1
|
Baidjoe AY, Stevenson J, Knight P, Stone W, Stresman G, Osoti V, Makori E, Owaga C, Odongo W, China P, Shagari S, Kariuki S, Drakeley C, Cox J, Bousema T. Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands. Malar J 2016; 15:307. [PMID: 27259286 PMCID: PMC4893231 DOI: 10.1186/s12936-016-1362-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/27/2016] [Indexed: 11/24/2022] Open
Abstract
Background The East African highlands are fringe regions between stable and unstable malaria transmission. What factors contribute to the heterogeneity of malaria exposure on different spatial scales within larger foci has not been extensively studied. In a comprehensive, community-based cross-sectional survey an attempt was made to identify factors that drive the macro- and micro epidemiology of malaria in a fringe region using parasitological and serological outcomes. Methods A large cross-sectional survey including 17,503 individuals was conducted across all age groups in a 100 km2 area in the Western Kenyan highlands of Rachuonyo South district. Households were geo-located and prevalence of malaria parasites and malaria-specific antibodies were determined by PCR and ELISA. Household and individual risk-factors were recorded. Geographical characteristics of the study area were digitally derived using high-resolution satellite images. Results Malaria antibody prevalence strongly related to altitude (1350–1600 m, p < 0.001). A strong negative association with increasing altitude and PCR parasite prevalence was found. Parasite carriage was detected at all altitudes and in all age groups; 93.2 % (2481/2663) of malaria infections were apparently asymptomatic. Malaria parasite prevalence was associated with age, bed net use, house construction features, altitude and topographical wetness index. Antibody prevalence was associated with all these factors and distance to the nearest water body. Conclusion Altitude was a major driver of malaria transmission in this study area, even across narrow altitude bands. The large proportion of asymptomatic parasite carriers at all altitudes and the age-dependent acquisition of malaria antibodies indicate stable malaria transmission; the strong correlation between current parasite carriage and serological markers of malaria exposure indicate temporal stability of spatially heterogeneous transmission.
Collapse
Affiliation(s)
- Amrish Y Baidjoe
- Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525, GA, Nijmegen, The Netherlands.,European Programme for Public Health Microbiology Training, European Centre of Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Jennifer Stevenson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.,Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Philip Knight
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - William Stone
- Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525, GA, Nijmegen, The Netherlands
| | - Gillian Stresman
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Victor Osoti
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Euniah Makori
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Chrispin Owaga
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Wycliffe Odongo
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Pauline China
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Shehu Shagari
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Chris Drakeley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Jonathan Cox
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525, GA, Nijmegen, The Netherlands. .,Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
| |
Collapse
|
2
|
Msellemu D, Namango HI, Mwakalinga VM, Ntamatungiro AJ, Mlacha Y, Mtema ZJ, Kiware S, Lobo NF, Majambere S, Dongus S, Drakeley CJ, Govella NJ, Chaki PP, Killeen GF. The epidemiology of residual Plasmodium falciparum malaria transmission and infection burden in an African city with high coverage of multiple vector control measures. Malar J 2016; 15:288. [PMID: 27216734 PMCID: PMC4877954 DOI: 10.1186/s12936-016-1340-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
Background In the Tanzanian city of Dar es Salaam, high coverage of long-lasting insecticidal nets (LLINs), larvicide application (LA) and mosquito-proofed housing, was complemented with improved access to artemisinin-based combination therapy and rapid diagnostic tests by the end of 2012. Methods Three rounds of city-wide, cluster-sampled cross-sectional surveys of malaria parasite infection status, spanning 2010 to 2012, were complemented by two series of high-resolution, longitudinal surveys of vector density. Results Larvicide application using a granule formulation of Bacillus thuringiensis var. israelensis (Bti) had no effect upon either vector density (P = 0.820) or infection prevalence (P = 0.325) when managed by a private-sector contractor. Infection prevalence rebounded back to 13.8 % in 2010, compared with <2 % at the end of a previous Bti LA evaluation in 2008. Following transition to management by the Ministry of Health and Social Welfare (MoHSW), LA consistently reduced vector densities, first using the same Bti granule in early 2011 [odds ratio (OR) (95 % confidence interval (CI)) = 0.31 (0.14, 0.71), P = 0.0053] and then a pre-diluted aqueous suspension formulation from mid 2011 onwards [OR (95 % CI) = 0.15 (0.07, 0.30), P ≪ 0.000001]. While LA by MoHSW with the granule formulation was associated with reduced infection prevalence [OR (95 % CI) = 0.26 (0.12, 0.56), P = 0.00040], subsequent liquid suspension use, following a mass distribution to achieve universal coverage of LLINs that reduced vector density [OR (95 % CI) = 0.72 (0.51, 1.01), P = 0.057] and prevalence [OR (95 % CI) = 0.80 (0.69, 0.91), P = 0.0013], was not associated with further prevalence reduction (P = 0.836). Sleeping inside houses with complete window screens only reduced infection risk [OR (95 % CI) = 0.71 (0.62, 0.82), P = 0.0000036] if the evenings and mornings were also spent indoors. Furthermore, infection risk was only associated with local vector density [OR (95 % CI) = 6.99 (1.12, 43.7) at one vector mosquito per trap per night, P = 0.037] among the minority (14 %) of households lacking screening. Despite attenuation of malaria transmission and immunity, 88 % of infected residents experienced no recent fever, only 0.4 % of these afebrile cases had been treated for malaria, and prevalence remained high (9.9 %) at the end of the study. Conclusions While existing vector control interventions have dramatically attenuated malaria transmission in Dar es Salaam, further scale-up and additional measures to protect against mosquito bites outdoors are desirable. Accelerated elimination of chronic human infections persisting at high prevalence will require active, population-wide campaigns with curative drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1340-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Msellemu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Hagai I Namango
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Victoria M Mwakalinga
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alex J Ntamatungiro
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Yeromin Mlacha
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Zacharia J Mtema
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Samson Kiware
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, USA
| | - Neil F Lobo
- Eck Institute for Global Health, Notre Dame University, Notre Dame, IN, USA
| | - Silas Majambere
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stefan Dongus
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christopher J Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Prosper P Chaki
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Gerry F Killeen
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
3
|
Chitunhu S, Musenge E. Spatial and socio-economic effects on malaria morbidity in children under 5 years in Malawi in 2012. Spat Spatiotemporal Epidemiol 2015; 16:21-33. [PMID: 26919752 DOI: 10.1016/j.sste.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Malaria is a major health challenge in sub-Saharan Africa with children under 5 being most vulnerable. Identifying regions of greater malarial burden is vital in targeting interventions. METHODS This study analysed malaria morbidity using data from the Malawi 2012 Malaria Indicator Survey that were obtained from Demographic and Health Survey (DHS) program website. These data captured malaria related information on children under 5. Poisson regression was done to determine associations between outcome (number of children under 5 with malaria in household) and explanatory variables. A Bayesian smoothing approach was employed to adjust for spatial random effects on child related variables. RESULTS There were 1878 households in 140 clusters. The number of children under five was 1900. Spatially structured effects accounted for more than 90% of random effects as these had a mean of 1.32 (95% Credible Interval (CI)=0.37, 2.50) whilst spatially unstructured had a mean of 0.10 (CI=9.0 × 10(-4), 0.38). Spatially adjusted significant variables were; type of place of residence (urban or rural) [posterior odds ratio (POR)=2.06; CI= 1.27, 3.34], not owning land [POR=1.77; CI=1.19, 2.64], not staying in a slum [POR=0.52; CI=0.33, 0.83] and enhanced vegetation index [POR=0.02; CI=0.00, 1.08]. A trend was observed on usage of insecticide treated mosquito nets [POR=0.80; CI=0.63, 1.03]. CONCLUSION This study showed that malaria is a disease of poverty. Enhanced vegetation index was an important factor in malaria morbidity. The central region was identified as the area with greatest disease burden.
