1
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
2
|
González-Bacerio J, Izquierdo M, Aguado ME, Varela AC, González-Matos M, Del Rivero MA. Using microbial metalo-aminopeptidases as targets in human infectious diseases. MICROBIAL CELL 2021; 8:239-246. [PMID: 34692819 PMCID: PMC8485470 DOI: 10.15698/mic2021.10.761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022]
Abstract
Several microbial metalo-aminopeptidases are emerging as novel targets for the treatment of human infectious diseases. Some of them are well validated as targets and some are not; some are essential enzymes and others are important for virulence and pathogenesis. For another group, it is not clear if their enzymatic activity is involved in the critical functions that they mediate. But one aspect has been established: they display relevant roles in bacteria and protozoa that could be targeted for therapeutic purposes. This work aims to describe these biological functions for several microbial metalo-aminopeptidases.
Collapse
Affiliation(s)
- Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.,Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maday Alonso Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
3
|
Romero-Cordero S, Kirwan R, Noguera-Julian A, Cardellach F, Fortuny C, Morén C. A Mitocentric View of the Main Bacterial and Parasitic Infectious Diseases in the Pediatric Population. Int J Mol Sci 2021; 22:3272. [PMID: 33806981 PMCID: PMC8004694 DOI: 10.3390/ijms22063272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Infectious diseases occur worldwide with great frequency in both adults and children. Both infections and their treatments trigger mitochondrial interactions at multiple levels: (i) incorporation of damaged or mutated proteins to the complexes of the electron transport chain, (ii) mitochondrial genome (depletion, deletions, and point mutations) and mitochondrial dynamics (fusion and fission), (iii) membrane potential, (iv) apoptotic regulation, (v) generation of reactive oxygen species, among others. Such alterations may result in serious adverse clinical events with great impact on children's quality of life, even resulting in death. As such, bacterial agents are frequently associated with loss of mitochondrial membrane potential and cytochrome c release, ultimately leading to mitochondrial apoptosis by activation of caspases-3 and -9. Using Rayyan QCRI software for systematic reviews, we explore the association between mitochondrial alterations and pediatric infections including (i) bacterial: M. tuberculosis, E. cloacae, P. mirabilis, E. coli, S. enterica, S. aureus, S. pneumoniae, N. meningitidis and (ii) parasitic: P. falciparum. We analyze how these pediatric infections and their treatments may lead to mitochondrial deterioration in this especially vulnerable population, with the intention of improving both the understanding of these diseases and their management in clinical practice.
Collapse
Affiliation(s)
- Sonia Romero-Cordero
- Faculty of Medicine, Pompeu Fabra University and Universitat Autònoma de Barcelona, 08002 Barcelona, Spain;
| | - Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L2 2QP, UK
| | - Antoni Noguera-Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d’Infeccions, Servei de Pediatria, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (A.N.-J.); (C.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Red de Investigación Translacional en Infectología Pediátrica (RITIP), 28029 Madrid, Spain
| | - Francesc Cardellach
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (ISCIII), 28029 Madrid, Spain
- Internal Medicine Department-Hospital Clínic of Barcelona (HCB), 08036 Barcelona, Spain
| | - Clàudia Fortuny
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d’Infeccions, Servei de Pediatria, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (A.N.-J.); (C.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Red de Investigación Translacional en Infectología Pediátrica (RITIP), 28029 Madrid, Spain
| | - Constanza Morén
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (ISCIII), 28029 Madrid, Spain
- Internal Medicine Department-Hospital Clínic of Barcelona (HCB), 08036 Barcelona, Spain
| |
Collapse
|
4
|
New solutions using natural products. INSECT-BORNE DISEASES IN THE 21ST CENTURY 2020. [PMCID: PMC7442118 DOI: 10.1016/b978-0-12-818706-7.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most antibiotics are derived from natural products, like penicillin, as well as recent insecticides, like pyrethroids. Secondary metabolites are produced by plants as ecological chemical mediators, and can therefore possess intrinsic physiological properties against other organisms. These benefits are far from being fully explored. In particular, attention is here focused on the multipurpose neem tree (Azadirachta indica), reporting several experiments of applications in the field of seed oil and neem cake. The latter product seems to be promising because of the low cost, the possible production on a large scale, and the selection of effects in favor of beneficial organisms. Neem cake is able to act on different sites, as required by integrated pest management. Several utilizations of neem products are reported and their potentiality evidenced. Some considerations in this chapter may appear distant from the title of the book, but only by applying the general natural rules can the reason of the single phenomenon be understood. Other studies on resistance mechanisms of Plasmodium are enabling new possible methods of control always based on natural products activity.
