1
|
Briânis RC, Iglesias LP, Bedeschi LG, Moreira FA. Effects of cannabidiol on reward contextual memories induced by cocaine in male and female mice. Acta Neuropsychiatr 2024; 36:299-306. [PMID: 37968964 DOI: 10.1017/neu.2023.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Preclinical studies suggest that cannabidiol (CBD), a non-intoxicating phytocannabinoid, may reduce addiction-related behaviours for various drug classes in rodents, including ethanol, opiates, and psychostimulants. CBD modulates contextual memories and responses to reward stimuli. Nonetheless, research on the impact of CBD on cocaine addiction-like behaviors is limited and requires further clarification. This study tested the hypothesis that CBD administration inhibits the acquisition and retrieval of cocaine-induced conditioned place preference (CPP) in adult male and female C57BL6/J mice. We also ought to characterise a 5-day CPP protocol in these animals. METHODS Male and female C57BL/6J mice were administered CBD (3, 10, and 30 mg/kg) 30 minutes before cocaine (15 mg/kg) acquisition of expression of CPP. RESULTS Cocaine induces a CPP in both female and male mice in the 5-day CPP protocol. CBD failed to prevent the acquisition or retrieval of place preference induced by cocaine. CBD did not decrease the time spent on the side paired with cocaine at any of the doses tested in male and female mice, in either acquisition or expression of contextual memory. CONCLUSION This study found no support for the hypothesis that CBD decreases reward memory involved in the formation of cocaine addiction. Further research is necessary to investigate the involvement of CBD in other behavioural responses to cocaine and other psychostimulant drugs. This study, however, characterised a 5-day CPP protocol for both female and male C57BL/6J mice.
Collapse
Affiliation(s)
- Rayssa C Briânis
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lia P Iglesias
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas G Bedeschi
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Ramos-Prats A, Matulewicz P, Edenhofer ML, Wang KY, Yeh CW, Fajardo-Serrano A, Kress M, Kummer K, Lien CC, Ferraguti F. Loss of mGlu 5 receptors in somatostatin-expressing neurons alters negative emotional states. Mol Psychiatry 2024; 29:2774-2786. [PMID: 38575807 PMCID: PMC11420089 DOI: 10.1038/s41380-024-02541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Subtype 5 metabotropic glutamate receptors (mGlu5) are known to play an important role in regulating cognitive, social and valence systems. However, it remains largely unknown at which circuits and neuronal types mGlu5 act to influence these behavioral domains. Altered tissue- or cell-specific expression or function of mGlu5 has been proposed to contribute to the exacerbation of neuropsychiatric disorders. Here, we examined how these receptors regulate the activity of somatostatin-expressing (SST+) neurons, as well as their influence on behavior and brain rhythmic activity. Loss of mGlu5 in SST+ neurons elicited excitatory synaptic dysfunction in a region and sex-specific manner together with a range of emotional imbalances including diminished social novelty preference, reduced anxiety-like behavior and decreased freezing during retrieval of fear memories. In addition, the absence of mGlu5 in SST+ neurons during fear processing impaired theta frequency oscillatory activity in the medial prefrontal cortex and ventral hippocampus. These findings reveal a critical role of mGlu5 in controlling SST+ neurons excitability necessary for regulating negative emotional states.
Collapse
Affiliation(s)
- Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pawel Matulewicz
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kai-Yi Wang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Wei Yeh
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ana Fajardo-Serrano
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Hansen N, Rentzsch K, Hirschel S, Wiltfang J, Schott BH, Malchow B, Bartels C. Persisting Verbal Memory Encoding and Recall Deficiency after mGluR5 Autoantibody-Mediated Encephalitis. Brain Sci 2023; 13:1537. [PMID: 38002497 PMCID: PMC10669453 DOI: 10.3390/brainsci13111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Metabotropic glutamate receptors type 5 (mGluR5) play a central role in persistent forms of synaptic plasticity and memory formation. Antibodies to mGluR5 have been reported to be clinically associated with memory impairment. Here, we report on a patient with persistent amnestic cognitive impairment in a single cognitive domain after resolution of mGluR5-associated encephalitis. METHODS We report on the clinical data of a patient in our Department of Psychiatry and Psychotherapy who underwent several diagnostic investigations including a detailed neuropsychological examination, magnetic resonance imaging, and cerebrospinal fluid analysis involving the determination of neural autoantibodies. RESULTS A 54-year-old woman presented to our memory clinic with pleocytosis 4 months after remission of probable anti-mGluR5-mediated encephalitis, revealing initial pleocytosis and serum proof of anti-mGluR5 autoantibodies (1:32). A neuropsychological examination revealed mild cognitive impairment in verbal memory encoding and recall. The patient received immunotherapy with corticosteroids, and a subsequent cerebrospinal fluid analysis 1.5 months after the onset of encephalitis confirmed no further signs of inflammation. CONCLUSIONS Our results suggest that although immunotherapy resulted in the remission of anti-mGluR5 encephalitis, a verbal memory encoding and recall dysfunction persisted. It remains unclear whether the reason for the persistent verbal memory impairment is attributable to insufficiently long immunotherapy or initially ineffective immunotherapy. Because mGluR5 plays an essential role in persistent synaptic plasticity in the hippocampus, it is tempting to speculate that the mGluR5 antibody-antigen complex could lead to persistent cognitive dysfunction, still present after the acute CNS inflammation stage of encephalitis.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