Collapse
Affiliation(s)
- Simangaliso Chitunhu
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 St Andrews' Road, Parktown, Johannesburg 2193, South Africa.
| | - Eustasius Musenge
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 St Andrews' Road, Parktown, Johannesburg 2193, South Africa.
| |
Collapse
|
4
|
Donnelly B, Berrang-Ford L, Ross NA, Michel P. A systematic, realist review of zooprophylaxis for malaria control. Malar J 2015; 14:313. [PMID: 26264913 PMCID: PMC4533963 DOI: 10.1186/s12936-015-0822-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/28/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Integrated vector management (IVM) is recommended as a sustainable approach to malaria control. IVM consists of combining vector control methods based on scientific evidence to maximize efficacy and cost-effectiveness while minimizing negative impacts, such as insecticide resistance and environmental damage. Zooprophylaxis has been identified as a possible component of IVM as livestock may draw mosquitoes away from humans, decreasing human-vector contact and malaria transmission. It is possible, however, that livestock may actually draw mosquitoes to humans, increasing malaria transmission (zoopotentiation). The goal of this paper is to take a realist approach to a systematic review of peer-reviewed literature to understand the contexts under which zooprophylaxis or zoopotentiation occur. METHODS Three electronic databases were searched using the keywords 'zooprophylaxis' and 'zoopotentiation', and forward and backward citation tracking employed, to identify relevant articles. Only empirical, peer-reviewed articles were included. Critical appraisal was applied to articles retained for full review. RESULTS Twenty empirical studies met inclusion criteria after critical appraisal. A range of experimental and observational study designs were reported. Outcome measures included human malaria infection and mosquito feeding behaviour. Two key factors were consistently associated with zooprophylaxis and zoopotentiation: the characteristics of the local mosquito vector, and the location of livestock relative to human sleeping quarters. These associations were modified by the use of bed nets and socio-economic factors. DISCUSSION This review suggests that malaria risk is reduced (zooprophylaxis) in areas where predominant mosquito species do not prefer human hosts, where livestock are kept at a distance from human sleeping quarters at night, and where mosquito nets or other protective measures are used. Zoopotentiation occurs where livestock are housed within or near human sleeping quarters at night and where mosquito species prefer human hosts. CONCLUSION The evidence suggests that zooprophylaxis could be part of an effective strategy to reduce malaria transmission under specific ecological and geographical conditions. The current scientific evidence base is inconclusive on understanding the role of socio-economic factors, optimal distance between livestock and human sleeping quarters, and the effect of animal species and number on zooprophylaxis.
Collapse
Affiliation(s)
- Blánaid Donnelly
- Department of Geography, McGill University, Burnside Hall Building, 805 Sherbrooke St West, Montreal, QC, H3A 0B9, Canada.
| | - Lea Berrang-Ford
- Department of Geography, McGill University, Burnside Hall Building, 805 Sherbrooke St West, Montreal, QC, H3A 0B9, Canada.
| | - Nancy A Ross
- Department of Geography, McGill University, Burnside Hall Building, 805 Sherbrooke St West, Montreal, QC, H3A 0B9, Canada.
| | - Pascal Michel
- Public Health Risk Sciences Division, Public Health Agency of Canada, 3200 Sicotte, PO Box 5000, Saint-Hyacinthe, QC, J2S 7C6, Canada.
| |
Collapse
|
5
|
Stevenson JC, Stresman GH, Gitonga CW, Gillig J, Owaga C, Marube E, Odongo W, Okoth A, China P, Oriango R, Brooker SJ, Bousema T, Drakeley C, Cox J. Reliability of school surveys in estimating geographic variation in malaria transmission in the western Kenyan highlands. PLoS One 2013; 8:e77641. [PMID: 24143250 PMCID: PMC3797060 DOI: 10.1371/journal.pone.0077641] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/12/2013] [Indexed: 11/25/2022] Open
Abstract
Background School surveys provide an operational approach to assess malaria transmission through parasite prevalence. There is limited evidence on the comparability of prevalence estimates obtained from school and community surveys carried out at the same locality. Methods Concurrent school and community cross-sectional surveys were conducted in 46 school/community clusters in the western Kenyan highlands and households of school children were geolocated. Malaria was assessed by rapid diagnostic test (RDT) and combined seroprevalence of antibodies to bloodstage Plasmodium falciparum antigens. Results RDT prevalence in school and community populations was 25.7% (95% CI: 24.4-26.8) and 15.5% (95% CI: 14.4-16.7), respectively. Seroprevalence in the school and community populations was 51.9% (95% CI: 50.5-53.3) and 51.5% (95% CI: 49.5-52.9), respectively. RDT prevalence in schools could differentiate between low (<7%, 95% CI: 0-19%) and high (>39%, 95% CI: 25-49%) transmission areas in the community and, after a simple adjustment, were concordant with the community estimates. Conclusions Estimates of malaria prevalence from school surveys were consistently higher than those from community surveys and were strongly correlated. School-based estimates can be used as a reliable indicator of malaria transmission intensity in the wider community and may provide a basis for identifying priority areas for malaria control.