Collapse
|
5
|
Zeng H, Yuan L, Huang J. Negative effects of artemisinin on phosphorus solubilizing bacteria in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:108-113. [PMID: 29665557 DOI: 10.1016/j.ecoenv.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The anti-malarial drug artemisinin is extracted from the leaves of Artemisia annua L. Due to toxicity to some microorganisms, the release of artemisinin from this medicinal plant in commercial cultivation might produce a potential risk for phosphorus (P) solubilizing bacteria (PSB). Therefore, the growth, P mobilization, and proton and organic acid efflux by two PSB isolates, Bacillus subtilis and Pseudomonas fluorescens, obtained from the soil without growing A. annua L. in history in the region for growing A. annua L., Chongqing, China, were studied through soil and solution incubations with different nominal concentrations of artemisinin (0, 2.5, 5.0, and 10.0 mg/kg or mg/L). Addition of artemisinin into soil and culture solutions decreased significantly the number of PSB except P. fluorescens at a low artemisinin concentration (2.5 mg/L) in culture solution which remained unchanged in comparison with the control (without artemisinin). This suggests high artemisinin inhibited the cell division or led to the death of PSB, and the different species responded differently to artemisinin. Compared with original soil, PSB inoculation significantly increased Olsen P, whilst the addition of artemisinin decreased this P form in soil. There was a positive correlation between the number of PSB and Olsen P content in soils (r2 = 0.824, n = 8), indicating the involvement of PSB in P mobilization of insoluble minerals. Oxalate and acetate were commonly found in the bacterial culture solutions, which accounted for 73.6-84.4% of all organic acids in the culture medium without artemisinin. Malate was detected in the culture solution of B. subtilis, and citrate and succinate in P. fluorescens. The percentage of tricalcium phosphate solubilization (PTPS) positively correlated to the concentrations of protons and all organic acids (r2proton=0.901, n=8, P<0.01; r2organic acids=0.923, n=8, P<0.01). The concentrations of protons, organic acids and soluble inorganic P in culture solutions, and PTPS were decreased simultaneously as nominal artemisinin concentrations increased. For these decreases it implies the metabolic inhibition and the death of PSB caused by artemisinin could be the main reasons for the less efflux of protons and organic acids, presumably resulting in the decreased ability of PSB to mobilize inorganic P. Therefore, artemisinin released from A. annua L. in commercial and continual cultivation could adversely affect the community structure and inorganic P mobilization of PSB in soils.
Collapse
Affiliation(s)
- Huiwen Zeng
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ling Yuan
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jianguo Huang
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
6
|
Magalhães GA, Moura Neto E, Sombra VG, Richter AR, Abreu CMWS, Feitosa JPA, Paula HCB, Goycoolea FM, de Paula RCM. Chitosan/Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device. Int J Biol Macromol 2016; 88:244-53. [PMID: 27041650 DOI: 10.1016/j.ijbiomac.2016.03.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 11/29/2022]
Abstract
Nanoparticles are produced by means of polyelectrolyte complexation (PEC) of oppositely charged polycationic chitosan (CH) with polyanionic polysaccharide extracted from Sterculia striata exudates (rhamnogalacturonoglycan (RG)-type polysaccharide). The nanoparticles formed with low-molar-mass CH are larger than those formed with high-molar-mass CH. This behavior is in contrast with that previously observed for other systems and may be attributed to different mechanisms related to the association of CH with RG of higher persistence length chain than that of CH. Nanoparticles harnessed with a charge ratio (n(+)/n(-)) of <1 are smaller than particles with an excess of polycations. Particles with hydrodynamic sizes smaller than 100nm are achieved using a polyelectrolyte concentration of 10(-4)gmL(-1) and charge ratio (n(+)/n(-)) of <1. The CH/RG nanoparticles are associated with chloroquine (CQ) with an efficiency of 28% and release it for up to ∼60% within ∼10h, whereas in the latter, only ∼40% of the CQ was released after 24h. The main factor that influenced drug release rate is the nanoparticle charge ratio.
