1
|
Arora G, Černý J. Plasmodium proteases and their role in development of Malaria vaccines. ADVANCES IN PARASITOLOGY 2024; 126:253-273. [PMID: 39448193 DOI: 10.1016/bs.apar.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Malaria remains a major health hazard for humans, despite the availability of efficacious antimalarial drugs and other interventions. Given that the disease is often deadly for children under 5 years and pregnant women living in malaria-endemic areas, an efficacious vaccine to prevent transmission and clinical disease would be ideal. Plasmodium, the causative agent of malaria, uses proteases and protease inhibitors to control and process to invade host, modulate host immunity, and for pathogenesis. Plasmodium parasites rely on these proteases for their development and survival, including feeding their metabolic needs and invasion of both mosquito and human tissues, and have thus been explored as potential targets for prophylaxis. In this chapter, we have discussed the potential of proteases like ROM4, SUB2, SERA4, SERA5, and others as vaccine candidates. We have also discussed the role of some protease inhibitors of plasmodium and mosquito origin. Inhibition of plasmodium proteases can interrupt the parasite development at many different stages therefore understanding their function is key to developing new drugs and malaria vaccines.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States.
| | - Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czechia
| |
Collapse
|
2
|
Liu Z, Li S, Anantha P, Thanakornsombut T, Wu L, Chen J, Tsuchiya R, Tripathi AK, Chen Y, Barman I. Plasmodium sporozoite shows distinct motility patterns in responses to three-dimensional environments. iScience 2024; 27:110463. [PMID: 39129829 PMCID: PMC11315120 DOI: 10.1016/j.isci.2024.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
During malaria infection, Plasmodium sporozoites, the fast-moving stage of the parasite, are injected by a mosquito into the skin of the mammalian host. In the skin, sporozoites need to migrate through the dermal tissue to enter the blood vessel. Sporozoite motility is critical for infection but not well understood. Here, we used collagen hydrogels with tunable fiber structures, as an in vitro model for the skin. After injecting sporozoites into the hydrogel, we analyzed their motility in three-dimension (3D). We found that sporozoites demonstrated chiral motility, in that they mostly follow right-handed helical trajectories. In high-concentration collagen gel, sporozoites have lower instantaneous speed, but exhibit straighter tracks compared to low-concentration collagen gel, which leads to longer net displacement and faster dissemination. Taken together, our study indicates an inner mechanism for sporozoites to adapt to the environment, which could help with their successful exit from the skin tissue.
Collapse
Affiliation(s)
- Zhenhui Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Songman Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pooja Anantha
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, USA
| | - Ryohma Tsuchiya
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology & Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Agrawal P, Kumari S, Mohmmed A, Malhotra P, Sharma U, Sahal D. Identification of Novel, Potent, and Selective Compounds against Malaria Using Glideosomal-Associated Protein 50 as a Drug Target. ACS OMEGA 2023; 8:38506-38523. [PMID: 37867646 PMCID: PMC10586260 DOI: 10.1021/acsomega.3c05323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023]
Abstract
Phylum apicomplexan consists of parasites, such as Plasmodium and Toxoplasma. These obligate intracellular parasites enter host cells via an energy-dependent process using specialized machinery, called the glideosome. In the present study, we used Plasmodium falciparum GAP50, a glideosome-associated protein, as a target to screen 951 different compounds from diverse chemical libraries. Using different screening methods, eight compounds (Hayatinine, Curine, MMV689758 (Bedaquiline), MMV1634402 (Brilacidin), and MMV688271, MMV782353, MMV642550, and USINB4-124-8) were identified, which showed promising binding affinity (KD < 75 μM), along with submicromolar range antiparasitic efficacy and selectivity index > 100 fold for malaria parasite. These eight compounds were effective against Chloroquine-resistant PfINDO and Artemisinin-resistant PfCam3.1R359T strains. Studies on the effect of these compounds at asexual blood stages showed that these eight compounds act differently at different developmental stages, indicating the binding of these compounds to other Plasmodium proteins, in addition to PfGAP50. We further studied the effects of compounds (Bedaquiline and USINB4-124-8) in an in vivoPlasmodium berghei mouse model of malaria. Importantly, the oral delivery of Bedaquiline (50 mg/kg b. wt.) showed substantial suppression of parasitemia, and three out of seven mice were cured of the infection. Thus, our study provides new scaffolds for the development of antimalarials that can act at multiple Plasmodium lifecycle stages.
Collapse
Affiliation(s)
- Prakhar Agrawal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Surekha Kumari
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Asif Mohmmed
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pawan Malhotra
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Upendra Sharma
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dinkar Sahal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
4
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
5
|
Bin Dajem SM, Ahmed MA, Alghnnam FF, Alghannam SF, Deshmukh GY, Zaidi RH, Bohol MFF, Salam SS, Wazid SW, Shafeai MI, Rudiny FH, Motaen AM, Morsy K, Al-Qahtani AA. Genetic Diversity and Population Genetic Analysis of Plasmodium falciparum Thrombospondin Related Anonymous Protein (TRAP) in Clinical Samples from Saudi Arabia. Genes (Basel) 2022; 13:genes13071149. [PMID: 35885932 PMCID: PMC9319867 DOI: 10.3390/genes13071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
The thrombospondin related anonymous protein (TRAP) is considered one of the most important pre-erythrocytic vaccine targets. Earlier population genetic studies revealed the TRAP gene to be under strong balancing natural selection. This study is the first attempt to analyze genetic diversity, natural selection, phylogeography and population structure in 199 clinical samples from Saudi Arabia using the full-length PfTRAP gene. We found the rate of nonsynonymous substitutions to be significantly higher than that of synonymous substitutions in the clinical samples, indicating a strong positive or diversifying selection for the full-length gene and the Von Willebrand factor (VWF). The nucleotide diversity was found to be π~0.00789 for the full-length gene; however, higher nucleotide diversity was observed for the VWF compared to the thrombospondin repeat region (TSP). Deduction of the amino acid sequence alignment of the PNP repeat region in the Saudi samples revealed six genotypes characterized by tripeptide repeat motifs (PNP, ANP, ENP and SNP). Haplotype network, population structure and population differentiation analyses indicated four distinct sub-populations in spite of the low geographical distance between the sampling sites. Our results suggest the likeliness of independent parasite evolution, creating opportunities for further adaptation, including host transition, and making malaria control even more challenging.
Collapse
Affiliation(s)
- Saad M. Bin Dajem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (S.M.B.D.); (K.M.)
| | - Md Atique Ahmed
- ICMR-Regional Medical Research Center, Dibrugarh 786010, Assam, India;
| | - Fatimah F. Alghnnam
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital Research Centre, Riyadh 11211, Saudi Arabia; (F.F.A.); (S.F.A.); (M.F.F.B.)
| | - Shouq F. Alghannam
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital Research Centre, Riyadh 11211, Saudi Arabia; (F.F.A.); (S.F.A.); (M.F.F.B.)
| | - Gauspasha Yusuf Deshmukh
- Department of Biotechnology and Microbiology, National College, Tiruchirapalli 620001, Tamil Nadu, India; (G.Y.D.); (R.H.Z.)
| | - Rehan Haider Zaidi
- Department of Biotechnology and Microbiology, National College, Tiruchirapalli 620001, Tamil Nadu, India; (G.Y.D.); (R.H.Z.)
| | - Marie Fe F. Bohol
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital Research Centre, Riyadh 11211, Saudi Arabia; (F.F.A.); (S.F.A.); (M.F.F.B.)
| | - Syeda Sabiha Salam
- Department of Life Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India;
| | - Syeda Wasfeea Wazid
- Arogya Society of Health, Welfare and Support (ASHWAS), Dinsugia 785640, Assam, India;
| | - Mohammed I. Shafeai
- Sabya General Hospital, Sabya 85534, Saudi Arabia; (M.I.S.); (F.H.R.); (A.M.M.)
| | - Fuad H. Rudiny
- Sabya General Hospital, Sabya 85534, Saudi Arabia; (M.I.S.); (F.H.R.); (A.M.M.)
| | - Ali M. Motaen
- Sabya General Hospital, Sabya 85534, Saudi Arabia; (M.I.S.); (F.H.R.); (A.M.M.)
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (S.M.B.D.); (K.M.)
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital Research Centre, Riyadh 11211, Saudi Arabia; (F.F.A.); (S.F.A.); (M.F.F.B.)
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Correspondence:
| |
Collapse
|
6
|
An In Silico Analysis of Malaria Pre-Erythrocytic-Stage Antigens Interpreting Worldwide Genetic Data to Suggest Vaccine Candidate Variants and Epitopes. Microorganisms 2022; 10:microorganisms10061090. [PMID: 35744609 PMCID: PMC9231253 DOI: 10.3390/microorganisms10061090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Failure to account for genetic diversity of antigens during vaccine design may lead to vaccine escape. To evaluate the vaccine escape potential of antigens used in vaccines currently in development or clinical testing, we surveyed the genetic diversity, measured population differentiation, and performed in silico prediction and analysis of T-cell epitopes of ten such Plasmodium falciparum pre-erythrocytic-stage antigens using whole-genome sequence data from 1010 field isolates. Of these, 699 were collected in Africa (Burkina Faso, Cameroon, Guinea, Kenya, Malawi, Mali, and Tanzania), 69 in South America (Brazil, Colombia, French Guiana, and Peru), 59 in Oceania (Papua New Guinea), and 183 in Asia (Cambodia, Myanmar, and Thailand). Antigens surveyed include cell-traversal protein for ookinetes and sporozoites, circumsporozoite protein, liver-stage antigens 1 and 3, sporozoite surface proteins P36 and P52, sporozoite asparagine-rich protein-1, sporozoite microneme protein essential for cell traversal-2, and upregulated-in-infectious-sporozoite 3 and 4 proteins. The analyses showed that a limited number of these protein variants, when combined, would be representative of worldwide parasite populations. Moreover, predicted T-cell epitopes were identified that could be further explored for immunogenicity and protective efficacy. Findings can inform the rational design of a multivalent malaria vaccine.