Collapse
Affiliation(s)
- Jennifer C. Stevenson
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Gillian H. Stresman
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Caroline W. Gitonga
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Public Health Department, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
| | - Jonathan Gillig
- Eck Institute for Global Health, University of Notre Dame, South Bend, Indiana, United States of America
| | - Chrispin Owaga
- Center for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Elizabeth Marube
- Center for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Wycliffe Odongo
- Center for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Albert Okoth
- Center for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Pauline China
- Center for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Robin Oriango
- Center for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Simon J. Brooker
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Public Health Department, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jonathan Cox
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Ali M, Hidayatullah TA, Alimuddin Z, Sabrina Y. Sequence Diversity of pfmdr1 and Sequence Conserve of pldh in Plasmodium falciparum from Indonesia: Its implications on Designing a Novel Antimalarial Drug with Less Prone to Resistance. IRANIAN JOURNAL OF PARASITOLOGY 2013; 8:522-9. [PMID: 25516732 PMCID: PMC4266115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/19/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND pfmdr1 and its variants are molecular marker which are responsible for antibiotics resistance in Plasmodium falciparum, a parasitic carrier for malaria disease. A novel strategy to treat malaria disease is by disrupting parasite lactate dehydrogenase (pLDH), a crucial enzyme for Plasmodium survival during their erythrocytic stages. This research was aimed to investigate and characterize the pfmdr1 and pldh genes of P. falciparum isolated from Nusa Tenggara Indonesia. METHODS Genomic DNA of P.falciparum was isolated from malaria patients in Nusa Tenggara Indonesia. pfmdr1 was amplified using nested PCR and genotyped using Restriction Fragment Length Polymorphism (RFLP). pldh was amplified, sequenced, and analyzed using NCBI public domain databases and alignment using Clustal W ver. 1.83. RESULTS Genotyping of the pfmdr1 revealed that sequence diversity was extremely high among isolates. However, a sequence analysis of pldh indicated that open reading frame of 316 amino acids of the gene showing 100% homology to the P. falciparum 3D7 reference pldh (GeneBank: XM_001349953.1). CONCLUSION This is the first report which confirms the heterologous of pfmdr1 and the homologous sequences of P.falciparum pldh isolated from Nusa Tenggara Islands of Indonesia, indicating that the chloroquine could not be used effectively as antimalarial target in the region and the pLDH-targeted antimalarial compound would have higher chance to be successful than using chloroquine for curbing malaria worldwide.
Collapse
Affiliation(s)
- Muhamad Ali
- Laboratory of Microbiology and Biotechnology, Faculty of Animal Sciences, Mataram University, Mataram, Indonesia,Correspondence
| | | | - Zulfikar Alimuddin
- Faculty of Animal Science, Nahdathul Wathan University, Mataram, Indonesia
| | - Yunita Sabrina
- Laboratory of Microbiology Faculty of Medical, Mataram University, Mataram, Indonesia
| |
Collapse
|
7
|
Linard C, Tatem AJ. Large-scale spatial population databases in infectious disease research. Int J Health Geogr 2012; 11:7. [PMID: 22433126 PMCID: PMC3331802 DOI: 10.1186/1476-072x-11-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/20/2012] [Indexed: 01/26/2023] Open
Abstract
Modelling studies on the spatial distribution and spread of infectious diseases are becoming increasingly detailed and sophisticated, with global risk mapping and epidemic modelling studies now popular. Yet, in deriving populations at risk of disease estimates, these spatial models must rely on existing global and regional datasets on population distribution, which are often based on outdated and coarse resolution data. Moreover, a variety of different methods have been used to model population distribution at large spatial scales. In this review we describe the main global gridded population datasets that are freely available for health researchers and compare their construction methods, and highlight the uncertainties inherent in these population datasets. We review their application in past studies on disease risk and dynamics, and discuss how the choice of dataset can affect results. Moreover, we highlight how the lack of contemporary, detailed and reliable data on human population distribution in low income countries is proving a barrier to obtaining accurate large-scale estimates of population at risk and constructing reliable models of disease spread, and suggest research directions required to further reduce these barriers.
Collapse
Affiliation(s)
- Catherine Linard
- Biological Control and Spatial Ecology, Université Libre de Bruxelles, CP 160/12, Avenue FD Roosevelt 50, B-1050 Brussels, Belgium.
| | | |
Collapse
|
8
|
Nkurunziza H, Gebhardt A, Pilz J. Geo-additive modelling of malaria in Burundi. Malar J 2011; 10:234. [PMID: 21835010 PMCID: PMC3180443 DOI: 10.1186/1475-2875-10-234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 08/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a major public health issue in Burundi in terms of both morbidity and mortality, with around 2.5 million clinical cases and more than 15,000 deaths each year. It is still the single main cause of mortality in pregnant women and children below five years of age. Because of the severe health and economic burden of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies/researches have been done on the subject yielding different results as which factors are most responsible for the increase in malaria transmission. This paper considers the modelling of the dependence of malaria cases on spatial determinants and climatic covariates including rainfall, temperature and humidity in Burundi. METHODS The analysis carried out in this work exploits real monthly data collected in the area of Burundi over 12 years (1996-2007). Semi-parametric regression models are used. The spatial analysis is based on a geo-additive model using provinces as the geographic units of study. The spatial effect is split into structured (correlated) and unstructured (uncorrelated) components. Inference is fully Bayesian and uses Markov chain Monte Carlo techniques. The effects of the continuous covariates are modelled by cubic p-splines with 20 equidistant knots and second order random walk penalty. For the spatially correlated effect, Markov random field prior is chosen. The spatially uncorrelated effects are assumed to be i.i.d. Gaussian. The effects of climatic covariates and the effects of other spatial determinants are estimated simultaneously in a unified regression framework. RESULTS The results obtained from the proposed model suggest that although malaria incidence in a given month is strongly positively associated with the minimum temperature of the previous months, regional patterns of malaria that are related to factors other than climatic variables have been identified, without being able to explain them. CONCLUSIONS In this paper, semiparametric models are used to model the effects of both climatic covariates and spatial effects on malaria distribution in Burundi. The results obtained from the proposed models suggest a strong positive association between malaria incidence in a given month and the minimum temperature of the previous month. From the spatial effects, important spatial patterns of malaria that are related to factors other than climatic variables are identified. Potential explanations (factors) could be related to socio-economic conditions, food shortage, limited access to health care service, precarious housing, promiscuity, poor hygienic conditions, limited access to drinking water, land use (rice paddies for example), displacement of the population (due to armed conflicts).