Collapse
Affiliation(s)
- Guilherme A Magalhães
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Erico Moura Neto
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Venícios G Sombra
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Ana R Richter
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Clara M W S Abreu
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Judith P A Feitosa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Haroldo C B Paula
- Departamento de Química Analitica e Fisico-Química, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021,CEP 60455-760
| | | | - Regina C M de Paula
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760.
| |
Collapse
|
7
|
David-Bosne S, Florent I, Lund-Winther AM, Hansen JB, Buch-Pedersen M, Machillot P, le Maire M, Jaxel C. Antimalarial screening via large-scale purification of Plasmodium falciparum Ca2+-ATPase 6 and in vitro studies. FEBS J 2013; 280:5419-29. [PMID: 23497141 DOI: 10.1111/febs.12244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/18/2013] [Accepted: 03/11/2013] [Indexed: 02/04/2023]
Abstract
The most severe form of human malaria is caused by the parasite Plasmodium falciparum. Despite the current need, there is no effective vaccine and parasites are becoming resistant to most of the antimalarials available. Therefore, there is an urgent need to discover new drugs from targets that have not yet suffered from drug pressure with the aim of overcoming the problem of new emerging resistance. Membrane transporters, such as P. falciparum Ca(2+)-ATPase 6 (PfATP6), the P. falciparum sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA), have been proposed as potentially good antimalarial targets. The present investigation focuses on: (a) the large-scale purification of PfATP6 for maintenance of its enzymatic activity; (b) screening for PfATP6 inhibitors from a compound library; and (c) the selection of the best inhibitors for further tests on P. falciparum growth in vitro. We managed to heterologously express in yeast and purify an active form of PfATP6 as previously described, although in larger amounts. In addition to some classical SERCA inhibitors, a chemical library of 1680 molecules was screened. From these, we selected a pool of the 20 most potent inhibitors of PfATP6, presenting half maximal inhibitory concentration values in the range 1-9 μm. From these, eight were chosen for evaluation of their effect on P. falciparum growth in vitro, and the best compound presented a half maximal inhibitory concentration of ~ 2 μm. We verified the absence of an inhibitory effect of most of the compounds on mammalian SERCA1a, representing a potential advantage in terms of human toxicity. The present study describes a multidisciplinary approach allowing the selection of promising PfATP6-specific inhibitors with good antimalarial activity.
Collapse
|
8
|
Nanosuspensions: a new approach for organ and cellular targeting in infectious diseases. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0051-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Haynes RK, Cheu KW, Chan HW, Wong HN, Li KY, Tang MMK, Chen MJ, Guo ZF, Guo ZH, Sinniah K, Witte AB, Coghi P, Monti D. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model--a unifying proposal for drug action. ChemMedChem 2012; 7:2204-26. [PMID: 23112085 DOI: 10.1002/cmdc.201200383] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/30/2012] [Indexed: 01/14/2023]
Abstract
Artemisinins are proposed to act in the malaria parasite cytosol by oxidizing dihydroflavin cofactors of redox-active flavoenzymes, and under aerobic conditions by inducing their autoxidation. Perturbation of redox homeostasis coupled with the generation of reactive oxygen species (ROS) ensues. Ascorbic acid-methylene blue (MB), N-benzyl-1,4-dihydronicotinamide (BNAH)-MB, BNAH-lumiflavine, BNAH-riboflavin (RF), and NADPH-FAD-E. coli flavin reductase (Fre) systems at pH 7.4 generate leucomethylene blue (LMB) and reduced flavins that are rapidly oxidized in situ by artemisinins. These oxidations are inhibited by the 4-aminoquinolines piperaquine (PPQ), chloroquine (CQ), and others. In contrast, the arylmethanols lumefantrine, mefloquine (MFQ), and quinine (QN) have little or no effect. Inhibition correlates with the antagonism exerted by 4-aminoquinolines on the antimalarial activities of MB, RF, and artemisinins. Lack of inhibition correlates with the additivity/synergism between the arylmethanols and artemisinins. We