Collapse
|
7
|
Singh D, Patri S, Narahari V, Segireddy RR, Dey S, Saurabh A, Macha V, Prabhu NP, Srivastava A, Kolli SK, Kota AK. A Conserved Plasmodium Structural Integrity Maintenance Protein (SIMP) is associated with sporozoite membrane and is essential for maintaining shape and infectivity. Mol Microbiol 2022; 117:1324-1339. [PMID: 35301756 DOI: 10.1111/mmi.14894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium sporozoites are extracellular forms introduced during mosquito bite that selectively invade mammalian hepatocytes. Sporozoites are delimited by a cell membrane that is linked to the underlying acto-myosin molecular motor. While membrane proteins with roles in motility and invasion have been well studied, very little is known about proteins that maintain the sporozoite shape. We demonstrate that in Plasmodium berghei (Pb) a conserved hypothetical gene, PBANKA_1422900 specifies sporozoite structural integrity maintenance protein (SIMP) required for maintaining the sporozoite shape and motility. Sporozoites lacking SIMP exhibited loss of regular shape, extensive membrane blebbing at multiple foci and membrane detachment. The mutant sporozoites failed to infect hepatocytes, though the altered shape did not affect the organisation of cytoskeleton or inner membrane complex (IMC). Interestingly, the components of IMC failed to extend under the membrane blebs likely suggesting that SIMP may assist in anchoring the membrane to IMC. Endogenous C-terminal HA tagging localized SIMP to membrane and revealed the C-terminus of the protein to be extracellular. Since SIMP is highly conserved amongst Plasmodium species, these findings have important implications for utilising it as a novel sporozoite specific vaccine candidate.
Collapse
Affiliation(s)
- Dipti Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Smita Patri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Veeda Narahari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameswara R Segireddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sandeep Dey
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Archi Saurabh
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Vijay Macha
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, 500032, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anand Srivastava
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, 500032, India
| | - Surendra Kumar Kolli
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Arun Kumar Kota
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
8
|
Matos ADS, Rodrigues-da-Silva RN, Soares IF, Baptista BDO, de Souza RM, Bitencourt-Chaves L, Totino PRR, Sánchez-Arcila JC, Daniel-Ribeiro CT, López-Camacho C, Reyes-Sandoval A, Pratt-Riccio LR, Lima-Junior JDC. Antibody Responses Against Plasmodium vivax TRAP Recombinant and Synthetic Antigens in Naturally Exposed Individuals From the Brazilian Amazon. Front Immunol 2019; 10:2230. [PMID: 31620136 PMCID: PMC6763564 DOI: 10.3389/fimmu.2019.02230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 11/13/2022] Open
Abstract
Thrombospondin-related adhesive protein (TRAP) is essential for sporozoite motility and the invasion of mosquitoes' salivary gland and vertebrate's hepatocyte and is, thus, considered a promising pre-erythrocytic vaccine candidate. Despite the existence of a few reports on naturally acquired immune response against Plasmodium vivax TRAP (PvTRAP), it has never been explored so far in the Amazon region, so results are conflicting. Here, we characterized the (IgG and IgG subclass) antibody reactivity against recombinant PvTRAP in a cross-sectional study of 299 individuals exposed to malaria infection in three municipalities (Cruzeiro do Sul, Mâncio Lima and Guajará) from the Acre state of the Brazilian Amazon. In addition, the full PvTRAP sequence was screened for B-cell epitopes using in silico and in vitro approaches. Firstly, we confirmed that PvTRAP is naturally immunogenic in the cohort population since 49% of the individuals were IgG-responders to it. The observed immune responses were mainly driven by cytophilic IgG1 over all other sublcasses and the IgG levels that was corelated with age and time of residence in the studied area (p < 0.05). Interestingly, only the levels of specific anti-TRAP IgG3 seemed to be associated with protection, as IgG3 responders presented a significantly higher time elapse since the last malaria episode than those recorded for IgG3 non-responders. Regarding the B-cell epitope mapping, among the 148 responders to PvTRAP, four predicted epitopes were confirmed by recognition of antibodies (PvTRAPR197-H227; PvTRAPE237-T258; PvTRAPP344-G374; and PvTRAPE439-K454). Nevertheless, the frequency of responders against these peptides were low and did not show a clear correlation with the antibody response against the corresponding antigen. Moreover, none of the linear confirmed epitopes were located in the binding regions of PvTRAP in respect to the host cell ligand. Collectively, our data confirm the PvTRAP immunogenicity among Amazon inhabitants, while suggesting that the main important B-cell epitopes are not linear.
Collapse
Affiliation(s)
- Ada da Silva Matos
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | - Lana Bitencourt-Chaves
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Juan Camilo Sánchez-Arcila
- Viral Immunology Laboratory, Oswaldo Cruz Institute, IOC, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | | | - César López-Camacho
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
9
|
Jillapalli R, Narwal SK, Kolli SK, Mastan BS, Segireddy RR, Dey S, Srivastava PN, Mishra S, Kumar KA. A Plasmodium berghei putative serine-threonine kinase 2 ( PBANKA_0311400) is required for late liver stage development and timely initiation of blood stage infection. Biol Open 2019; 8:bio.042028. [PMID: 31444161 PMCID: PMC6737972 DOI: 10.1242/bio.042028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Plasmodium, protein kinases govern key biological processes of the parasite life cycle involved in the establishment of infection, dissemination and sexual reproduction. The rodent malaria model Plasmodium berghei encodes for 66 putative eukaryotic protein kinases (ePKs) as identified through modelling domain signatures and are highly conserved in Plasmodium falciparum. We report here the functional characterisation of a putative serine-threonine kinase PBANKA_0311400 identified in this kinome analysis and designate it as Pbstk2. To elucidate its role, we knocked out Pbstk2 locus and performed a detailed phenotypic analysis at different life cycle stages. The Pbstk2 knockout (KO) was not compromised in asexual blood stage propagation, transmission and development in the mosquito vector. The Pbstk2 KO produced viable salivary gland sporozoites that successfully transformed into exo-erythrocytic forms (EEFs) and were morphologically indistinguishable from wild-type GFP (WT GFP) with regard to size and shape until 48 h. An intravenous dose of 1×103Pbstk2 KO sporozoites in C57BL/6 mice failed to establish blood stage infection and a higher dose of 5X103 showed a 2–3 day delay in prepatency as compared to WT GFP parasites. Consistent with such an observation, analysis of in vitro EEF development at 62 h revealed that the hepatic merozoite numbers were reduced to nearly 40% as compared to WT GFP and showed meagre expression of MSP1. Our studies provide evidence for the role of PbSTK2 in late liver stage development and for the successful establishment of a timely blood stage infection. Summary: Requirement of a putative serine threonine kinase 2 (PBANKA_0311400) for Plasmodium berghei liver stage development.
Collapse
Affiliation(s)
- Ravi Jillapalli
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Sunil Kumar Narwal
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Surendra Kumar Kolli
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Babu S Mastan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rameswara Reddy Segireddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Sandeep Dey
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
10
|
Nagappa LK, Singh D, Dey S, Kumar KA, Balaram H. Biochemical and physiological investigations on adenosine 5' monophosphate deaminase from Plasmodium spp. Mol Microbiol 2019; 112:699-717. [PMID: 31132185 DOI: 10.1111/mmi.14313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
Abstract
The interplay between ATP generating and utilizing pathways in a cell is responsible for maintaining cellular ATP/energy homeostasis that is reflected by Adenylate Energy Charge (AEC) ratio. Adenylate kinase (AK), that catalyzes inter-conversion of ADP, ATP and AMP, plays a major role in maintaining AEC and is regulated by cellular AMP levels. Hence, the enzymes AMP deaminase (AMPD) and nucleotidases, which catabolize AMP, indirectly regulate AK activity and in-turn affect AEC. Here, we present the first report on AMPD from Plasmodium, the causative agent of malaria. The recombinant enzyme expressed in Saccharomyces cerevisiae was studied using functional complementation assay and residues vital for enzyme activity have been identified. Similarities and differences between Plasmodium falciparum AMPD (PfAMPD) and its homologs from yeast, Arabidopsis and humans are also discussed. The AMPD gene was deleted in the murine malaria parasite P. berghei and was found to be dispensable during all stages of the parasite life cycle. However, when episomal expression was attempted, viable parasites were not obtained, suggesting that perturbing AMP homeostasis by over-expressing AMPD might be lethal. As AMPD is known to be allosterically modulated by ATP, GTP and phosphate, allosteric activators of PfAMPD could be developed as anti-parasitic agents.