Collapse
Affiliation(s)
| | | | - Jürgen Pilz
- Department of Statistics, University of Klagenfurt, Austria
| |
Collapse
|
9
|
Tatem AJ, Campiz N, Gething PW, Snow RW, Linard C. The effects of spatial population dataset choice on estimates of population at risk of disease. Popul Health Metr 2011; 9:4. [PMID: 21299885 PMCID: PMC3045911 DOI: 10.1186/1478-7954-9-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/07/2011] [Indexed: 11/17/2022] Open
Abstract
Background The spatial modeling of infectious disease distributions and dynamics is increasingly being undertaken for health services planning and disease control monitoring, implementation, and evaluation. Where risks are heterogeneous in space or dependent on person-to-person transmission, spatial data on human population distributions are required to estimate infectious disease risks, burdens, and dynamics. Several different modeled human population distribution datasets are available and widely used, but the disparities among them and the implications for enumerating disease burdens and populations at risk have not been considered systematically. Here, we quantify some of these effects using global estimates of populations at risk (PAR) of P. falciparum malaria as an example. Methods The recent construction of a global map of P. falciparum malaria endemicity enabled the testing of different gridded population datasets for providing estimates of PAR by endemicity class. The estimated population numbers within each class were calculated for each country using four different global gridded human population datasets: GRUMP (~1 km spatial resolution), LandScan (~1 km), UNEP Global Population Databases (~5 km), and GPW3 (~5 km). More detailed assessments of PAR variation and accuracy were conducted for three African countries where census data were available at a higher administrative-unit level than used by any of the four gridded population datasets. Results The estimates of PAR based on the datasets varied by more than 10 million people for some countries, even accounting for the fact that estimates of population totals made by different agencies are used to correct national totals in these datasets and can vary by more than 5% for many low-income countries. In many cases, these variations in PAR estimates comprised more than 10% of the total national population. The detailed country-level assessments suggested that none of the datasets was consistently more accurate than the others in estimating PAR. The sizes of such differences among modeled human populations were related to variations in the methods, input resolution, and date of the census data underlying each dataset. Data quality varied from country to country within the spatial population datasets. Conclusions Detailed, highly spatially resolved human population data are an essential resource for planning health service delivery for disease control, for the spatial modeling of epidemics, and for decision-making processes related to public health. However, our results highlight that for the low-income regions of the world where disease burden is greatest, existing datasets display substantial variations in estimated population distributions, resulting in uncertainty in disease assessments that utilize them. Increased efforts are required to gather contemporary and spatially detailed demographic data to reduce this uncertainty, particularly in Africa, and to develop population distribution modeling methods that match the rigor, sophistication, and ability to handle uncertainty of contemporary disease mapping and spread modeling. In the meantime, studies that utilize a particular spatial population dataset need to acknowledge the uncertainties inherent within them and consider how the methods and data that comprise each will affect conclusions.
Collapse
Affiliation(s)
- Andrew J Tatem
- Department of Geography, University of Florida, Gainesville, USA.
| | | | | | | | | |
Collapse
|
10
|
Ishengoma DRS, Derua YA, Rwegoshora RT, Tenu F, Massaga JJ, Mboera LEG, Magesa SM. The performance of health laboratories and the quality of malaria diagnosis in six districts of Tanzania. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2010; 104:123-35. [PMID: 20406579 DOI: 10.1179/136485910x12607012373993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early laboratory diagnosis is critical for the optimal management of human malaria, particularly following the introduction of relatively expensive, artemisinin-combination therapies (ACT). The performance of the laboratories and the quality of malaria diagnosis have recently been assessed in 36 healthcare facilities in six districts of Tanzania. Questionnaires, checklists and observations were used to collect information on the availability and functional status of equipment as well as on laboratory personnel and their performance in malaria diagnosis. Together, the surveyed facilities had 112 laboratory staff [almost half (41.1%) of whom were laboratory assistants] and 57 microscopes. Twenty-seven (75.0%) of the healthcare facilities included in the survey had only one functional microscope each. Only seven (12.3%) of the assessed microscopes had been serviced in the previous 2 years. Of the 38 microscopists who were assessed, 24 (63.2%) were re-using microscope slides, 29 (73.5%) were producing bloodsmears of low quality, and 30 (79.0%) were using Field's stain. Although the facility microscopists gave similar results to experienced research microscopists when reading bloodsmears prepared by the survey team, using high-quality reagents (kappa=0.769), they appeared far less competent when reading smears stained using the reagents from the study laboratories (kappa=0.265-0.489). The quality of malaria diagnosis at healthcare facilities in Tanzania, which is generally poor (largely because of inadequate supplies of consumables and the limited skills of laboratory staff in the preparation of bloodsmears), urgently needs to be improved if the utilization of ACT is to be sustainable.