propose association via π complex formation between the 4-aminoquinolines and LMB or the dihydroflavins; this hinders hydride transfer from the reduced conjugates to the artemisinins. The arylmethanols have a decreased tendency to form π complexes, and so exert no effect. The parallel between chemical reactivity and antagonism or additivity/synergism draws attention to the mechanism of action of all drugs described herein. CQ and QN inhibit the formation of hemozoin in the parasite digestive vacuole (DV). The buildup of heme-Fe(III) results in an enhanced efflux from the DV into the cytosol. In addition, the lipophilic heme-Fe(III) complexes of CQ and QN that form in the DV are proposed to diffuse across the DV membrane. At the higher pH of the cytosol, the complexes decompose to liberate heme-Fe(III) . The quinoline or arylmethanol reenters the DV, and so transfers more heme-Fe(III) out of the DV. In this way, the 4-aminoquinolines and arylmethanols exert antimalarial activities by enhancing heme-Fe(III) and thence free Fe(III) concentrations in the cytosol. The iron species enter into redox cycles through reduction of Fe(III) to Fe(II) largely mediated by reduced flavin cofactors and likely also by NAD(P)H-Fre. Generation of ROS through oxidation of Fe(II) by oxygen will also result. The cytotoxicities of artemisinins are thereby reinforced by the iron. Other aspects of drug action are emphasized. In the cytosol or DV, association by π complex formation between pairs of lipophilic drugs must adversely influence the pharmacokinetics of each drug. This explains the antagonism between PPQ and MFQ, for example. The basis for the antimalarial activity of RF mirrors that of MB, wherein it participates in redox cycling that involves flavoenzymes or Fre, resulting in attrition of NAD(P)H. The generation of ROS by artemisinins and ensuing Fenton chemistry accommodate the ability of artemisinins to induce membrane damage and to affect the parasite SERCA PfATP6 Ca(2+) transporter. Thus, the effect exerted by artemisinins is more likely a downstream event involving ROS that will also be modulated by mutations in PfATP6. Such mutations attenuate, but cannot abrogate, antimalarial activities of artemisinins. Overall, parasite resistance to artemisinins arises through enhancement of antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Richard K Haynes
- Department of Chemistry, Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Insights into the gene expression profile of uncultivable hemotrophic Mycoplasma suis during acute infection, obtained using proteome analysis. J Bacteriol 2012; 194:1505-14. [PMID: 22267506 DOI: 10.1128/jb.00002-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemotrophic mycoplasmas, bacteria without cell walls whose niche is the erythrocytes of their hosts, have never been cultivated in vitro. Therefore, knowledge of their pathogenesis is fundamental. Mycoplasma suis infects pigs, causing either acute fatal hemolytic anemia or chronic low-grade anemia, growth retardation, and immune suppression. Recently, the complete genomes of two hemotrophic mycoplasma species, M. suis and M. haemofelis, were sequenced, offering new strategies for the analysis of their pathogenesis. In this study we implemented a proteomic approach to identify M. suis proteins during acute infection by using tandem mass spectrometry. Twenty-two percent of the predicted proteins encoded in M. suis strain KI_3806 were identified. These included nearly all encoded proteins of glycolysis and nucleotide metabolism. The proteins for lipid metabolism, however, were underrepresented. A high proportion of the detected proteins are involved in information storage and processing (72.6%). In addition, several proteins of different functionalities, i.e., posttranslational modification, membrane genesis, signal transduction, intracellular trafficking, inorganic ion transport, and defense mechanisms, were identified. In its reduced genome, M. suis harbors 65.3% (strain Illinois) and 65.9% (strain KI_3806) of the genes encode hypothetical proteins. Of these, only 6.3% were identified at the proteome level. All proteins identified in this study are present in both M. suis strains and are encoded in more highly conserved regions of the genome sequence. In conclusion, our proteome approach is a further step toward the elucidation of the pathogenesis and life cycle of M. suis as well as the establishment of an in vitro cultivation system.