- Clinical Immunological Laboratory Prof. Stöcker, 23627 Groß Grönau, Germany
| | - Kristin Rentzsch
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany;
| | - Sina Hirschel
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Leibniz-Institute of Neurobiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Björn H. Schott
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany;
- Leibniz-Institute of Neurobiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
| |
Collapse
|
4
|
Mangiatordi GF, Cavalluzzi MM, Delre P, Lamanna G, Lumuscio MC, Saviano M, Majoral JP, Mignani S, Duranti A, Lentini G. Endocannabinoid Degradation Enzyme Inhibitors as Potential Antipsychotics: A Medicinal Chemistry Perspective. Biomedicines 2023; 11:biomedicines11020469. [PMID: 36831006 PMCID: PMC9953700 DOI: 10.3390/biomedicines11020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The endocannabinoid system (ECS) plays a very important role in numerous physiological and pharmacological processes, such as those related to the central nervous system (CNS), including learning, memory, emotional processing, as well pain control, inflammatory and immune response, and as a biomarker in certain psychiatric disorders. Unfortunately, the half-life of the natural ligands responsible for these effects is very short. This perspective describes the potential role of the inhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL), which are mainly responsible for the degradation of endogenous ligands in psychic disorders and related pathologies. The examination was carried out considering both the impact that the classical exogenous ligands such as Δ9-tetrahydrocannabinol (THC) and (-)-trans-cannabidiol (CBD) have on the ECS and through an analysis focused on the possibility of predicting the potential toxicity of the inhibitors before they are subjected to clinical studies. In particular, cardiotoxicity (hERG liability), probably the worst early adverse reaction studied during clinical studies focused on acute toxicity, was predicted, and some of the most used and robust metrics available were considered to select which of the analyzed compounds could be repositioned as possible oral antipsychotics.
Collapse
Affiliation(s)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Giuseppe Lamanna
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Cristina Lumuscio
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council of Italy, Via Vivaldi 43, 81100 Caserta, Italy
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Serge Mignani
- CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Université de Caen, 14032 Caen, France
- CQM—Centro de Química da Madeira, MMRG (Molecular Materials Research Group), Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
- Correspondence: ; Tel.: +39-0722-303501
| | - Giovanni Lentini
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
5
|
Gasparyan A, Navarro D, Navarrete F, Austrich-Olivares A, Scoma ER, Hambardikar VD, Acosta GB, Solesio ME, Manzanares J. Cannabidiol repairs behavioral and brain disturbances in a model of fetal alcohol spectrum disorder. Pharmacol Res 2023; 188:106655. [PMID: 36642113 DOI: 10.1016/j.phrs.2023.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Fetal alcohol spectrum disorder (FASD) includes neuropsychiatric disturbances related to gestational and lactational ethanol exposure. Available treatments are minimal and do not modulate ethanol-induced damage. Developing animal models simulating FASD is essential for understanding the underlying brain alterations and searching for efficient therapeutic approaches. The main goal of this study was to evaluate the effects of early and chronic cannabidiol (CBD) administration on offspring exposed to an animal model of FASD. Ethanol gavage (3 g/kg/12 h, p.o.) was administered to C57BL/6 J female mice, with a previous history of alcohol consumption, between gestational day 7 and postnatal day 21. On the weaning day, pups were separated by sex, and CBD administration began (30 mg/kg/day, i.p.). After 4-6 weeks of treatment, behavioral and neurobiological changes were analyzed. Mice exposed to the animal model of FASD showed higher anxiogenic and depressive-like behaviors and cognitive impairment that were evaluated through several experimental tests. These behaviors were accompanied by alterations in the gene, cellular and metabolomic targets. CBD administration normalized FASD model-induced emotional and cognitive disturbances, gene expression, and cellular changes with sex-dependent differences. CBD modulates the metabolomic changes detected in the hippocampus and prefrontal cortex. Interestingly, no changes were found in mitochondria or the oxidative status of the cells. These results suggest that the early and repeated administration of CBD modulated the long-lasting behavioral, gene and protein alterations induced by the FASD model, encouraging the possibility of performing clinical trials to evaluate the effects of CBD in children affected with FASD.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Amaya Austrich-Olivares