Collapse
Affiliation(s)
- Lakshmeesha Kempaiah Nagappa
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Dipti Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sandeep Dey
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| |
Collapse
|
11
|
Motility and cytoskeletal organisation in the archigregarine Selenidium pygospionis (Apicomplexa): observations on native and experimentally affected parasites. Parasitol Res 2019; 118:2651-2667. [PMID: 31270680 DOI: 10.1007/s00436-019-06381-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Representatives of Apicomplexa perform various kinds of movements that are linked to the different stages of their life cycle. Ancestral apicomplexan lineages, including gregarines, represent organisms suitable for research into the evolution and diversification of motility within the group. The vermiform trophozoites and gamonts of the archigregarine Selenidium pygospionis perform a very active type of bending motility. Experimental assays and subsequent light, electron, and confocal microscopic analyses demonstrated the fundamental role of the cytoskeletal proteins actin and tubulin in S. pygospionis motility and allowed us to compare the mechanism of its movement to the gliding machinery (the so-called glideosome concept) described in apicomplexan zoites. Actin-modifying drugs caused a reduction in the movement speed (cytochalasin D) or stopped the motility of archigregarines completely (jasplakinolide). Microtubule-disrupting drugs (oryzalin and colchicine) had an even more noticeable effect on archigregarine motility. The fading and disappearance of microtubules were documented in ultrathin sections, along with the formation of α-tubulin clusters visible after the immunofluorescent labelling of drug-treated archigregarines. The obtained data indicate that subpellicular microtubules most likely constitute the main motor structure involved in S. pygospionis bending motility, while actin has rather a supportive function.
Collapse
|
12
|
Heide J, Vaughan KC, Sette A, Jacobs T, Schulze Zur Wiesch J. Comprehensive Review of Human Plasmodium falciparum-Specific CD8+ T Cell Epitopes. Front Immunol 2019; 10:397. [PMID: 30949162 PMCID: PMC6438266 DOI: 10.3389/fimmu.2019.00397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Control of malaria is an important global health issue and there is still an urgent need for the development of an effective prophylactic vaccine. Multiple studies have provided strong evidence that Plasmodium falciparum-specific MHC class I-restricted CD8+ T cells are important for sterile protection against Plasmodium falciparum infection. Here, we present an interactive epitope map of all P. falciparum-specific CD8+ T cell epitopes published to date, based on a comprehensive data base (IEDB), and literature search. The majority of the described P. falciparum-specific CD8+ T cells were directed against the antigens CSP, TRAP, AMA1, and LSA1. Notably, most of the epitopes were discovered in vaccine trials conducted with malaria-naïve volunteers. Only few immunological studies of P. falciparum-specific CD8+ T cell epitopes detected in patients suffering from acute malaria or in people living in malaria endemic areas have been published. Further detailed immunological mappings of P. falciparum-specific epitopes of a broader range of P. falciparum proteins in different settings and with different disease status are needed to gain a more comprehensive understanding of the role of CD8+ T cell responses for protection, and to better guide vaccine design and to study their efficacy.
Collapse
Affiliation(s)
- Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Kerrie C Vaughan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute of Tropical Medicine, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
13
|
Kováčiková M, Vaškovicová N, Nebesářová J, Valigurová A. Effect of jasplakinolide and cytochalasin D on cortical elements involved in the gliding motility of the eugregarine Gregarina garnhami (Apicomplexa). Eur J Protistol 2018; 66:97-114. [PMID: 30261411 DOI: 10.1016/j.ejop.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Since apicomplexans represent exclusively parasitic unicellular organisms with medical and economic impacts, the principles of their motility have been studied intensively. By contrast, the movement in apicomplexan basal groups, such as gregarines, remains to be elucidated. The present study focuses on Gregarina garnhami parasitising the digestive tract of the locust Schistocerca gregaria, and investigates the involvement of cytoskeletal elements (the ectoplasmic network and myonemes) and the secretion of mucosubstances during eugregarine gliding motility. Combined microscopic analyses were used to verify the role of actin filaments and membranes' organisation in G. garnhami motility. A freeze-etching analysis of membranes revealed the size, density, and arrangement of intramembranous particles along with the distribution and size of pores and ducts. Experimental assays using actin-modifying drugs (jasplakinolide, cytochalasin D) confirmed that actin most likely plays a role in cell motility, principally in its filamentous form (=F-actin). Myonemes, localised in the border between the ectoplasm and endoplasm, correspond to the concentric bundles of F-actin. Microscopic analyses confirmed that changes in gamonts motility corresponding to the changes in the organisation and density of myonemes and the ectoplasmic network in drug-treated cells, suggesting that these structures might serve as contractile elements facilitating gliding motility in G. garnhami.
Collapse
Affiliation(s)
- Magdaléna Kováčiková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Naděžda Vaškovicová
- The Czech Academy of Sciences, Institute of Scientific Instruments, Královopolská 147, 612 64 Brno, Czech Republic
| | - Jana Nebesářová
- University of South Bohemia, Faculty of Science and Biology Centre of the ASCR, Institute of Parasitology, České Budějovice, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
14
|
Ahmed MA, Lau YL, Quan FS. Diversity and natural selection on the thrombospondin-related adhesive protein (TRAP) gene of Plasmodium knowlesi in Malaysia. Malar J 2018; 17:274. [PMID: 30053885 PMCID: PMC6062916 DOI: 10.1186/s12936-018-2423-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/19/2018] [Indexed: 11/17/2022] Open
Abstract
Background Plasmodium knowlesi a parasite of the macaques is currently the most common cause of human malaria in Malaysia. The thrombospondin-related adhesive protein (TRAP) gene is pre-erythrocytic stage antigen. It is a well-characterized vaccine candidate in Plasmodium vivax and Plasmodium falciparum, however, no study has been done in the orthologous gene of P. knowlesi. This study investigates nucleotide diversity, haplotypes, natural selection and population differentiation of full-length pktrap genes in clinical samples from Malaysia. Methods Forty full-length pktrap sequences from clinical isolates of Malaysia along with the reference H-strain were downloaded from published databases. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. McDonald–Kreitman test was conducted using P. vivax and Plasmodium coatneyi as ortholog sequence in DnaSP 5.10 software. Population genetic differentiation index (FST) of parasite populations was determined using Arlequin v3.5. Phylogenetic relationships between trap ortholog genes were determined using MEGA 5.0 software. Results Comparison of 40 full-length pktrap sequences along with the H-strain identified 74 SNPs (53 non-synonymous and 21 synonymous substitutions) resulting in 29 haplotypes. Analysis of the full-length gene showed that the nucleotide diversity was lower compared to its nearest ortholog pvtrap. Domain-wise analysis indicated that the proline/asparagine rich region had higher nucleotide diversity compared to the von Willebrand factor domain and the thrombospondin-type-1 domain. McDonald–Kreitman test identified that the ratio of the number of nonsynonymous to synonymous polymorphic sites within P. knowlesi was significantly higher than that of the number of nonsynonymous to synonymous fixed sites between P. knowlesi and P. vivax. The von Willebrand factor domain also indicated balancing selection using MK test, however, it did not give significant results when tested with P. coatneyi as an outgroup. Phylogenetic analysis of full-length genes identified three distinct sub-clusters of P. knowlesi, one originating from Peninsular Malaysia and two originating from Malaysian Borneo. High population differentiation values was observed within samples from Peninsular Malaysia and Malaysian Borneo. Conclusions This study is the first to report on the genetic diversity and natural selection of full-length pktrap. Low level of genetic diversity was found across the full-length gene of pktrap. Balancing selection of the von Willebrand factor domain indicated that TRAP could be a target in inducing immune response against P. knowlesi infections. However, higher number of samples would be necessary to further confirm the findings. Electronic supplementary material The online version of this article (10.1186/s12936-018-2423-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, 130-705, South Korea
| | - Yee Ling Lau
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, 130-705, South Korea. .,Biomedical Science Institute, Kyung Hee University, Seoul, 130-705, South Korea.
| |
Collapse
|
15
|
Kadirvel P, Anishetty S. Potential role of salt-bridges in the hinge-like movement of apicomplexa specific β-hairpin of Plasmodium and Toxoplasma profilins: A molecular dynamics simulation study. J Cell Biochem 2018; 119:3683-3696. [PMID: 29236299 DOI: 10.1002/jcb.26579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Abstract
Profilin is one of the actin-binding proteins that regulate dynamics of actin polymerization. It plays a key role in cell motility and invasion. It also interacts with several other proteins notably through its poly-L-proline (PLP) binding site. Profilin in apicomplexa is characterized by a unique mini-domain consisting of a large β-hairpin extension and an acidic loop which is relatively longer in Plasmodium species. Profilin is essential for the invasive blood stages of Plasmodium falciparum. In the current study, unbound profilins from Plasmodium falciparum (Pf), Toxoplasma gondii (Tg), and Homo sapiens (Hs) were subjected to molecular dynamics (MD) simulations for a timeframe of 100 ns each to understand the conformational dynamics of these proteins. It was found that the β-hairpin of profilins from Pf and Tg shows a hinge-like movement. This movement in Pf profilin may possibly be driven by the loss of a salt-bridge within profilin. The impact of this conformational change on actin binding was assessed by docking three dimensional (3D) structures of profilin from Pf and Tg with their corresponding actins using ClusPro2.0. The stability of docked Pf profilin-actin complex was assessed through a 50 ns MD simulation. As Hs profilin I does not have the apicomplexa specific mini-domain, MD simulation was performed for this protein and its dynamics was compared to that of profilins from Pf and Tg. Using an immunoinformatics approach, potential epitope regions were predicted for Pf profilin. This has a potential application in the design of vaccines as they mapped to its unique mini-domain.