Collapse
|
11
|
Pantaleo A, Ferru E, Vono R, Giribaldi G, Lobina O, Nepveu F, Ibrahim H, Nallet JP, Carta F, Mannu F, Pippia P, Campanella E, Low PS, Turrini F. New antimalarial indolone-N-oxides, generating radical species, destabilize the host cell membrane at early stages of Plasmodium falciparum growth: role of band 3 tyrosine phosphorylation. Free Radic Biol Med 2012; 52:527-36. [PMID: 22142474 PMCID: PMC3385926 DOI: 10.1016/j.freeradbiomed.2011.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 11/20/2022]
Abstract
Although indolone-N-oxide (INODs) genereting long-lived radicals possess antiplasmodial activity in the low-nanomolar range, little is known about their mechanism of action. To explore the molecular basis of INOD activity, we screened for changes in INOD-treated malaria-infected erythrocytes (Pf-RBCs) using a proteomics approach. At early parasite maturation stages, treatment with INODs at their IC(50) concentrations induced a marked tyrosine phosphorylation of the erythrocyte membrane protein band 3, whereas no effect was observed in control RBCs. After INOD treatment of Pf-RBCs we also observed: (i) accelerated formation of membrane aggregates containing hyperphosphorylated band 3, Syk kinase, and denatured hemoglobin; (ii) dose-dependent release of microvesicles containing the membrane aggregates; (iii) reduction in band 3 phosphorylation, Pf-RBC vesiculation, and antimalarial effect of INODs upon addition of Syk kinase inhibitors; and (iv) correlation between the IC(50) and the INOD concentrations required to induce band 3 phosphorylation and vesiculation. Together with previous data demonstrating that tyrosine phosphorylation of oxidized band 3 promotes its dissociation from the cytoskeleton, these results suggest that INODs cause a profound destabilization of the Pf-RBC membrane through a mechanism apparently triggered by the activation of a redox signaling pathway rather than direct oxidative damage.
Collapse
Affiliation(s)
- Antonella Pantaleo
- Department of Physiological, Biochemical, and Cell Sciences, University of Sassari, Sassari 07100, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 2010; 62:560-75. [PMID: 19914313 DOI: 10.1016/j.addr.2009.11.024] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2009] [Indexed: 12/24/2022]
Abstract
Despite the fact that we live in an era of advanced technology and innovation, infectious diseases, like malaria, continue to be one of the greatest health challenges worldwide. The main drawbacks of conventional malaria chemotherapy are the development of multiple drug resistance and the non-specific targeting to intracellular parasites, resulting in high dose requirements and subsequent intolerable toxicity. Nanosized carriers have been receiving special attention with the aim of minimizing the side effects of drug therapy, such as poor bioavailability and the selectivity of drugs. Several nanosized delivery systems have already proved their effectiveness in animal models for the treatment and prophylaxis of malaria. A number of strategies to deliver antimalarials using nanocarriers and the mechanisms that facilitate their targeting to Plasmodium spp.-infected cells are discussed in this review. Taking into account the peculiarities of malaria parasites, the focus is placed particularly on lipid-based (e.g., liposomes, solid lipid nanoparticles and nano and microemulsions) and polymer-based nanocarriers (nanocapsules and nanospheres). This review emphasizes the main requirements for developing new nanotechnology-based carriers as a promising choice in malaria treatment, especially in the case of severe cerebral malaria.
Collapse
|
13
|
Molecular modeling studies, synthesis and biological evaluation of derivatives of N-phenylbenzamide as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9323-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Abstract
Glucose and related hexoses play central roles in the biochemistry and metabolism of single-cell parasites such as Leishmania, Trypanosoma, and Plasmodium that are the causative agents of leishmaniasis, African sleeping sickness, and malaria. Glucose transporters and the genes that encode them have been identified in each of these parasites and their functional properties have been scrutinized. These transporters are related in sequence and structure to mammalian facilitative glucose transporters of the SLC2 family, but they are nonetheless quite divergent in sequence. Hexose transporters have been shown to be essential for the viability of the infectious stage of each of these parasites and thus may represent targets for development of novel anti-parasitic drugs. The study of these transporters also illuminates many aspects of the basic biology of Leishmania, trypanosomes, and malaria parasites.