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain
| | - Ernest R Scoma
- Rutgers University, Department of Biology and CCIB, Camden, NJ, USA
| | | | - Gabriela B Acosta
- Instituto de Neurociencias Cognitiva y Traslacional (INCYT), CONICET, INECO, Universidad Favaloro, Ciudad Autónoma de Buenos Aires C1079ABE, Argentina
| | - María E Solesio
- Rutgers University, Department of Biology and CCIB, Camden, NJ, USA
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
6
|
Matulewicz P, Ramos-Prats A, Gómez-Santacana X, Llebaria A, Ferraguti F. Control of Theta Oscillatory Activity Underlying Fear Expression by mGlu 5 Receptors. Cells 2022; 11:cells11223555. [PMID: 36428984 PMCID: PMC9688906 DOI: 10.3390/cells11223555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Metabotropic glutamate 5 receptors (mGlu5) are thought to play an important role in mediating emotional information processing. In particular, negative allosteric modulators (NAMs) of mGlu5 have received a lot of attention as potential novel treatments for several neuropsychiatric diseases, including anxiety-related disorders. The aim of this study was to assess the influence of pre- and post-training mGlu5 inactivation in cued fear conditioned mice on neuronal oscillatory activity during fear retrieval. For this study we used the recently developed mGlu5 NAM Alloswicth-1 administered systemically. Injection of Alloswicth-1 before, but not after, fear conditioning resulted in a significant decrease in freezing upon fear retrieval. Mice injected with Alloswicth-1 pre-training were also implanted with recording microelectrodes into both the medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC). The recordings revealed a reduction in theta rhythmic activity (4-12 Hz) in both the mPFC and vHPC during fear retrieval. These results indicate that inhibition of mGlu5 signaling alters local oscillatory activity in principal components of the fear brain network underlying a reduced response to a predicted threat.
Collapse
Affiliation(s)
- Pawel Matulewicz
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Jana Bazynskiego 8, 80-309 Gdansk, Poland
- Correspondence:
| | - Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| | - Xavier Gómez-Santacana
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Dos Anjos Rosário B, de Fátima SantanaNazaré M, de Souza DV, Le Sueur-Maluf L, Estadella D, Ribeiro DA, de Barros Viana M. The influence of sex and reproductive cycle on cocaine-induced behavioral and neurobiological alterations: a review. Exp Brain Res 2022; 240:3107-3140. [PMID: 36264315 DOI: 10.1007/s00221-022-06479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
Abstract
This systematic review (SR) was aimed at answering two questions: (1) how sex and ovarian hormones alter behavior associated with cocaine use; (2) which possible neurobiological mechanisms explain behavioral differences. Three different researchers conducted a search in PUBMED for all kinds of articles published between the years of 1991 to 2021 on the theme "reproductive cycle and cocaine", "estrous cycle and cocaine", "menstrual cycle and cocaine", "fluctuation of ovarian hormones and cocaine", "estrogen and cocaine" and "progesterone and cocaine". Sixty original studies were identified and subdivided into experimental rodent studies and clinical trials. Experimental studies were characterized by author/year, species/strain, sex/number, age/weight, dose/route/time of administration, hormonal assessment, or administration. Clinical trials were characterized by author/year, sex/number, age, exclusion criterion, dose/route of administration/time of cocaine, and hormonal assessment. Results gathered showed that rodent females develop increased consumption, seeking behavior, craving, relapse, locomotion, increases in stress and anxiety, among other behavioral alterations during peaks of estrogen. These observations are related to the direct effects played by ovarian hormones (in particularly estradiol), in dopamine, but also in serotonin neurons, and in brain regions such as the tegmental area, the nucleus accumbens, the hypothalamus, the amygdala and the prefrontal cortex. Increased sensitization to cocaine presented by high estradiol females was linked to the activation of a CBR1-mediated mechanism and GABA-A-dependent suppression of inhibitory synaptic activity of the prelimbic prefrontal cortex. Estradiol facilitation of cocaine-increased locomotion and self-administration was shown to require the release of glutamate and the activation of metabotropic glutamate receptors subtype 5. Clinical studies also tend to point to a stimulatory effect of estradiol on cocaine sensitization and a neuroprotective effect of progesterone. In conclusion, the results of the present review indicate a need for further preclinical and clinical trials and neurobiological studies to better understand the relationship between sex and ovarian hormones on cocaine sensitization.