Collapse
|
16
|
Kováčiková M, Simdyanov TG, Diakin A, Valigurová A. Structures related to attachment and motility in the marine eugregarine Cephaloidophora cf. communis (Apicomplexa). Eur J Protistol 2017; 59:1-13. [PMID: 28363137 DOI: 10.1016/j.ejop.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022]
Abstract
Gregarines represent a highly diversified group of ancestral apicomplexans, with various modes of locomotion and host-parasite interactions. The eugregarine parasite of the barnacle Balanus balanus, Cephaloidophora cf. communis, exhibits interesting organisation of its attachment apparatus along with unique motility modes. The pellicle covered gregarine is arranged into longitudinal epicytic folds. The epimerite is separated from the protomerite by a septum consisting of tubulin-rich filamentous structures and both are packed with microneme-like structures suggestive of their function in the production of adhesives important for attachment and secreted through the abundant epimerite pores. Detached trophozoites and gamonts are capable of gliding motility, enriched by jumping and rotational movements with rapid changes in gliding direction and cell flexions. Actin in its polymerised form (F-actin) is distributed throughout the entire gregarine, while myosin, detected in the cortical region of the cell, follows the pattern of the epicytic folds. Various motility modes exhibited by individuals of C. cf. communis, together with significant changes in their cell shape during locomotion, are not concordant with the gliding mechanisms generally described in apicomplexan zoites and indicate that additional structures must be involved (e.g. two 12-nm filaments; the specific dentate appearance of internal lamina inside the epicytic folds).
Collapse
Affiliation(s)
- Magdaléna Kováčiková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Timur G Simdyanov
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1-12, Moscow 119234, Russian Federation
| | - Andrei Diakin
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
17
|
Johnson S, Rahmani R, Drew DR, Williams MJ, Wilkinson M, Tan YH, Huang JX, Tonkin CJ, Beeson JG, Baum J, Smith BJ, Baell JB. Truncated Latrunculins as Actin Inhibitors Targeting Plasmodium falciparum Motility and Host Cell Invasion. J Med Chem 2016; 59:10994-11005. [PMID: 28002959 DOI: 10.1021/acs.jmedchem.6b01109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polymerization of the cytosolic protein actin is critical to cell movement and host cell invasion by the malaria parasite, Plasmodium falciparum. Any disruption to actin polymerization dynamics will render the parasite incapable of invading a host cell and thereby unable to cause infection. Here, we explore the potential of using truncated latrunculins as potential chemotherapeutics for the treatment of malaria. Exploration of the binding interactions of the natural actin inhibitor latrunculins with actin revealed how a truncated core of the inhibitor could retain its key interaction features with actin. This truncated core was synthesized and subjected to preliminary structure-activity relationship studies to generate a focused set of analogues. Biochemical analyses of these analogues demonstrate their 6-fold increased activity compared with that of latrunculin B against P. falciparum and a 16-fold improved selectivity ex vivo. These data establish the latrunculin core as a potential focus for future structure-based drug design of chemotherapeutics against malaria.
Collapse
Affiliation(s)
- Swapna Johnson
- La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Raphaël Rahmani
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Damien R Drew
- Burnet Institute , 85 Commercial Rd, Melbourne Victoria 3004, Australia.,Central Clinical School and Department of Microbiology, Monash University , Melbourne, Victoria 3004, Australia
| | - Melanie J Williams
- Walter and Eliza Hall Institute , 1G Royal Parade, Parkville, Victoria 3052, Australia.,The Department of Medical Biology, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Mark Wilkinson
- Department of Life Sciences, Imperial College London , South Kensington SW7 2AZ, United Kingdom
| | - Yan Hong Tan
- Walter and Eliza Hall Institute , 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Life Sciences, Imperial College London , South Kensington SW7 2AZ, United Kingdom
| | - Johnny X Huang
- Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute , 1G Royal Parade, Parkville, Victoria 3052, Australia.,The Department of Medical Biology, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - James G Beeson
- Burnet Institute , 85 Commercial Rd, Melbourne Victoria 3004, Australia.,Central Clinical School and Department of Microbiology, Monash University , Melbourne, Victoria 3004, Australia
| | - Jake Baum
- Walter and Eliza Hall Institute , 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Life Sciences, Imperial College London , South Kensington SW7 2AZ, United Kingdom
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| |
Collapse
|
18
|
Singh P, Mirdha BR, Srinivasan A, Rukmangadachar LA, Singh S, Sharma P, Hariprasad G, Gururao H, Luthra K. Identification of invasion proteins of Cryptosporidium parvum. World J Microbiol Biotechnol 2016; 31:1923-34. [PMID: 26492887 DOI: 10.1007/s11274-015-1936-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/27/2015] [Indexed: 11/27/2022]
Abstract
Host cell interactions and invasion by Cryptosporidium is a complex process mediated by zoites ligand-host cell receptors. Knowledge of proteins involved in this process will enable entry level inhibitors to be tried as therapeutic agents. In the present study, invasion proteins of Cryptosporidium parvum were studied in vitro. Cryptosporidium sporozoites membrane proteins were isolated and Cy5 dye labelled. They were then allowed to interact with the intact host cells. The interacting proteins were identified using 2-dimensional gel electrophoresis followed by mass spectrometry analysis. Sixty-one proteins were identified including twenty-seven previously reported invasion proteins. The newly identified proteins such as serine/threonine protein kinase, PI4 kinase, Hsp105 and coiled coil may have their roles in the parasitic invasion process. Thus, a new approach was used in the study to identify the probable proteins involved in invasion and/or host-parasite interactions. The advantage of this method is that it takes only a months' time instead of decades to identify these proteins involved in invasion process.
Collapse
|
19
|
R. Shah N, Vidilaseris K, Xhaard H, Goldman A. Integral membrane pyrophosphatases: a novel drug target for human pathogens? AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.1.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
A comparative study on worldwide genetic diversity and population structure analysis of Plasmodium vivax thrombospondin-related adhesive protein (PvTRAP) and its implications for the vivax vaccine design. INFECTION GENETICS AND EVOLUTION 2015; 36:410-423. [PMID: 26477931 DOI: 10.1016/j.meegid.2015.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 11/22/2022]
Abstract
Plasmodium vivax thrombospondin-related anonymous protein (PvTRAP) is a promising malaria vaccine candidate; however, it exhibits sequence heterogeneity. Therefore, to design a broadly protective vivax vaccine, it is essential to have adequate information on signatures of selection and geospatial genetic diversity of global PvTRAP. For this purpose, 50 Iranian pvtrap were sequenced and compared with related available global sequences in GenBank. The nucleotide sequence analysis of Iranian pvtrap in comparison with the Sal-1 sequence showed the occurrence of 15 SNPs, and all sites were dimorphic. In total, 12 amino acid substitutions were detected and 2 of which were novel, resulting in 10 haplotypes that 8 of them were not reported in any other geographic regions. In comparison with global population, haplotype and nucleotide diversities were lowest in South Korean populations while higher levels of diversities were observed in Thai and Brazilian P. vivax populations. All 12 amino acid replacements in ectodomain of Iranian PvTRAP were distributed in predicted either B- or T-cells epitope as well as intrinsically unstructured/disordered regions (IURs). The present results revealed that observing the relatively low-level diversity in PvTRAP protein might actually be selected by immune response. In summary, the present analysis in parallel to the limited available published data has shown that genetic diversity in the global pvtrap exhibits low-level diversity and geographic variation. These results are of practical significance for the strategic development and deployment of control measures in particular for development of PvTRAP-based malaria vaccine.
Collapse
|
21
|
Haase S, Zimmermann D, Olshina MA, Wilkinson M, Fisher F, Tan YH, Stewart RJ, Tonkin CJ, Wong W, Kovar DR, Baum J. Disassembly activity of actin-depolymerizing factor (ADF) is associated with distinct cellular processes in apicomplexan parasites. Mol Biol Cell 2015; 26:3001-12. [PMID: 26157165 PMCID: PMC4551315 DOI: 10.1091/mbc.e14-10-1427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Complementation of a conditional KO of actin-depolymerizing factor (ADF) in Toxoplasma gondii demonstrates that ADF-dependent actin filament disassembly is essential for parasite development but not for cell motility. Furthermore, trans-genera complementation highlights genus-specific coevolution between ADF proteins and their native actins. Proteins of the actin-depolymerizing factor (ADF)/cofilin family have been shown to be crucial for the motility and survival of apicomplexan parasites. However, the mechanisms by which ADF proteins fulfill their function remain poorly understood. In this study, we investigate the comparative activities of ADF proteins from Toxoplasma gondii and Plasmodium falciparum, the human malaria parasite, using a conditional T. gondii ADF-knockout line complemented with ADF variants from either species. We show that P. falciparum ADF1 can fully restore native TgADF activity, demonstrating functional conservation between parasites. Strikingly, mutation of a key basic residue (Lys-72), previously implicated in disassembly in PfADF1, had no detectable phenotypic effect on parasite growth, motility, or development. In contrast, organelle segregation was severely impaired when complementing with a TgADF mutant lacking the corresponding residue (Lys-68). Biochemical analyses of each ADF protein confirmed the reduced ability of lysine mutants to mediate actin depolymerization via filament disassembly although not severing, in contrast to previous reports. These data suggest that actin filament disassembly is essential for apicomplexan parasite development but not for motility, as well as pointing to genus-specific coevolution between ADF proteins and their native actin.