Collapse
Affiliation(s)
- D R S Ishengoma
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | | | | | | | | | | | | |
Collapse
|
11
|
Nkurunziza H, Gebhardt A, Pilz J. Bayesian modelling of the effect of climate on malaria in Burundi. Malar J 2010; 9:114. [PMID: 20429877 PMCID: PMC2885398 DOI: 10.1186/1475-2875-9-114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 04/29/2010] [Indexed: 11/26/2022] Open
Abstract
Background In Burundi, malaria is a major public health issue in terms of both morbidity and mortality with around 2.5 million clinical cases and more than 15,000 deaths each year. It is the single main cause of mortality in pregnant women and children below five years of age. Due to the severe health and economic cost of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies have been done on the subject yielding different results as which factors are most responsible for the increase in malaria. The purpose of this study has been to undertake a spatial/longitudinal statistical analysis to identify important climatic variables that influence malaria incidences in Burundi. Methods This paper investigates the effects of climate on malaria in Burundi. For the period 1996-2007, real monthly data on both malaria epidemiology and climate in the area of Burundi are described and analysed. From this analysis, a mathematical model is derived and proposed to assess which variables significantly influence malaria incidences in Burundi. The proposed modelling is based on both generalized linear models (GLM) and generalized additive mixed models (GAMM). The modelling is fully Bayesian and inference is carried out by Markov Chain Monte Carlo (MCMC) techniques. Results The results obtained from the proposed models are discussed and it is found that malaria incidence in a given month in Burundi is strongly positively associated with the minimum temperature of the previous month. In contrast, it is found that rainfall and maximum temperature in a given month have a possible negative effect on malaria incidence of the same month. Conclusions This study has exploited available real monthly data on malaria and climate over 12 years in Burundi to derive and propose a regression modelling to assess climatic factors that are associated with monthly malaria incidence. The results obtained from the proposed models suggest a strong positive association between malaria incidence in a given month and the minimum temperature (night temperature) of the previous month. An open question is, therefore, how to cope with high temperatures at night.
Collapse
|
12
|
Riegelhaupt PM, Frame IJ, Akabas MH. Transmembrane segment 11 appears to line the purine permeation pathway of the Plasmodium falciparum equilibrative nucleoside transporter 1 (PfENT1). J Biol Chem 2010; 285:17001-10. [PMID: 20335165 DOI: 10.1074/jbc.m110.115758] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purine transport is essential for malaria parasites to grow because they lack the enzymes necessary for de novo purine biosynthesis. The Plasmodium falciparum Equilibrative Nucleoside Transporter 1 (PfENT1) is a member of the equilibrative nucleoside transporter (ENT) gene family. PfENT1 is a primary purine transport pathway across the P. falciparum plasma membrane because PfENT1 knock-out parasites are not viable at physiologic extracellular purine concentrations. Topology predictions and experimental data indicate that ENT family members have eleven transmembrane (TM) segments although their tertiary structure is unknown. In the current work, we showed that a naturally occurring polymorphism, F394L, in TM11 affects transport substrate K(m). We investigated the structure and function of the TM11 segment using the substituted cysteine accessibility method. We showed that mutation to Cys of two highly conserved glycine residues in a GXXXG motif significantly reduces PfENT1 protein expression levels. We speculate that the conserved TM11 GXXXG glycines may be critical for folding and/or assembly. Small, cysteine-specific methanethiosulfonate (MTS) reagents reacted with four TM11 Cys substitution mutants, L393C, I397C, T400C, and Y403C. Larger MTS reagents do not react with the more cytoplasmic positions. Hypoxanthine, a transported substrate, protected L393C, I397C, and T400C from covalent modification by the MTS reagents. Plotted on an alpha-helical wheel, Leu-393, Ile-397, and Thr-400 lie on one face of the helix in a 60 degrees arc suggesting that TM11 is largely alpha helical. We infer that they line a water-accessible surface, possibly the purine permeation pathway. These results advance our understanding of the ENT structure.
Collapse
Affiliation(s)
- Paul M Riegelhaupt
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
13
|
Leslie T, Kaur H, Mohammed N, Kolaczinski K, Ord RL, Rowland M. Epidemic of Plasmodium falciparum malaria involving substandard antimalarial drugs, Pakistan, 2003. Emerg Infect Dis 2010; 15:1753-9. [PMID: 19891862 PMCID: PMC2857251 DOI: 10.3201/eid1511.090886] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Because of instability in eastern Afghanistan, new refugees crossed into the federally administered tribal areas of northwestern Pakistan in 2002. In 2003, we investigated an epidemic of Plasmodium falciparum malaria in 1 of the camps. Incidence was 100.4 cases/1,000 person-years; in other nearby camps it was only 2.1/1,000 person-years. Anopheline mosquitoes were found despite an earlier spray campaign. Documented clinical failures at the basic health unit prompted a drug resistance survey of locally manufactured sulfadoxine-pyrimethamine used for routine treatment. The in vivo failure rate was 28.5%. PCR analysis of the P. falciparum dihydrofolate reductase and dihyropteroate synthase genes showed no mutations associated with clinical failure. However, chemical analysis of the drug showed that it was substandard. As global incidence decreases and epidemics become more of a threat, enhanced quality assurance of control interventions is essential.
Collapse
Affiliation(s)
- Toby Leslie
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Verstrepen KJ, Fink GR. Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi. Annu Rev Genet 2009; 43:1-24. [PMID: 19640229 DOI: 10.1146/annurev-genet-102108-134156] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic microorganisms have evolved ingenious mechanisms to generate variability at their cell surface, permitting differential adherence, rapid adaptation to changing environments, and evasion of immune surveillance. Fungi such as Saccharomyces cerevisiae and the pathogen Candida albicans carry a family of mucin and adhesin genes that allow adhesion to various surfaces and tissues. Trypanosoma cruzi, T. brucei, and Plasmodium falciparum likewise contain large arsenals of different cell surface adhesion genes. In both yeasts and protozoa, silencing and differential expression of the gene family results in surface variability. Here, we discuss unexpected similarities in the structure and genomic location of the cell surface genes, the role of repeated DNA sequences, and the genetic and epigenetic mechanisms-all of which contribute to the remarkable cell surface variability in these highly divergent microbes.
Collapse
|
15
|
Global resistance surveillance: ensuring antimalarial efficacy in the future. Curr Opin Infect Dis 2009; 22:593-600. [DOI: 10.1097/qco.0b013e328332c4a7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Moormann AM, Sumba PO, Tisch DJ, Embury P, King CH, Kazura JW, John CC. Stability of interferon-gamma and interleukin-10 responses to Plasmodium falciparum liver stage antigen 1 and thrombospondin-related adhesive protein immunodominant epitopes in a highland population from Western Kenya. Am J Trop Med Hyg 2009; 81:489-495. [PMID: 19706920 PMCID: PMC3634720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Long-term planning to prevent malaria epidemics requires in-depth understanding of immunity to Plasmodium falciparum in areas of unstable transmission. Cytokine responses to immunodominant epitope peptides from liver stage antigen 1 (LSA-1) and thrombospondin-related adhesive protein (TRAP) were evaluated over a nine-month interval in adults and children in Kenya from a malaria epidemic-prone highland area after several years of low transmission. The proportion and magnitude of interferon-gamma ELISPOT responses and the proportion of interleukin-10 responders to LSA-1 and TRAP peptides tended to be higher in adults than children. Frequencies of interferon-gamma responders to these peptides were similar at the two time points, but responses were not consistently generated by the same persons. These results suggest that T cell memory to pre-erythrocytic stage malaria antigens is maintained but may be unavailable for consistent detection in peripheral blood, and that these antigens induce both pro-inflammatory and anti-inflammatory cytokine responses in this population.