Collapse
Affiliation(s)
| | | | - Daniel Vitor de Souza
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Luciana Le Sueur-Maluf
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Débora Estadella
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil.
| |
Collapse
|
8
|
Coliță D, Coliță CI, Hermann DM, Coliță E, Doeppner TR, Udristoiu I, Popa-Wagner A. Therapeutic Use and Chronic Abuse of CNS Stimulants and Anabolic Drugs. Curr Issues Mol Biol 2022; 44:4902-4920. [PMID: 36286048 PMCID: PMC9600088 DOI: 10.3390/cimb44100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
The available evidence suggests that affective disorders, such as depression and anxiety, increase risk for accelerated cognitive decline and late-life dementia in aging individuals. Behavioral neuropsychology studies also showed that cognitive decline is a central feature of aging impacting the quality of life. Motor deficits are common after traumatic brain injuries and stroke, affect subjective well-being, and are linked with reduced quality of life. Currently, restorative therapies that target the brain directly to restore cognitive and motor tasks in aging and disease are available. However, the very same drugs used for therapeutic purposes are employed by athletes as stimulants either to increase performance for fame and financial rewards or as recreational drugs. Unfortunately, most of these drugs have severe side effects and pose a serious threat to the health of athletes. The use of performance-enhancing drugs by children and teenagers has increased tremendously due to the decrease in the age of players in competitive sports and the availability of various stimulants in many forms and shapes. Thus, doping may cause serious health-threatening conditions including, infertility, subdural hematomas, liver and kidney dysfunction, peripheral edema, cardiac hypertrophy, myocardial ischemia, thrombosis, and cardiovascular disease. In this review, we focus on the impact of doping on psychopathological disorders, cognition, and depression. Occasionally, we also refer to chronic use of therapeutic drugs to increase physical performance and highlight the underlying mechanisms. We conclude that raising awareness on the health risks of doping in sport for all shall promote an increased awareness for healthy lifestyles across all generations.
Collapse
Affiliation(s)
- Daniela Coliță
- Doctoral School, University of Medicine and Pharmacy “Carol Davila”, 020276 Bucharest, Romania
| | - Cezar-Ivan Coliță
- Doctoral School, University of Medicine and Pharmacy “Carol Davila”, 020276 Bucharest, Romania
- Correspondence: (C.-I.C.); (I.U.); (A.P.-W.)
| | - Dirk M. Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Eugen Coliță
- Doctoral School, University of Medicine and Pharmacy “Carol Davila”, 020276 Bucharest, Romania
| | - Thorsten R. Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075 Gottingen, Germany
- Department of Neurology, University Hospital Giessen, 35394 Giessen, Germany
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (C.-I.C.); (I.U.); (A.P.-W.)
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (C.-I.C.); (I.U.); (A.P.-W.)
| |
Collapse
|
9
|
Zhu D, Zhang M, He B, Wan Y, Wang L, Gao F. The role of sex and ovarian hormones in hippocampal damage and cognitive deficits induced by chronic exposure to hypobaric hypoxia. Front Neurosci 2022; 16:953417. [PMID: 36003965 PMCID: PMC9393425 DOI: 10.3389/fnins.2022.953417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aims to investigate the role of sex and ovarian hormones in hippocampal damage and cognitive deficits and behavioral dysfunction in rats induced by chronic exposure to hypobaric hypoxia. Methods Six-week-old male and female SD rats were housed for 3 months either in a real altitude (4,250 m) environment as the model of chronic hypobaric-hypoxia (CHH) or in a plain as controls. The animal behavioral and hippocampal neurons at subcellular, molecular, and ultrastructural levels were characterized after CHH exposure. Results After 3 months of CHH exposure, (1) male CHH rats’ serum testosterone level was lower than male controls’ whereas female CHH rats’ serum estradiol level was higher than female controls’; (2) Morris water maze test finds that male rats showed more learning and spatial memory deficits than female rats; (3) male rats showed more severe hippocampal damage, hippocampal inflammation, oxidative stress and decreased hippocampal integrity (neurogenesis and dendritic spine density) than female rats; (4) Western blot analysis shows that, compared with the male control group, in male CHH group’s hippocampus, expression of nNOS, HO-1, and Bax protein increased whereas that of Bcl-2 protein decreased; (5) Expression of PON2 protein in male rats (CHH and controls) was lower than female rats (CHH and controls). In addition, CHH exposure decreased the expression of PON2 protein in both male and female rats; (6) qPCR analysis reveals that CHH exposure reduced the gene expression of N-methyl-D-aspartate receptor NR2A and NR2B subunits in male rats’ hippocampus. In addition, compared with the sham CHH group, the expression level of PON2 protein decreased in the OVX-CHH group’s hippocampus whereas oxidative stress, neuroinflammation, and degeneration of hippocampal neurons increased in the OVX-CHH group’s hippocampus. Conclusion After CHH exposure, male rats were significantly more likely than female rats to develop hippocampal damage, hippocampal neuroinflammation, and cognitive decline and deficits, suggesting that sex and ovarian hormones were significantly involved in regulating the rats’ susceptibility to CHH exposure-induced hippocampal damage.
Collapse
|