Collapse
Affiliation(s)
- Silvia Haase
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Dennis Zimmermann
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Maya A Olshina
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark Wilkinson
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Fabio Fisher
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Yan Hong Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rebecca J Stewart
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wilson Wong
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jake Baum
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
22
|
Kosuwin R, Putaporntip C, Tachibana H, Jongwutiwes S. Spatial variation in genetic diversity and natural selection on the thrombospondin-related adhesive protein locus of Plasmodium vivax (PvTRAP). PLoS One 2014; 9:e110463. [PMID: 25333779 PMCID: PMC4204863 DOI: 10.1371/journal.pone.0110463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/04/2014] [Indexed: 11/18/2022] Open
Abstract
Thrombospondin-related adhesive protein (TRAP) of malaria parasites is essential for sporozoite motility and invasions into mosquito’s salivary gland and vertebrate’s hepatocyte; thereby, it is a promising target for pre-erythrocytic vaccine. TRAP of Plasmodium vivax (PvTRAP) exhibits sequence heterogeneity among isolates, an issue relevant to vaccine development. To gain insights into variation in the complete PvTRAP sequences of parasites in Thailand, 114 vivax malaria patients were recruited in 2006–2007 from 4 major endemic provinces bordering Myanmar (Tak in the northwest, n = 30 and Prachuap Khirikhan in the southwest, n = 25), Cambodia (Chanthaburi in the east, n = 29) and Malaysia (Yala and Narathiwat in the south, n = 30). In total, 26 amino acid substitutions were detected and 9 of which were novel, resulting in 44 distinct haplotypes. Haplotype and nucleotide diversities were lowest in southern P. vivax population while higher levels of diversities were observed in other populations. Evidences of positive selection on PvTRAP were demonstrated in domains II and IV and purifying selection in domains I, II and VI. Genetic differentiation was significant between each population except that between populations bordering Myanmar where transmigration was common. Regression analysis of pairwise linearized Fst and geographic distance suggests that P. vivax populations in Thailand have been isolated by distance. Sequence diversity of PvTRAP seems to be temporally stable over one decade in Tak province based on comparison of isolates collected in 1996 (n = 36) and 2006–2007. Besides natural selection, evidences of intragenic recombination have been supported in this study that could maintain and further generate diversity in this locus. It remains to be investigated whether amino acid substitutions in PvTRAP could influence host immune responses although several predicted variant T cell epitopes drastically altered the epitope scores. Knowledge on geographic diversity in PvTRAP constitutes an important basis for vaccine design provided that vaccination largely confers variant-specific immunity.
Collapse
Affiliation(s)
- Rattiporn Kosuwin
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Kanagawa, Japan
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
23
|
In vitro activity of wALADin benzimidazoles against different life cycle stages of Plasmodium parasites. Antimicrob Agents Chemother 2014; 59:654-8. [PMID: 25313210 DOI: 10.1128/aac.02383-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
wALADin1 benzimidazoles are specific inhibitors of δ-aminolevulinic acid dehydratase from Wolbachia endobacteria of filarial nematodes. We report that wALADin1 and two derivatives killed blood stage Plasmodium falciparum in vitro (50% inhibitory concentrations, 39, 7.7, and 12.8 μM, respectively). One of these derivatives inhibited gliding motility of Plasmodium berghei ANKA infectious sporozoites with nanomolar affinity and blocked invasion into hepatocytes but did not affect intrahepatocytic replication. Hence, wALADin1 benzimidazoles are tools to study gliding motility and potential antiplasmodial drug candidates.
Collapse
|
24
|
Hassan IA, Wang S, Xu L, Yan R, Song X, Li X. DNA vaccination with a gene encoding Toxoplasma gondii Deoxyribose Phosphate Aldolase (TgDPA) induces partial protective immunity against lethal challenge in mice. Parasit Vectors 2014; 7:431. [PMID: 25201636 PMCID: PMC4164750 DOI: 10.1186/1756-3305-7-431] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/03/2014] [Indexed: 12/02/2022] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite that causes a pathological status known as toxoplasmosis, which has a huge impact on human and animal health. Currently, the main control strategy depends on the usage of drugs that target the acute stage of the infection, however, drawbacks were encountered while applying this method; therefore, development of an alternative effective method would be important progress. Deoxyribose Phosphate Aldolase (TgDPA) plays an important role supporting cell invasion and providing energy for the parasite. Methods TgDPA was expressed in Escherichia coli and the purified recombinant protein was used to immunize rats. The antibodies obtained were used to verify in vitro expression of TgDPA. The vector pVAX1 was utilized to formulate a DNA vaccine designated as pTgDPA, which was used to evaluate the immunological changes and the level of protection against challenge with the virulent RH strain of T. gondii. Results DNA vaccine, TgDPA revealed that it can induce a strong humoral as well as cellular mediated response in mice. These responses were a contribution of TH1, TH2 and TH17 type of responses. Following challenge, mice immunized with TgDPA showed longer survival rates than did those in control groups. Conclusions Further investigation regarding TgDPA is required to shed more light on its immunogenicity and its possible selection as a vaccine candidate.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
25
|
Boucher LE, Bosch J. Structure of Toxoplasma gondii fructose-1,6-bisphosphate aldolase. Acta Crystallogr F Struct Biol Commun 2014; 70:1186-92. [PMID: 25195889 PMCID: PMC4157416 DOI: 10.1107/s2053230x14017087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/24/2014] [Indexed: 12/03/2022] Open
Abstract
The apicomplexan parasite Toxoplasma gondii must invade host cells to continue its lifecycle. It invades different cell types using an actomyosin motor that is connected to extracellular adhesins via the bridging protein fructose-1,6-bisphosphate aldolase. During invasion, aldolase serves in the role of a structural bridging protein, as opposed to its normal enzymatic role in the glycolysis pathway. Crystal structures of the homologous Plasmodium falciparum fructose-1,6-bisphosphate aldolase have been described previously. Here, T. gondii fructose-1,6-bisphosphate aldolase has been crystallized in space group P22121, with the biologically relevant tetramer in the asymmetric unit, and the structure has been determined via molecular replacement to a resolution of 2.0 Å. An analysis of the quality of the model and of the differences between the four chains in the asymmetric unit and a comparison between the T. gondii and P. falciparum aldolase structures is presented.
Collapse
Affiliation(s)
- Lauren E. Boucher
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Lehmann C, Heitmann A, Mishra S, Burda PC, Singer M, Prado M, Niklaus L, Lacroix C, Ménard R, Frischknecht F, Stanway R, Sinnis P, Heussler V. A cysteine protease inhibitor of plasmodium berghei is essential for exo-erythrocytic development. PLoS Pathog 2014; 10:e1004336. [PMID: 25166051 PMCID: PMC4148452 DOI: 10.1371/journal.ppat.1004336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 07/08/2014] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites express a potent inhibitor of cysteine proteases (ICP) throughout their life cycle. To analyze the role of ICP in different life cycle stages, we generated a stage-specific knockout of the Plasmodium berghei ICP (PbICP). Excision of the pbicb gene occurred in infective sporozoites and resulted in impaired sporozoite invasion of hepatocytes, despite residual PbICP protein being detectable in sporozoites. The vast majority of these parasites invading a cultured hepatocyte cell line did not develop to mature liver stages, but the few that successfully developed hepatic merozoites were able to initiate a blood stage infection in mice. These blood stage parasites, now completely lacking PbICP, exhibited an attenuated phenotype but were able to infect mosquitoes and develop to the oocyst stage. However, PbICP-negative sporozoites liberated from oocysts exhibited defective motility and invaded mosquito salivary glands in low numbers. They were also unable to invade hepatocytes, confirming that control of cysteine protease activity is of critical importance for sporozoites. Importantly, transfection of PbICP-knockout parasites with a pbicp-gfp construct fully reversed these defects. Taken together, in P. berghei this inhibitor of the ICP family is essential for sporozoite motility but also appears to play a role during parasite development in hepatocytes and erythrocytes.