Collapse
Affiliation(s)
- Ann M Moormann
- Center for Global Health and Diseases, and Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-7286, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Su XZ, Jiang H, Yi M, Mu J, Stephens RM. Large-scale genotyping and genetic mapping in Plasmodium parasites. THE KOREAN JOURNAL OF PARASITOLOGY 2009; 47:83-91. [PMID: 19488413 DOI: 10.3347/kjp.2009.47.2.83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/03/2009] [Indexed: 11/23/2022]
Abstract
The completion of many malaria parasite genomes provides great opportunities for genomewide characterization of gene expression and high-throughput genotyping. Substantial progress in malaria genomics and genotyping has been made recently, particularly the development of various microarray platforms for large-scale characterization of the Plasmodium falciparum genome. Microarray has been used for gene expression analysis, detection of single nucleotide polymorphism (SNP) and copy number variation (CNV), characterization of chromatin modifications, and other applications. Here we discuss some recent advances in genetic mapping and genomic studies of malaria parasites, focusing on the use of high-throughput arrays for the detection of SNP and CNV in the P. falciparum genome. Strategies for genetic mapping of malaria traits are also discussed.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
18
|
Mueller DH, Abeku TA, Okia M, Rapuoda B, Cox J. Costs of early detection systems for epidemic malaria in highland areas of Kenya and Uganda. Malar J 2009; 8:17. [PMID: 19149878 PMCID: PMC2636824 DOI: 10.1186/1475-2875-8-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 01/16/2009] [Indexed: 11/30/2022] Open
Abstract
Background Malaria epidemics cause substantial morbidity and mortality in highland areas of Africa. The costs of detecting and controlling these epidemics have not been explored adequately in the past. This study presents the costs of establishing and running an early detection system (EDS) for epidemic malaria in four districts in the highlands of Kenya and Uganda. Methods An economic costing was carried out from the health service provider's perspective in both countries. Staff time for data entry and processing, as well as supervising and coordinating EDS activities at district and national levels was recorded and associated opportunity costs estimated. A threshold analysis was carried out to determine the number of DALYs or deaths that would need to be averted in order for the EDS to be considered cost-effective. Results The total costs of the EDS per district per year ranged between US$ 14,439 and 15,512. Salaries were identified as major cost-drivers, although their relative contribution to overall costs varied by country. Costs of relaying surveillance data between facilities and district offices (typically by hand) were also substantial. Data from Uganda indicated that 4% or more of overall costs could potentially be saved by switching to data transfer via mobile phones. Based on commonly used thresholds, 96 DALYs in Uganda and 103 DALYs in Kenya would need to be averted annually in each district for the EDS to be considered cost-effective. Conclusion Results from this analysis suggest that EDS are likely to be cost-effective. Further studies that include the costs and effects of the health systems' reaction prompted by EDS will need to be undertaken in order to obtain comprehensive cost-effectiveness estimates.
Collapse
Affiliation(s)
- Dirk H Mueller
- Health Economics and Financing Programme, Department of Public Health and Policy, London School of Hygiene & Tropical Medicine, Keppel St,, London WC1E 7HT, UK.
| | | | | | | | | |
Collapse
|
19
|
Kristan M, Abeku TA, Beard J, Okia M, Rapuoda B, Sang J, Cox J. Variations in entomological indices in relation to weather patterns and malaria incidence in East African highlands: implications for epidemic prevention and control. Malar J 2008; 7:231. [PMID: 18983649 PMCID: PMC2585592 DOI: 10.1186/1475-2875-7-231] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 11/04/2008] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Malaria epidemics remain a significant public health issue in the East African highlands. The aim of this study was to monitor temporal variations in vector densities in relation to changes in meteorological factors and malaria incidence at four highland sites in Kenya and Uganda and to evaluate the implications of these relationships for epidemic prediction and control. METHODS Mosquitoes were collected weekly over a period of 47 months while meteorological variables and morbidity data were monitored concurrently. Mixed-effects Poisson regression was used to study the temporal associations of meteorological variables to vector densities and of the latter to incidence rates of Plasmodium falciparum. RESULTS Anopheles gambiae s.s. was the predominant vector followed by Anopheles arabiensis. Anopheles funestus was also found in low densities. Vector densities remained low even during periods of malaria outbreaks. Average temperature in previous month and rainfall in previous two months had a quadratic and linear relationship with An. gambiae s.s. density, respectively. A significant statistical interaction was also observed between average temperature and rainfall in the previous month. Increases in densities of this vector in previous two months showed a linear relationship with increased malaria incidence. CONCLUSION Although epidemics in highlands often appear to follow abnormal weather patterns, interactions between meteorological, entomological and morbidity variables are complex and need to be modelled mathematically to better elucidate the system. This study showed that routine entomological surveillance is not feasible for epidemic monitoring or prediction in areas with low endemicity. However, information on unusual increases in temperature and rainfall should be used to initiate rapid vector surveys to assess transmission risk.