Collapse
|
15
|
Haynes RK, Chan WC, Lung CM, Uhlemann AC, Eckstein U, Taramelli D, Parapini S, Monti D, Krishna S. The Fe2+-Mediated Decomposition, PfATP6 Binding, and Antimalarial Activities of Artemisone and Other Artemisinins: The Unlikelihood of C-Centered Radicals as Bioactive Intermediates. ChemMedChem 2007; 2:1480-97. [PMID: 17768732 DOI: 10.1002/cmdc.200700108] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The results of Fe(2+)-induced decomposition of the clinically used artemisinins, artemisone, other aminoartemisinins, 10-deoxoartemisinin, and the 4-fluorophenyl derivative have been compared with their antimalarial activities and their ability to inhibit the parasite SERCA PfATP6. The clinical artemisinins and artemisone decompose under aqueous conditions to give mixtures of C radical marker products, carbonyl compounds, and reduction products. The 4-fluorophenyl derivative and aminoartemisinins tend to be inert to aqueous iron(II) sulfate and anhydrous iron(II) acetate. Anhydrous iron(II) bromide enhances formation of the carbonyl compounds and provides a deoxyglycal from DHA and enamines from the aminoartemisinins. Ascorbic acid (AA) accelerates the aqueous Fe(2+)-mediated decompositions, but does not alter product distribution. 4-Oxo-TEMPO intercepts C radicals from a mixture of an antimalaria-active trioxolane, 10-deoxoartemisinin, and anhydrous iron(II) acetate to give trapped products in 73 % yield from the trioxolane, and 3 % from the artemisinin. Artemisone provides a trapped product in 10 % yield. Thus, in line with its structural rigidity, only the trioxolane provides a C radical eminently suited for intermolecular trapping. In contrast, the structural flexibility of the C radicals from the artemisinins allows facile extrusion of Fe(2+) and collapse to benign isomerization products. The propensity towards the formation of radical marker products and intermolecular radical trapping have no relationship with the in vitro antimalarial activities of the artemisinins and trioxolane. Desferrioxamine (DFO) attenuates inhibition of PfATP6 by, and antagonizes antimalarial activity of, the aqueous Fe(2+)-susceptible artemisinins, but has no overt effect on the aqueous Fe(2+)-inert artemisinins. It is concluded that the C radicals cannot be responsible for antimalarial activity and that the Fe(2+)-susceptible artemisinins may be competitively decomposed in aqueous extra- and intracellular compartments by labile Fe(2+), resulting in some attenuation of their antimalarial activities. Interpretations of the roles of DFO and AA in modulating antimalarial activities of the artemisinins, and a comparison with antimalarial properties of simple hydroperoxides and their behavior towards thapsigargin-sensitive SERCA ATPases are presented. The general basis for the exceptional antimalarial activities of artemisinins in relation to the intrinsic activity of the peroxide within the uniquely stressed environment of the malaria parasite is thereby adumbrated.
Collapse
Affiliation(s)
- Richard K Haynes
- Department of Chemistry, Open Laboratory of Chemical Biology, Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Teuscher F, Lowther J, Skinner-Adams TS, Spielmann T, Dixon MWA, Stack CM, Donnelly S, Mucha A, Kafarski P, Vassiliou S, Gardiner DL, Dalton JP, Trenholme KR. The M18 aspartyl aminopeptidase of the human malaria parasite Plasmodium falciparum. J Biol Chem 2007; 282:30817-26. [PMID: 17720817 DOI: 10.1074/jbc.m704938200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A member of the M18 family of aspartyl aminopeptidases is expressed by all intra-erythrocytic stages of the human malaria parasite Plasmodium falciparum (PfM18AAP), with highest expression levels in rings. Functionally active recombinant enzyme, rPfM18AAP, and native enzyme in cytosolic extracts of malaria parasites are 560-kDa octomers that exhibit optimal activity at neutral pH and require the presence of metal ions to maintain enzymatic activity and stability. Like the human aspartyl aminopeptidase, the exopeptidase activity of PfM18AAP is exclusive to N-terminal acidic amino acids, glutamate and aspartate, making this enzyme of particular interest and suggesting that it may function alongside the malaria cytosolic neutral aminopeptidases in the release of amino acids from host hemoglobin-derived peptides. Whereas immunocytochemical studies using transgenic P. falciparum parasites show that PfM18AAP is expressed in the cytosol, immunoblotting experiments revealed that the enzyme is also trafficked out of the parasite into the surrounding parasitophorous vacuole. Antisense-mediated knockdown of PfM18AAP results in a lethal phenotype as a result of significant intracellular damage and validates this enzyme as a target at which novel antimalarial drugs could be directed. Novel phosphinic derivatives of aspartate and glutamate showed modest inhibition of rPfM18AAP but did not inhibit malaria growth in culture. However, we were able to draw valuable observations concerning the structure-activity relationship of these inhibitors that can be employed in future inhibitor optimization studies.