Collapse
Affiliation(s)
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Satish Mishra
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | - Mirko Singer
- University of Heidelberg Medical School, Heidelberg, Germany
| | - Monica Prado
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Livia Niklaus
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Céline Lacroix
- Institute Pasteur, Unité de Biologie et Génétique du Paludisme, Paris, France
| | - Robert Ménard
- Institute Pasteur, Unité de Biologie et Génétique du Paludisme, Paris, France
| | | | - Rebecca Stanway
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Photini Sinnis
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
27
|
Valigurová A, Vaškovicová N, Musilová N, Schrével J. The enigma of eugregarine epicytic folds: where gliding motility originates? Front Zool 2013; 10:57. [PMID: 24053424 PMCID: PMC3849649 DOI: 10.1186/1742-9994-10-57] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 08/24/2013] [Indexed: 11/12/2022] Open
Abstract
Background In the past decades, many studies focused on the cell motility of apicomplexan invasive stages as they represent a potential target for chemotherapeutic intervention. Gregarines (Conoidasida, Gregarinasina) are a heterogeneous group that parasitize invertebrates and urochordates, and are thought to be an early branching lineage of Apicomplexa. As characteristic of apicomplexan zoites, gregarines are covered by a complicated pellicle, consisting of the plasma membrane and the closely apposed inner membrane complex, which is associated with a number of cytoskeletal elements. The cell cortex of eugregarines, the epicyte, is more complicated than that of other apicomplexans, as it forms various superficial structures. Results The epicyte of the eugregarines, Gregarina cuneata, G. polymorpha and G. steini, analysed in the present study is organised in longitudinal folds covering the entire cell. In mature trophozoites and gamonts, each epicytic fold exhibits similar ectoplasmic structures and is built up from the plasma membrane, inner membrane complex, 12-nm filaments, rippled dense structures and basal lamina. In addition, rib-like myonemes and an ectoplasmic network are frequently observed. Under experimental conditions, eugregarines showed varied speeds and paths of simple linear gliding. In all three species, actin and myosin were associated with the pellicle, and this actomyosin complex appeared to be restricted to the lateral parts of the epicytic folds. Treatment of living gamonts with jasplakinolide and cytochalasin D confirmed that actin actively participates in gregarine gliding. Contributions to gliding of specific subcellular components are discussed. Conclusions Cell motility in gregarines and other apicomplexans share features in common, i.e. a three-layered pellicle, an actomyosin complex, and the polymerisation of actin during gliding. Although the general architecture and supramolecular organisation of the pellicle is not correlated with gliding rates of eugregarines, an increase in cytoplasmic mucus concentration is correlated. Furthermore, our data suggest that gregarines utilize several mechanisms of cell motility and that this is influenced by environmental conditions.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | | | | | | |
Collapse
|
28
|
Tremp AZ, Carter V, Saeed S, Dessens JT. Morphogenesis of Plasmodium zoites is uncoupled from tensile strength. Mol Microbiol 2013; 89:552-64. [PMID: 23773015 PMCID: PMC3912903 DOI: 10.1111/mmi.12297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 12/17/2022]
Abstract
A shared feature of the motile stages (zoites) of malaria parasites is a cortical cytoskeletal structure termed subpellicular network (SPN), thought to define and maintain cell shape. Plasmodium alveolins comprise structural components of the SPN, and alveolin gene knockout causes morphological abnormalities that coincide with markedly reduced tensile strength of the affected zoites, indicating the alveolins are prime cell shape determinants. Here, we characterize a novel SPN protein of Plasmodium berghei ookinetes and sporozoites named G2 (glycine at position 2), which is structurally unrelated to alveolins. G2 knockout abolishes parasite transmission and causes zoite malformations and motility defects similar to those observed in alveolin null mutants. Unlike alveolins, however, G2 contributes little to tensile strength, arguing against a cause-effect relationship between tensile strength and cell shape. We also show that G2 null mutant sporozoites display an abnormal arrangement of their subpellicular microtubules. These results provide important new understanding of the factors that determine zoite morphogenesis, as well as the potential roles of the cortical cytoskeleton in gliding motility.
Collapse
Affiliation(s)
- Annie Z Tremp
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | | | | |
Collapse
|
29
|
How Should Antibodies against P. falciparum Merozoite Antigens Be Measured? J Trop Med 2013; 2013:493834. [PMID: 23690791 PMCID: PMC3652195 DOI: 10.1155/2013/493834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Immunity against malaria develops slowly and only after repeated exposure to the parasite. Many of those that die of the disease are children under five years of age. Antibodies are an important part of immunity, but which antibodies that are protective and how these should be measured are still unclear. We discuss the pros and cons of ELISA, invasion inhibition assays/ADCI, and measurement of affinity of antibodies and what can be done to improve these assays, thereby increasing the knowledge about the immune status of an individual, and to perform better evaluation of vaccine trials.
Collapse
|
30
|
Bartholdson SJ, Bustamante LY, Crosnier C, Johnson S, Lea S, Rayner JC, Wright GJ. Semaphorin-7A is an erythrocyte receptor for P. falciparum merozoite-specific TRAP homolog, MTRAP. PLoS Pathog 2012; 8:e1003031. [PMID: 23166499 PMCID: PMC3499583 DOI: 10.1371/journal.ppat.1003031] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023] Open
Abstract
The motility and invasion of Plasmodium parasites is believed to require a cytoplasmic actin-myosin motor associated with a cell surface ligand belonging to the TRAP (thrombospondin-related anonymous protein) family. Current models of invasion usually invoke the existence of specific receptors for the TRAP-family ligands on the surface of the host cell; however, the identities of these receptors remain largely unknown. Here, we identify the GPI-linked protein Semaphorin-7A (CD108) as an erythrocyte receptor for the P. falciparum merozoite-specific TRAP homolog (MTRAP) by using a systematic screening approach designed to detect extracellular protein interactions. The specificity of the interaction was demonstrated by showing that binding was saturable and by quantifying the equilibrium and kinetic biophysical binding parameters using surface plasmon resonance. We found that two MTRAP monomers interact via their tandem TSR domains with the Sema domains of a Semaphorin-7A homodimer. Known naturally-occurring polymorphisms in Semaphorin-7A did not quantitatively affect MTRAP binding nor did the presence of glycans on the receptor. Attempts to block the interaction during in vitro erythrocyte invasion assays using recombinant proteins and antibodies showed no significant inhibitory effect, suggesting the inaccessibility of the complex to proteinaceous blocking agents. These findings now provide important experimental evidence to support the model that parasite TRAP-family ligands interact with specific host receptors during cellular invasion. Apicomplexan parasites are one of the most significant groups of pathogens infecting humans and include Plasmodium falciparum, the parasite responsible for malaria. These parasites critically depend on their human host and must invade our cells to multiply; therefore, understanding this invasion process - with the eventual aim of therapeutically preventing it - has been a focus for scientific investigation. A key component of the invasion machinery is a family of proteins (the “TRAP” family) which traverse the membrane surrounding the parasite: the part remaining within the parasite connects to a molecular motor that powers invasion, whilst the surface-exposed region is thought to interact with proteins on the surface of the target host cell. One major question that remains unanswered is the identity of the host receptors for the TRAPs. In our paper, we use a method specifically designed to detect interactions that occur in the extracellular space between host and pathogen proteins to reveal a host receptor called Semaphorin-7A for the TRAP-family member used by the blood stage of the malarial parasite – a protein called MTRAP. The characterization of this host-parasite interaction may therefore lead to novel therapies based upon preventing parasite invasion.
Collapse
Affiliation(s)
- S. Josefin Bartholdson
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Leyla Y. Bustamante
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Cecile Crosnier
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Susan Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
The skin: where malaria infection and the host immune response begin. Semin Immunopathol 2012; 34:787-92. [PMID: 23053392 DOI: 10.1007/s00281-012-0345-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
Infection by malaria parasites begins with the inoculation of sporozoites into the skin of the host. The early events following sporozoite deposition in the dermis are critical for both the establishment of malaria infection and for the induction of protective immune responses. The initial sporozoite inoculum is generally low, and only a small percentage of these sporozoites successfully reach the liver and grow to the next life cycle stage, making this a significant bottleneck for the parasite. Recent studies highlight the importance of sporozoite motility and host cell traversal in dermal exit. Importantly, protective immune responses against sporozoites and liver stages of Plasmodium are induced by dendritic cells in the lymph node draining the skin inoculation site. The cellular, molecular, and immunological events that occur in the skin and associated lymph nodes are the topic of this review.
Collapse
|
32
|
Abstract
INTRODUCTION Toxoplasma gondii, the agent that causes toxoplasmosis, is an opportunistic parasite that infects many mammalian species. It is an obligate intracellular parasite that causes severe congenital neurological and ocular disease mostly in immunocompromised humans. The current regimen of therapy includes only a few medications that often lead to hypersensitivity and toxicity. In addition, there are no vaccines available to prevent the transmission of this agent. Therefore, safer and more effective medicines to treat toxoplasmosis are urgently needed. AREAS COVERED The author presents in silico and in vitro strategies that are currently used to screen for novel targets and unique chemotypes against T. gondii. Furthermore, this review highlights the screening technologies and characterization of some novel targets and new chemical entities that could be developed into highly efficacious treatments for toxoplasmosis. EXPERT OPINION A number of diverse methods are being used to design inhibitors against T. gondii. These include ligand-based methods, in which drugs that have been shown to be efficacious against other Apicomplexa parasites can be repurposed to identify lead molecules against T. gondii. In addition, structure-based methods use currently available repertoire of structural information in various databases to rationally design small-molecule inhibitors of T. gondii. Whereas the screening methods have their advantages and limitations, a combination of methods is ideally suited to design small-molecule inhibitors of complex parasites such as T. gondii.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Drexel University College of Medicine, Institute for Molecular Medicine, Department of Microbiology and Immunology, 2900, Queen Lane, PA 19129, USA.
| |
Collapse
|
33
|
Douse CH, Green JL, Salgado PS, Simpson PJ, Thomas JC, Langsley G, Holder AA, Tate EW, Cota E. Regulation of the Plasmodium motor complex: phosphorylation of myosin A tail-interacting protein (MTIP) loosens its grip on MyoA. J Biol Chem 2012; 287:36968-77. [PMID: 22932904 DOI: 10.1074/jbc.m112.379842] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between the C-terminal tail of myosin A (MyoA) and its light chain, myosin A tail domain interacting protein (MTIP), is an essential feature of the conserved molecular machinery required for gliding motility and cell invasion by apicomplexan parasites. Recent data indicate that MTIP Ser-107 and/or Ser-108 are targeted for intracellular phosphorylation. Using an optimized MyoA tail peptide to reconstitute the complex, we show that this region of MTIP is an interaction hotspot using x-ray crystallography and NMR, and S107E and S108E mutants were generated to mimic the effect of phosphorylation. NMR relaxation experiments and other biophysical measurements indicate that the S108E mutation serves to break the tight clamp around the MyoA tail, whereas S107E has a smaller but measurable impact. These data are consistent with physical interactions observed between recombinant MTIP and native MyoA from Plasmodium falciparum lysates. Taken together these data support the notion that the conserved interactions between MTIP and MyoA may be specifically modulated by this post-translational modification.