Collapse
Affiliation(s)
- Mojca Kristan
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Tarekegn A Abeku
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - James Beard
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Michael Okia
- National Malaria Control Programme, Ministry of Health, P O Box 7272, Kampala, Uganda
| | - Beth Rapuoda
- Division of Malaria Control, Ministry of Health, P O Box 20750, Nairobi, Kenya
| | - James Sang
- Division of Malaria Control, Ministry of Health, P O Box 20750, Nairobi, Kenya
| | - Jonathan Cox
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
20
|
Iriemenam NC, Khirelsied AH, Nasr A, ElGhazali G, Giha HA, Elhassan A-Elgadir TM, Agab-Aldour AA, Montgomery SM, Anders RF, Theisen M, Troye-Blomberg M, Elbashir MI, Berzins K. Antibody responses to a panel of Plasmodium falciparum malaria blood-stage antigens in relation to clinical disease outcome in Sudan. Vaccine 2008; 27:62-71. [PMID: 18977268 DOI: 10.1016/j.vaccine.2008.10.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/03/2008] [Accepted: 10/12/2008] [Indexed: 12/31/2022]
Abstract
Despite many intervention programmes aimed at curtailing the scourge, malaria remains a formidable problem of human health. Immunity to asexual blood-stage of Plasmodium falciparum malaria is thought to be associated with protective antibodies of certain immunoglobulin classes and subclasses. We have analysed immunoglobulin G profiles to six leading blood-stage antigens in relation to clinical malaria outcome in a hospital-based study in Sudan. Our results revealed a linear association with anti-AMA-1-IgG1 antibodies in children <5 years and reduced risk of severe malaria, while the responses of the IgG3 antibodies against MSP-2, MSP-3, GLURP in individuals above 5 years were bi-modal. A dominance of IgG3 antibodies in >5 years was also observed. In the final combined model, the highest levels of IgG1 antibodies to AMA-1, GLURP-R0, and the highest levels of IgG3 antibodies to 3D7 MSP-2 were independently associated with protection from clinical malaria. The study provides further support for the potential importance of the studied merozoite vaccine candidate antigens as targets for parasite neutralizing antibody responses of the IgG1 and IgG3 subclasses.
Collapse
Affiliation(s)
- Nnaemeka C Iriemenam
- Department of Immunology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tatem AJ, Guerra CA, Kabaria CW, Noor AM, Hay SI. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity. Malar J 2008; 7:218. [PMID: 18954430 PMCID: PMC2586635 DOI: 10.1186/1475-2875-7-218] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 10/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The efficient allocation of financial resources for malaria control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of malaria risk and of the human populations it affects. Low population densities in rural areas and high population densities in urban areas can influence malaria transmission substantially. Here, the Malaria Atlas Project (MAP) global database of Plasmodium falciparum parasite rate (PfPR) surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining malaria risk maps with those of human population distribution in order to define populations at risk more accurately. METHODS First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as malaria free regions. Second, the potential of international travel and health guidelines (ITHGs) for identifying malaria free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. RESULTS Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 malaria free urban areas within endemic countries. Comparison of PfPR survey results showed significant differences between author-defined 'urban' and 'rural' designations in Africa, but not for the remainder of the malaria endemic world. The Global Rural Urban Mapping Project (GRUMP) urban extent mask proved most accurate for mapping these author-defined rural and urban locations, and further sub-divisions of urban extents into urban and peri-urban classes enabled the effects of high population densities on malaria transmission to be mapped and quantified. CONCLUSION The availability of detailed, contemporary census and urban extent data for the construction of coherent and accurate global spatial population databases is often poor. These known sources of uncertainty in population surfaces and urban maps have the potential to be incorporated into future malaria burden estimates. Currently, insufficient spatial information exists globally to identify areas accurately where population density is low enough to impact upon transmission. Medical intelligence does however exist to reliably identify malaria free cities. Moreover, in Africa, urban areas that have a significant effect on malaria transmission can be mapped.
Collapse
Affiliation(s)
- Andrew J Tatem
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| | | | | | | | | |
Collapse
|
22
|
Hayton K, Su XZ. Drug resistance and genetic mapping in Plasmodium falciparum. Curr Genet 2008; 54:223-39. [PMID: 18802698 DOI: 10.1007/s00294-008-0214-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 11/30/2022]
Abstract
Drug resistance in malaria parasites is a serious public health burden, and resistance to most of the antimalarial drugs currently in use has been reported. A better understanding of the molecular mechanisms of drug resistance is urgently needed to slow or circumvent the spread of resistance, to allow local treatments to be deployed more effectively to prolong the life span of the current drugs, and to develop new drugs. Although mutations in genes determining resistance to drugs such as chloroquine and the antifolates have been identified, we still do not have a full understanding of the resistance mechanisms, and genes that contribute to resistance to many other drugs remain to be discovered. Genetic mapping is a powerful tool for the identification of mutations conferring drug resistance in malaria parasites because most drug-resistant phenotypes were selected within the past 60 years. High-throughput methods for genotyping large numbers of single nucleotide polymorphisms (SNPs) and microsatellites (MSs) are now available or are being developed, and genome-wide association studies for malaria traits will soon become a reality. Here we discuss strategies and issues related to mapping genes contributing to drug resistance in the human malaria parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Karen Hayton
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
23
|
Gerritsen AAM, Kruger P, van der Loeff MFS, Grobusch MP. Malaria incidence in Limpopo Province, South Africa, 1998-2007. Malar J 2008; 7:162. [PMID: 18724866 PMCID: PMC2538535 DOI: 10.1186/1475-2875-7-162] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 08/25/2008] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is endemic in the low-altitude areas of the northern and eastern parts of South Africa with seasonal transmission. The aim of this descriptive study is to give an overview of the malaria incidence and mortality in Limpopo Province for the seasons 1998–1999 to 2006–2007 and to detect trends over time and place. Methods Routinely collected data on diagnosed malaria cases and deaths were available through the provincial malaria information system. In order to calculate incidence rates, population estimates (by sex, age and district) were obtained from Statistics South Africa. The Chi squared test for trend was used to detect temporal trends in malaria incidence over the seasons, and a trend in case fatality rate (CFR) by age group. The Chi squared test was used to calculate differences in incidence rate and CFR between both sexes and in incidence by age group. Results In total, 58,768 cases of malaria were reported, including 628 deaths. The mean incidence rate was 124.5 per 100,000 person-years and the mean CFR 1.1% per season. There was a decreasing trend in the incidence rate over time (p < 0.001), from 173.0 in 1998–1999 to 50.9 in 2006–2007. The CFR was fairly stable over the whole period. The mean incidence rate in males was higher than in females (145.8 versus 105.6; p < 0.001); the CFR (1.1%) was similar for both sexes. The incidence rate was lowest in 0–4 year olds (78.3), it peaked at the ages of 35–39 years (172.8), and decreased with age from 40 years (to 84.4 for those ≥ 60 years). The CFR increased with increasing age (to 3.8% for those ≥ 60 years). The incidence rate varied widely between districts; it was highest in Vhembe (328.2) and lowest in Sekhukhune (5.5). Conclusion Information from this study may serve as baseline data to determine the course and distribution of malaria in Limpopo province over time. In the study period there was a decreasing trend in the incidence rate. Furthermore, the study addresses the need for better data over a range of epidemic-prone settings.