Collapse
Affiliation(s)
- Franka Teuscher
- Malaria Biology Laboratory, The Queensland Institute of Medical Research, 300 Herston Rd, Herston, Brisbane, Queensland 4006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bano N, Romano JD, Jayabalasingham B, Coppens I. Cellular interactions of Plasmodium liver stage with its host mammalian cell. Int J Parasitol 2007; 37:1329-41. [PMID: 17537443 DOI: 10.1016/j.ijpara.2007.04.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/10/2007] [Accepted: 04/03/2007] [Indexed: 01/08/2023]
Abstract
The Plasmodium liver forms are bridgehead stages between the mosquito sporozoite stages and mammalian blood stages that instigate the malaria disease. In hepatocytes, Plasmodium achieves one of the fastest growth rates among eukaryotic cells. However, nothing is known about host hepatic cell interactions, e.g. nutrient scavenging and/or subversion of cellular functions necessary for Plasmodium development and replication. Plasmodium usually invades hepatocytes by establishing a parasitophorous vacuole wherein it undergoes multiple nuclear division cycles. We show that Plasmodium preferentially develops in the host juxtanuclear region. By comparison with the parasitophorous vacuole of other apicomplexan parasites which associate with diverse host organelles, the Plasmodium parasitophorous vacuole only forms an association with the host endoplasmic reticulum. Intrahepatic Plasmodium actively modifies the permeability of its vacuole to allow the transfer of a large variety of molecules from the host cytosol to the vacuolar space through open channels. In contrast with malaria blood stages, the pores within the parasitophorous vacuole membrane of the liver stage display a smaller size as they restrict the passage of solutes to less than 855Da. These pores are stably maintained during parasite karyokinesis until complete cellularisation. Host-derived cholesterol accumulated at the parasitophorous vacuole membrane may modulate the channel activity. These observations define the parasitophorous vacuole of the Plasmodium liver stage as a dynamic and highly permeable compartment that can ensure the sustained supply of host molecules to support parasite growth in the nutrient-rich environment of liver cells.
Collapse
Affiliation(s)
- Nazneen Bano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, The Malaria Research Institute, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
18
|
Wang P, Wang Q, Sims PF, Hyde JE. Characterisation of exogenous folate transport in Plasmodium falciparum. Mol Biochem Parasitol 2007; 154:40-51. [PMID: 17509698 PMCID: PMC1906846 DOI: 10.1016/j.molbiopara.2007.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 12/02/2022]
Abstract
Folate salvage by Plasmodium falciparum is an important source of key cofactors, but little is known about the underlying mechanism. Using synchronised parasite cultures, we observed that uptake of this dianionic species against the negative-inward electrochemical gradient is highly dependent upon cell-cycle stage, temperature and pH, but not on mono- or divalent metal ions. Energy dependence was tested with different sugars; glucose was necessary for folate import, although fructose was also able to function in this role, unlike sugars that cannot be processed through the glycolytic pathway. Import into both infected erythrocytes and free parasites was strongly inhibited by the anion-channel blockers probenecid and furosemide, which are likely to be acting predominantly on specific folate transporters in both cases. Import was not affected by high concentrations of the antifolate drugs pyrimethamine and sulfadoxine, but was inhibited by the close folate analogue methotrexate. The pH optimum for folate uptake into infected erythrocytes was 6.5–7.0. Dinitrophenol and nigericin, which strongly facilitate the equilibration of H+ ions across biological membranes and thus abolish or substantially reduce the proton gradient, inhibited folate uptake profoundly. The ATPase inhibitor concanamycin A also greatly reduced folate uptake, further demonstrating a link to ATP-powered proton transport. These data strongly suggest that the principal folate uptake pathway in P. falciparum is specific, highly regulated, dependent upon the proton gradient across the parasite plasma membrane, and is likely to be mediated by one or more proton symporters.