Collapse
Affiliation(s)
- Christopher H Douse
- Institute of Chemical Biology, Imperial College London, SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ejigiri I, Ragheb DRT, Pino P, Coppi A, Bennett BL, Soldati-Favre D, Sinnis P. Shedding of TRAP by a rhomboid protease from the malaria sporozoite surface is essential for gliding motility and sporozoite infectivity. PLoS Pathog 2012; 8:e1002725. [PMID: 22911675 PMCID: PMC3406075 DOI: 10.1371/journal.ppat.1002725] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 04/14/2012] [Indexed: 11/18/2022] Open
Abstract
Plasmodium sporozoites, the infective stage of the malaria parasite, move by gliding motility, a unique form of locomotion required for tissue migration and host cell invasion. TRAP, a transmembrane protein with extracellular adhesive domains and a cytoplasmic tail linked to the actomyosin motor, is central to this process. Forward movement is achieved when TRAP, bound to matrix or host cell receptors, is translocated posteriorly. It has been hypothesized that these adhesive interactions must ultimately be disengaged for continuous forward movement to occur. TRAP has a canonical rhomboid-cleavage site within its transmembrane domain and mutations were introduced into this sequence to elucidate the function of TRAP cleavage and determine the nature of the responsible protease. Rhomboid cleavage site mutants were defective in TRAP shedding and displayed slow, staccato motility and reduced infectivity. Moreover, they had a more dramatic reduction in infectivity after intradermal inoculation compared to intravenous inoculation, suggesting that robust gliding is critical for dermal exit. The intermediate phenotype of the rhomboid cleavage site mutants suggested residual, albeit inefficient cleavage by another protease. We therefore generated a mutant in which both the rhomboid-cleavage site and the alternate cleavage site were altered. This mutant was non-motile and non-infectious, demonstrating that TRAP removal from the sporozoite surface functions to break adhesive connections between the parasite and extracellular matrix or host cell receptors, which in turn is essential for motility and invasion. Malaria infection begins with the bite of an infected mosquito which inoculates sporozoites into the skin. Sporozoites then go to the liver where they invade hepatocytes and replicate, ultimately leading to the blood stage of infection. Sporozoites are motile and actively invade hepatocytes using a unique form of motility called gliding motility. The mechanism by which the parasite moves forward is somewhat similar to a treadmill and the sporozoite protein TRAP, is key to this process. Its extracellular portion binds to host proteins while its intracellular portion binds to the parasite's motor. As the motor moves the protein rearwards, the sporozoite moves forward. It follows that the extracellular adhesive interactions of TRAP must ultimately be disengaged for forward movement to occur. We have generated mutant sporozoites that can only partially disengage these parasite-host adhesive interactions and find that these sporozoites have a halting, constipated movement. Following this, we generated a mutant that cannot disengage these interactions at all and these sporozoites are nonmotile and noninfectious. Lastly we found that a parasite rhomboid protease, ROM4, is on the surface of the sporozoite and thus may be responsible for TRAP cleavage and shedding from the sporozoite surface. Overall, our results demonstrate that robust gliding motility requires the disengagement of adhesive interactions.
Collapse
Affiliation(s)
- Ijeoma Ejigiri
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Daniel R. T. Ragheb
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Paco Pino
- Department of Microbiology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Alida Coppi
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Brandy Lee Bennett
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | | | - Photini Sinnis
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Bosch J, Paige MH, Vaidya AB, Bergman LW, Hol WGJ. Crystal structure of GAP50, the anchor of the invasion machinery in the inner membrane complex of Plasmodium falciparum. J Struct Biol 2012; 178:61-73. [PMID: 22387043 DOI: 10.1016/j.jsb.2012.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
The glideosome associated protein GAP50 is an essential protein in apicomplexan parasites such as Plasmodium, Toxoplasma and Cryptosporidium, several species of which are important human pathogens. The 44.6kDa protein is part of a multi-protein complex known as the invasion machinery or glideosome, which is required for cell invasion and substrate gliding motility empowered by an actin-myosin motor. GAP50 is anchored through its C-terminal transmembrane helix into the inner membrane complex and interacts via a short six residue C-terminal tail with other proteins of the invasion machinery in the pellicle of the parasite. In this paper we describe the 1.7Å resolution crystal structure of the soluble GAP50 domain from the malaria parasite Plasmodium falciparum. The structure shows an αßßα fold with overall similarity to purple acid phosphatases with, however, little homology regarding the nature of the residues in the active site region of the latter enzyme. While purple acid phosphatases contain a phosphate bridged binuclear Fe-site coordinated by seven side chains with the Fe-ions 3.2Å apart, GAP50 in our crystals contains two cobalt ions each with one protein ligand and a distance between the Co(2+) ions of 18Å.
Collapse
Affiliation(s)
- Jürgen Bosch
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
36
|
Kuss C, Gan CS, Gunalan K, Bozdech Z, Sze SK, Preiser PR. Quantitative proteomics reveals new insights into erythrocyte invasion by Plasmodium falciparum. Mol Cell Proteomics 2011; 11:M111.010645. [PMID: 22023809 DOI: 10.1074/mcp.m111.010645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differential expression of ligands in the human malaria parasite Plasmodium falciparum enables it to recognize different receptors on the erythrocyte surface, thereby providing alternative invasion pathways. Switching of invasion from using sialated to nonsialated erythrocyte receptors has been linked to the transcriptional activation of a single parasite ligand. We have used quantitative proteomics to show that in addition to this single known change, there are a significant number of changes in the expression of merozoite proteins that are regulated independent of transcription during invasion pathway switching. These results demonstrate a so far unrecognized mechanism by which the malaria parasite is able to adapt to variations in the host cell environment by post-transcriptional regulation.
Collapse
Affiliation(s)
- Claudia Kuss
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | | | |
Collapse
|
37
|
O'Hara SP, Chen XM. The cell biology of cryptosporidium infection. Microbes Infect 2011; 13:721-30. [PMID: 21458585 DOI: 10.1016/j.micinf.2011.03.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/23/2011] [Indexed: 01/13/2023]
Abstract
Cryptosporidiosis remains a significant cause of enteric disease worldwide. Basic investigations of host: pathogen interactions have revealed the intricate processes mediating infection. The following summarizes the interactions that mediate infection and the host responses that both permit and ultimately clear the infection.
Collapse
Affiliation(s)
- Steven P O'Hara
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
38
|
Rapid discovery of inhibitors of Toxoplasma gondii using hybrid structure-based computational approach. J Comput Aided Mol Des 2011; 25:403-11. [DOI: 10.1007/s10822-011-9420-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
|
39
|
Targeted disruption of py235ebp-1: invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein. PLoS Pathog 2011; 7:e1001288. [PMID: 21379566 PMCID: PMC3040676 DOI: 10.1371/journal.ppat.1001288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/10/2011] [Indexed: 11/19/2022] Open
Abstract
Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional redundancy at the protein level gives the parasite phenotypic plasticity in the absence of differences in gene expression.
Collapse
|
40
|
Tremp AZ, Dessens JT. Malaria IMC1 membrane skeleton proteins operate autonomously and participate in motility independently of cell shape. J Biol Chem 2010; 286:5383-91. [PMID: 21098480 PMCID: PMC3037651 DOI: 10.1074/jbc.m110.187195] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Plasmodium IMC1 (inner membrane complex 1) proteins comprise components of the subpellicular network, a lattice of intermediate filaments that form a structural part of the pellicle in the zoite stages of malaria parasites. Family members IMC1a and IMC1b are differentially expressed in sporozoites and ookinetes, respectively, but have functionally equivalent roles affecting cell morphology, strength, motility, and infectivity. Because of the coincident effects of previous imc1 gene disruptions on both zoite shape and locomotion, it has been impossible to ascribe a direct involvement in motility to these proteins. We show here that a third family member, IMC1h, has a distinct differential expression pattern and localizes to the pellicle of both ookinetes and sporozoites. Knock-out of IMC1h mimics the loss-of-function phenotypes of IMC1a and IMC1b in their respective life stages, indicating that IMC1 proteins could be operating co-dependently. By generating double null mutant parasites for IMC1h and IMC1b, we tested this hypothesis: double knock-out exacerbated the phenotypes of the single knock-outs in terms of ookinete strength, motility, and infectivity but did not further affect ookinete morphology. These findings provide the first genetic evidence that IMC1 proteins can function independently of each other and contribute to gliding motility independently of cell shape.
Collapse
Affiliation(s)
- Annie Z Tremp
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
41
|
Spitznagel D, O'Rourke JF, Leddy N, Hanrahan O, Nolan DP. Identification and characterization of an unusual class I myosin involved in vesicle traffic in Trypanosoma brucei. PLoS One 2010; 5:e12282. [PMID: 20808867 PMCID: PMC2924389 DOI: 10.1371/journal.pone.0012282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 07/16/2010] [Indexed: 01/19/2023] Open
Abstract
Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of ∼90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites.