Collapse
Affiliation(s)
- Annette A M Gerritsen
- Department of Public Health, University of Venda, Private Bag x5050, Thohoyandou, 0950, Limpopo Province, South Africa.
| | | | | | | |
Collapse
|
24
|
District-based malaria epidemic early warning systems in East Africa: perceptions of acceptability and usefulness among key staff at health facility, district and central levels. Soc Sci Med 2008; 67:292-300. [PMID: 18450352 DOI: 10.1016/j.socscimed.2008.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Indexed: 11/21/2022]
Abstract
Malaria epidemics represent a significant public health problem in the highlands of Africa. Many of these epidemics occur in low resource settings, where the development of an effective system for malaria surveillance has been a key challenge. Between 2001 and 2006, the Highland Malaria Project (HIMAL) established a programme to develop and test a district-based surveillance system for the early detection and control of malaria epidemics in four pilot districts in Kenya and Uganda. An innovative feature of the programme was the devolution of responsibility for the detection of epidemics from the central Ministry of Health to District Health Management Teams. The implementation of the programme offered the opportunity to test both the technical aspects of the system and to examine the practical issues relating to the operation of the programme in the context of the existing health system. To investigate the attitude of key staff towards the programme, and their perceptions of its impact on their working practices, interviews were carried out among 52 health staff at district level and in the Ministries of Health in Kenya and Uganda. The transfer of responsibility for the early detection of epidemics to the districts had resulted in perceptions of individual empowerment among district-based staff. This, together with improved support supervision, was a key factor in sustaining motivation and improved surveillance. The enhanced support supervision also produced capacity benefits that extended beyond improved malaria surveillance. However, these improvements occurred in the context of increased logistical support (the provision of transport, fuel and travel allowances) which the participants believed was essential to the functioning of an effective system. With this proviso, the district-based malaria early warning system was perceived to be manageable, effective and sustainable in the context of the current health system.
Collapse
|
25
|
Kester KE, Cummings JF, Ockenhouse CF, Nielsen R, Hall BT, Gordon DM, Schwenk RJ, Krzych U, Holland CA, Richmond G, Dowler MG, Williams J, Wirtz RA, Tornieporth N, Vigneron L, Delchambre M, Demoitie MA, Ballou WR, Cohen J, Heppner DG. Phase 2a trial of 0, 1, and 3 month and 0, 7, and 28 day immunization schedules of malaria vaccine RTS,S/AS02 in malaria-naïve adults at the Walter Reed Army Institute of Research. Vaccine 2008; 26:2191-202. [PMID: 18387719 DOI: 10.1016/j.vaccine.2008.02.048] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/14/2008] [Accepted: 02/22/2008] [Indexed: 11/17/2022]
Abstract
BACKGROUND Immunization with RTS,S/AS02 consistently protects some vaccinees against malaria infection in experimental challenges and in field trials. A brief immunization schedule against falciparum malaria would be compatible with the Expanded Programme on Immunization, or in combination with other prevention measures, interrupt epidemic malaria or protect individuals upon sudden travel to an endemic area. METHODS We conducted an open label, Phase 2a trial of two different full dose schedules of RTS,S/AS02 in 40 healthy malaria-naïve adults. Cohort 1 (n=20) was immunized on a 0, 1, and 3 month schedule and Cohort 2 (n=20) on a 0, 7, and 28 day schedule. Three weeks later, 38 vaccinees and 12 unimmunized infectivity controls underwent malaria challenge. RESULTS Both regimens had a good safety and tolerability profile. Peak GMCs of antibody to the circumsporozoite protein (CSP) were similar in Cohort 1 (78 microg/mL; 95% CI: 45-134) and Cohort 2 (65 microg/mL; 95% CI: 40-104). Vaccine efficacy for Cohort 1 was 45% (95% CI: 18-62%) and for Cohort 2, 39% (95% CI: 11-56%). Protected volunteers had a higher GMC of anti-CSP antibody (114 microg/mL) than did volunteers with a 2-day delay (70 microg/mL) or no delay (30 microg/mL) in the time to onset of parasitemia (Kruskal-Wallis, p=0.019). A trend was seen for higher CSP-specific IFN-gamma responses in PBMC from protected volunteers only in Cohort 1, but not in Cohort 2, for ex vivo and for cultured ELISPOT assays. CONCLUSION In malaria-naïve adults, the efficacy of three-dose RTS,S/AS02 regimens on either a 0, 1, and 3 month schedule or an abbreviated 0, 7, and 28 day schedule was not discernibly different from two previously reported trials of two-dose regimens given at 0, 1 month that conferred 47% (95% CI: -19 to 76%) protection and in another trial 42% (95% CI: 5-63%). A strong association of CSP-specific antibody with protection against malaria challenge is observed and confirms similar observations made in other studies. Subsequent trials of adjuvanted RTS,S in African children and infants on a 0, 1, and 2 month schedule have demonstrated a favorable safety and efficacy profile.
Collapse
Affiliation(s)
- Kent E Kester
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cox J, Abeku TA. Early warning systems for malaria in Africa: from blueprint to practice. Trends Parasitol 2007; 23:243-6. [PMID: 17412641 DOI: 10.1016/j.pt.2007.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 03/21/2007] [Indexed: 10/23/2022]
Abstract
Although the development of early warning systems for malaria has been advocated by international agencies and academic researchers for many years, practical progress in this area has been relatively modest. In two recent articles, Thomson et al. provide new evidence that models of malaria incidence that incorporate monitored or predicted climate can provide early warnings of epidemics one to five months in advance in semi-arid areas. Although the potential benefits of these models in terms of improved management of epidemics are clear, several technical and practical hurdles still need to be overcome before the models can be widely integrated into routine malaria-control strategies.
Collapse
Affiliation(s)
- Jonathan Cox
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | | |
Collapse
|