPCPX-Zn2+, istradefylline-Mg2+ and istradefylline-Zn2+ co-treatment may have greater antioxidant capacity benefits than administration of DPCPX and istradefylline alone. It seems plausible that a combination of selective A1 as well as an A2A receptor antagonist and magnesium or zinc may be a new antidepressant therapeutic strategy.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.B.); (A.S.); (S.W.)
- Correspondence: (A.S.); (E.P.)
| | - Karolina Bogatko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.B.); (A.S.); (S.W.)
| | - Mariola Herbet
- Chair and Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, PL 20–093 Lublin, Poland; (M.H.); (M.O.); (A.K.) (J.D.)
| | - Anna Serefko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.B.); (A.S.); (S.W.)
| | - Marta Ostrowska
- Chair and Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, PL 20–093 Lublin, Poland; (M.H.); (M.O.); (A.K.) (J.D.)
| | - Sylwia Wośko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.B.); (A.S.); (S.W.)
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.Ś.); (A.P.)
| | - Bernadeta Szewczyk
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, PL 31–343 Kraków, Poland;
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland;
| | - Piotr Skałecki
- Department of Commodity Science and Processing of Raw Animal Materials, University of Life Sciences, 13 Akademicka Street, PL 20–950 Lublin, Poland;
| | - Andrzej Wróbel
- Second Department of Gynecology, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland;
| | - Sławomir Mandziuk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland;
| | - Aleksandra Pochodyła
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.Ś.); (A.P.)
| | - Anna Kudela
- Chair and Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, PL 20–093 Lublin, Poland; (M.H.); (M.O.); (A.K.) (J.D.)
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, PL 20–093 Lublin, Poland; (M.H.); (M.O.); (A.K.) (J.D.)
| | - Maria Radziwoń-Zaleska
- Department of Psychiatry, Medical University of Warsaw, 27 Nowowiejska Street, PL 00–665 Warsaw, Poland;
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie–Skłodowska University, Akademicka 19, PL 20–033 Lublin, Poland;
| | - Ewa Poleszak
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.B.); (A.S.); (S.W.)
- Correspondence: (A.S.); (E.P.)
| |
Collapse
|
18
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
19
|
Vieira EL, Mendes-Silva AP, Ferreira JD, Bertola L, Barroso L, Vieira M, Teixeira AL, Diniz BS. Oxidative DNA damage is increased in older adults with a major depressive episode: A preliminary study. J Affect Disord 2021; 279:106-110. [PMID: 33045551 DOI: 10.1016/j.jad.2020.09.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND DNA oxidative damage is a marker of increased oxidative stress activity. Elevated DNA oxidative damage has been associated with major depressive disorder in young adults, but there is no information about DNA oxidative damage in late-life depression. This study aims to evaluate whether older adults with late-life depression (LLD) has increased DNA oxidative damage compared to healthy older adults. METHODS We included 92 participants (57 with LLD [73.2 ± 7.7 years-old] and 35 non-depressed subjects (Controls) [70.5 ± 7.4 years-old]). We analyzed the plasma 8‑hydroxy-2'-deoxyguanosine (8-oxo-dG), a marker of DNA oxidation, using a commercially-available ELISA assay. RESULTS LLD participants had significantly higher 8-oxo-DG levels compared to controls (P<0.001). 8-oxo-dG levels were significantly correlated with depressive symptoms as assessed by the Hamilton Depression Rating Scale (rho=0.34, p<0.001). The plasma levels of 8-OHdG were not significantly correlated with other clinical, neurocognitive, and demographic variables. LIMITATIONS Our current results are limited by the relatively small sample size, cross-sectional design, and the recruitment of participants in tertiary center for assessment and treatment of LLD. CONCLUSIONS Older adults with LLD have increased DNA oxidative damage. Our findings provide additional evidence for elevated oxidative stress activity in LLD and the possible activation of age-related biological pathways and enhanced biological aging changes in LLD.
Collapse
Affiliation(s)
- Erica L Vieira
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ana Paula Mendes-Silva
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jessica D Ferreira
- Geriatric Psychiatry Service, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laiss Bertola
- Geriatric Psychiatry Service, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucelia Barroso
- Molecular Medicine Graduate Program, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monica Vieira
- Molecular Medicine Graduate Program, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Breno S Diniz
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Reszka E, Lesicka M, Wieczorek E, Jabłońska E, Janasik B, Stępnik M, Konecki T, Jabłonowski Z. Dysregulation of Redox Status in Urinary Bladder Cancer Patients. Cancers (Basel) 2020; 12:cancers12051296. [PMID: 32455559 PMCID: PMC7280975 DOI: 10.3390/cancers12051296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
The alteration of redox homeostasis constitutes an important etiological feature of common human malignancies. We investigated DNA damage, selenium (Se) levels and the expression of cytoprotective genes involved in (1) the KEAP1/NRF2/ARE pathway, (2) selenoprotein synthesis, and (3) DNA methylation and histone deacetylation as putative key players in redox status dysregulation in the blood of urinary bladder cancer (UBC) patients. The study involved 122 patients and 115 control individuals. The majority of patients presented Ta and T1 stages. UBC recurrence occurred within 0.13 to 29.02 months. DNA damage and oxidative DNA damage were significantly higher in the patients compared to the controls, while plasma Se levels were significantly reduced in the cases compared to the controls. Of the 25 investigated genes, elevated expression in the peripheral blood leukocytes in patients was observed for NRF2, GCLC, MMP9 and SEP15, while down-regulation was found for KEAP1, GSR, HMOX1, NQO1, OGG1, SEPW1, DNMT1, DNMT3A and SIRT1. After Bonferroni correction, an association was found with KEAP1, OGG1, SEPW1 and DNMT1. Early recurrence was associated with the down-regulation of PRDX1 and SRXN1 at the time of diagnosis. Peripheral redox status is significantly dysregulated in the blood of UBC patients. DNA strand breaks and PRDX1 and SRXN1 expression may provide significant predictors of UBC recurrence.
Collapse
Affiliation(s)
- Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (M.L.); (E.W.); (E.J.)
- Correspondence: ; Tel.: +48-42-631-46-27
| | - Monika Lesicka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (M.L.); (E.W.); (E.J.)
| | - Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (M.L.); (E.W.); (E.J.)
| | - Ewa Jabłońska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (M.L.); (E.W.); (E.J.)
| | - Beata Janasik
- Department of Biological Monitoring, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland;
| | - Maciej Stępnik
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland;
| | - Tomasz Konecki
- Ist Urology Clinic, Medical University of Lodz, 90-549 Lodz, Poland; (T.K.); (Z.J.)
| | - Zbigniew Jabłonowski
- Ist Urology Clinic, Medical University of Lodz, 90-549 Lodz, Poland; (T.K.); (Z.J.)
| |
Collapse
|