Collapse
Affiliation(s)
- Diana Spitznagel
- Molecular Parasitology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - John F. O'Rourke
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Neal Leddy
- Centre for Microscopy and Analysis, Trinity College Dublin, Dublin, Ireland
| | - Orla Hanrahan
- Molecular Parasitology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Derek P. Nolan
- Molecular Parasitology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
42
|
Doi Y, Shinzawa N, Fukumoto S, Okano H, Kanuka H. ADF2 is required for transformation of the ookinete and sporozoite in malaria parasite development. Biochem Biophys Res Commun 2010; 397:668-72. [DOI: 10.1016/j.bbrc.2010.05.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 05/27/2010] [Indexed: 01/07/2023]
|
43
|
Thomas JC, Green JL, Howson RI, Simpson P, Moss DK, Martin SR, Holder AA, Cota E, Tate EW. Interaction and dynamics of the Plasmodium falciparum MTIP–MyoA complex, a key component of the invasion motor in the malaria parasite. MOLECULAR BIOSYSTEMS 2010; 6:494-8. [DOI: 10.1039/b922093c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Aly ASI, Vaughan AM, Kappe SHI. Malaria parasite development in the mosquito and infection of the mammalian host. Annu Rev Microbiol 2009; 63:195-221. [PMID: 19575563 DOI: 10.1146/annurev.micro.091208.073403] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasmodium sporozoites are the product of a complex developmental process in the mosquito vector and are destined to infect the mammalian liver. Attention has been drawn to the mosquito stages and pre-erythrocytic stages owing to recognition that these are bottlenecks in the parasite life cycle and that intervention at these stages can block transmission and prevent infection. Parasite progression in the Anopheles mosquito, sporozoite transmission to the mammalian host by mosquito bite, and subsequent infection of the liver are characterized by extensive migration of invasive stages, cell invasion, and developmental changes. Preparation for the liver phase in the mammalian host begins in the mosquito with an extensive reprogramming of the sporozoite to support efficient infection and survival. Here, we discuss what is known about the molecular and cellular basis of the developmental progression of parasites and their interactions with host tissues in the mosquito and during the early phase of mammalian infection.
Collapse
Affiliation(s)
- Ahmed S I Aly
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
45
|
Frénal K, Soldati-Favre D. Role of the parasite and host cytoskeleton in apicomplexa parasitism. Cell Host Microbe 2009; 5:602-11. [PMID: 19527887 DOI: 10.1016/j.chom.2009.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/22/2009] [Accepted: 05/28/2009] [Indexed: 11/25/2022]
Abstract
The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites that rely on actomyosin-based motility to migrate, enter host cells, and egress from infected cells. To ensure their intracellular survival and replication, the apicomplexans have evolved sophisticated strategies for subversion of the host cytoskeleton. Given the properties in common between the host and parasite cytoskeleton, dissecting their individual contribution to the establishment of parasitic infection has been challenging. Nevertheless, recent studies have provided new insights into the mechanisms by which parasites subvert the dynamic properties of host actin and tubulin to promote their entry, development, and egress.
Collapse
Affiliation(s)
- Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
46
|
Rayavara K, Rajapandi T, Wollenberg K, Kabat J, Fischer ER, Desai SA. A complex of three related membrane proteins is conserved on malarial merozoites. Mol Biochem Parasitol 2009; 167:135-43. [PMID: 19465059 DOI: 10.1016/j.molbiopara.2009.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
Invasion of human red blood cells by the malaria parasite Plasmodium falciparum is a coordinated, multi-step process. Here, we describe three novel integral membrane proteins that colocalize on the inner membrane complex immediately beneath the merozoite plasma membrane. Each has six predicted transmembrane domains and is conserved in diverse apicomplexan parasites. Immunoprecipitation studies using specific antibodies reveal that these proteins assemble into a heteromeric complex. Each protein was also expressed on insect cells using the baculovirus vector system with a truncated SUMO tag that facilitates maximal expression and protein purification while permitting cleavage with SUMO protease to release unmodified parasite protein. The expressed proteins were successfully reconstituted into artificial liposomes, but were not recognized by human immune sera. Because all three genes are highly conserved in apicomplexan parasites, the complex formed by their encoded proteins likely serves an essential role for invasive merozoites.
Collapse
Affiliation(s)
- Kempaiah Rayavara
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
47
|
Srinivasan P, Coppens I, Jacobs-Lorena M. Distinct roles of Plasmodium rhomboid 1 in parasite development and malaria pathogenesis. PLoS Pathog 2009; 5:e1000262. [PMID: 19148267 PMCID: PMC2607553 DOI: 10.1371/journal.ppat.1000262] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 12/12/2008] [Indexed: 12/04/2022] Open
Abstract
Invasion of host cells by the malaria parasite involves recognition and interaction with cell-surface receptors. A wide variety of parasite surface proteins participate in this process, most of which are specific to the parasite's particular invasive form. Upon entry, the parasite has to dissociate itself from the host-cell receptors. One mechanism by which it does so is by shedding its surface ligands using specific enzymes. Rhomboid belongs to a family of serine proteases that cleave cell-surface proteins within their transmembrane domains. Here we identify and partially characterize a Plasmodium berghei rhomboid protease (PbROM1) that plays distinct roles during parasite development. PbROM1 localizes to the surface of sporozoites after salivary gland invasion. In blood stage merozoites, PbROM1 localizes to the apical end where proteins involved in invasion are also present. Our genetic analysis suggests that PbROM1 functions in the invasive stages of parasite development. Whereas wild-type P. berghei is lethal to mice, animals infected with PbROM1 null mutants clear the parasites efficiently and develop long-lasting protective immunity. The results indicate that P. berghei Rhomboid 1 plays a nonessential but important role during parasite development and identify rhomboid proteases as potential targets for disease control. Malaria is one of the major infectious diseases and is responsible for the death of more than a million people, mostly children under the age of five. Plasmodium, the causative agent of malaria, is transmitted by female Anopheles mosquitoes. Successful development of the parasite requires efficient recognition, attachment, and invasion of host cells. Several parasite cell-surface molecules have been implicated in these processes and may require proteolytic processing in order for the parasite to complete invasion. Rhomboid family proteins are serine proteases that cleave within the transmembrane region of their substrates. Here, we use a genetic approach to study the function of Plasmodium berghei rhomboid 1 (PbROM1). PbROM1 is expressed in both vertebrate and mosquito stages of parasite development, and the protein is present in secretory organelles that contain other parasite molecules required for invasion. We find that PbROM1 is required for efficient infection of both the mosquito and the vertebrate host. Interestingly, we also find that mice infected with ROM1(−) parasites clear the infection efficiently and are protected upon subsequent wild-type parasite challenge. Our study suggests a role for PbROM1 throughout parasite development and identifies ROM1 as a target for disease intervention.
Collapse
Affiliation(s)
- Prakash Srinivasan
- Department of Molecular Microbiology, ImmunologyJohns Hopkins School of Public Health, Baltimore, Maryland, United States of America.
| | | | | |
Collapse
|
48
|
Abstract
Apicomplexan parasites move and actively enter host cells by substrate-dependent gliding motility, an unusual form of eukaryotic locomotion that differs fundamentally from the motility of prokaryotic and viral pathogens. Recent research has uncovered some of the cellular and molecular mechanisms underlying parasite motility, transmigration, and cell invasion during life cycle progression. The gliding motor machinery is embedded between the plasma membrane and the inner membrane complex, a unique double membrane layer. It consists ofimmobilized unconventional myosins, short actin stubs, and TRAP-family invasins. Assembly of this motor machinery enables force generation between parasite cytoskeletal components and an extracellular substratum. Unique properties of the individual components suggest that the rational design of motility inhibitors may lead to new intervention strategies to combat some of the most devastating human and livestock diseases.
Collapse
|
49
|
Abstract
In this chapter, we outline the tools and techniques available to study the process of host cell invasion by apicomplexan parasites and we provide specific examples of how these methods have been used to further our understanding of apicomplexan invasive mechanisms. Throughout the chapter we focus our discussion on Toxoplasmagondii, because T. gondii is the most experimentally accessible model organism for studying apicomplexan invasion (discussed further in the section, "Toxoplasma as a Model Apicomplexan") and more is known about invasion in T. gondii than in any other apicomplexan.
Collapse
|
50
|
Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity. PLoS Pathog 2008; 4:e1000195. [PMID: 18974882 PMCID: PMC2570797 DOI: 10.1371/journal.ppat.1000195] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/09/2008] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito—early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans. Human malaria is caused by Plasmodium falciparum, a unicellular protozoan parasite that is transmitted by Anopheles mosquitoes. An infectious mosquito injects saliva containing sporozoite forms of the parasite and these then migrate from the skin to the liver, where they establish an infection. Many intervention strategies are currently focused on preventing the establishment of infection by sporozoites. Clearly, an understanding of the biology of the sporozoite is essential for developing new intervention strategies. Sporozoites are produced within the oocyst, located on the outside wall of the mosquito midgut, and migrate after release from the oocysts to the salivary glands where they are stored as mature infectious forms. Comparison of the proteomes of sporozoites derived from either the oocyst or from the salivary gland reveals remarkable differences in the protein content of these stages despite their similar morphology. The changes in protein content reflect the very specific preparations the sporozoites make in order to establish an infection of the liver. Analysis of the function of several previously uncharacterized, conserved proteins revealed proteins essential for sporozoite development at distinct points of their maturation.
Collapse
|