Collapse
Affiliation(s)
| | | | | | - John E. Hyde
- Corresponding author. Tel.: +44 161 306 4185; fax: +44 161 306 5201.
| |
Collapse
|
19
|
Stack CM, Lowther J, Cunningham E, Donnelly S, Gardiner DL, Trenholme KR, Skinner-Adams TS, Teuscher F, Grembecka J, Mucha A, Kafarski P, Lua L, Bell A, Dalton JP. Characterization of the Plasmodium falciparum M17 Leucyl Aminopeptidase. J Biol Chem 2007; 282:2069-80. [PMID: 17107951 DOI: 10.1074/jbc.m609251200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amino acids generated from the catabolism of hemoglobin by intra-erythrocytic malaria parasites are not only essential for protein synthesis but also function in maintaining an osmotically stable environment, and creating a gradient by which amino acids that are rare or not present in hemoglobin are drawn into the parasite from host serum. We have proposed that a Plasmodium falciparum M17 leucyl aminopeptidase (PfLAP) generates and regulates the internal pool of free amino acids and therefore represents a target for novel antimalarial drugs. This enzyme has been expressed in insect cells as a functional 320-kDa homo-hexamer that is optimally active at neutral or alkaline pH, is dependent on metal ions for activity, and exhibits a substrate preference for N-terminally exposed hydrophobic amino acids, particularly leucine. PfLAP is produced by all stages in the intra-erythrocytic developmental cycle of malaria but was most highly expressed by trophozoites, a stage at which hemoglobin degradation and parasite protein synthesis are elevated. The enzyme was located by immunohistochemical methods and by transfecting malaria cells with a PfLAP-green fluorescent protein construct, to the cytosolic compartment of the cell at all developmental stages, including segregated merozoites. Amino acid dipeptide analogs, such as bestatin and its derivatives, are potent inhibitors of the protease and also block the growth of P. falciparum malaria parasites in culture. This study provides a biochemical basis for the antimalarial activity of aminopeptidase inhibitors. Availability of functionally active recombinant PfLAP, coupled with a simple enzymatic readout, will aid medicinal chemistry and/or high throughput approaches for the future design/discovery of new antimalarial drugs.
Collapse
Affiliation(s)
- Colin M Stack
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Level 6, Building 4, Corner of Thomas and Harris Street, Ultimo, Sydney, New South Wales 2007, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Farias SL, Gazarini ML, Melo RL, Hirata IY, Juliano MA, Juliano L, Garcia CRS. Cysteine-protease activity elicited by Ca2+ stimulus in Plasmodium. Mol Biochem Parasitol 2005; 141:71-9. [PMID: 15811528 DOI: 10.1016/j.molbiopara.2005.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/11/2005] [Accepted: 01/26/2005] [Indexed: 11/26/2022]
Abstract
Bloodstage malaria parasites require proteolytic activity for key processes as invasion, hemoglobin degradation and merozoite escape from red blood cells (RBCs). We investigated by confocal microscopy the presence of cysteine-protease activity elicited by calcium stimulus in Plasmodium chabaudi and Plasmodium falciparum in free trophozoites or for the later parasite within RBC using fluorescence resonance energy transfer (FRET) peptides. Peptide probes access, to either free or intraerythrocytic parasites, was also tested by selecting a range of fluorescent peptides (653-3146 Da molecular mass) labeled with Abz or FITC. In the present work we show that Ca2+ stimulus elicited by treatment with either melatonin, thapsigargin, ionomicin or nigericin, promotes an increase of substrate hydrolysis, which was blocked by the specific cysteine-protease inhibitor E-64 and the intracellular Ca2+ chelator, BAPTA. When parasites were treated with cytoplasmic Ca2+ releasing compounds, a cysteine-protease was labeled in the parasite cytoplasm by the fluorescent specific irreversible inhibitor, Ethyl-Eps-Leu-Tyr-Cap-Lys(Abz)-NH2, where Ethyl-Eps is Ethyl-(2S,3S)-oxirane-2,3-dicarboxylate. In summary, we demonstrate that P. chabaudi and P. falciparum have a cytoplasmic dependent cysteine-protease activity elicited by Ca2+.
Collapse
Affiliation(s)
- Shirley L Farias
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|