1
|
Henthorn CR, McCusker P, Clec’h WL, Chevalier FD, Anderson TJ, Zamanian M, Chan JD. Transcriptional phenotype of the anti-parasitic benzodiazepine meclonazepam on the blood fluke Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620505. [PMID: 39554156 PMCID: PMC11565718 DOI: 10.1101/2024.10.29.620505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
There are limited control measures for the disease schistosomiasis, despite the fact that infection with parasitic blood flukes affects hundreds of millions of people worldwide. The current treatment, praziquantel, has been in use since the 1980's and there is a concern that drug resistance may emerge with continued monotherapy. Given the need for additional antischistosomal drugs, we have re-visited an old lead, meclonazepam. In comparison to praziquantel, there has been relatively little work on its antiparasitic mechanism. Recent findings indicate that praziquantel and meclonazepam act through distinct receptors, making benzodiazepines a promising chemical series for further exploration. Previous work has profiled the transcriptional changes evoked by praziquantel treatment. Here, we examine in detail schistosome phenotypes evoked by in vitro and in vivo meclonazepam treatment. These data confirm that meclonazepam causes extensive tegument damage and directly kills parasites, as measured by pro-apoptotic caspase activation. In vivo meclonazepam exposure results in differential expression of many genes that are divergent in parasitic flatworms, as well as several gene products implicated in blood feeding and regulation of hemostasis in other parasites. Many of these transcripts are also differentially expressed with praziquantel exposure, which may reflect a common schistosome response to the two drugs. However, despite these similarities in drug response, praziquantel-resistant parasites retain susceptibility to meclonazepam's schistocidal effects. These data provide new insight into the mechanism of antischistosomal benzodiazepines, resolving similarities and differences with the current frontline therapy, praziquantel.
Collapse
Affiliation(s)
- Clair R. Henthorn
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - Paul McCusker
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Winka Le Clec’h
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Frédéric D. Chevalier
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Timothy J.C. Anderson
- Disease Intervention and Prevention program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - John D. Chan
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Global Health Institute, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
2
|
Riera-Ferrer E, Mazanec H, Mladineo I, Konik P, Piazzon MC, Kuchta R, Palenzuela O, Estensoro I, Sotillo J, Sitjà-Bobadilla A. An inside out journey: biogenesis, ultrastructure and proteomic characterisation of the ectoparasitic flatworm Sparicotyle chrysophrii extracellular vesicles. Parasit Vectors 2024; 17:175. [PMID: 38570784 PMCID: PMC10993521 DOI: 10.1186/s13071-024-06257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Helminth extracellular vesicles (EVs) are known to have a three-way communication function among parasitic helminths, their host and the host-associated microbiota. They are considered biological containers that may carry virulence factors, being therefore appealing as therapeutic and prophylactic target candidates. This study aims to describe and characterise EVs secreted by Sparicotyle chrysophrii (Polyopisthocotyla: Microcotylidae), a blood-feeding gill parasite of gilthead seabream (Sparus aurata), causing significant economic losses in Mediterranean aquaculture. METHODS To identify proteins involved in extracellular vesicle biogenesis, genomic datasets from S. chrysophrii were mined in silico using known protein sequences from Clonorchis spp., Echinococcus spp., Fasciola spp., Fasciolopsis spp., Opisthorchis spp., Paragonimus spp. and Schistosoma spp. The location and ultrastructure of EVs were visualised by transmission electron microscopy after fixing adult S. chrysophrii specimens by high-pressure freezing and freeze substitution. EVs were isolated and purified from adult S. chrysophrii (n = 200) using a newly developed ultracentrifugation-size-exclusion chromatography protocol for Polyopisthocotyla, and EVs were characterised via nanoparticle tracking analysis and tandem mass spectrometry. RESULTS Fifty-nine proteins involved in EV biogenesis were identified in S. chrysophrii, and EVs compatible with ectosomes were observed in the syncytial layer of the haptoral region lining the clamps. The isolated and purified nanoparticles had a mean size of 251.8 nm and yielded 1.71 × 108 particles · mL-1. The protein composition analysis identified proteins related to peptide hydrolases, GTPases, EF-hand domain proteins, aerobic energy metabolism, anticoagulant/lipid-binding, haem detoxification, iron transport, EV biogenesis-related, vesicle-trafficking and other cytoskeletal-related proteins. Several identified proteins, such as leucyl and alanyl aminopeptidases, calpain, ferritin, dynein light chain, 14-3-3, heat shock protein 70, annexin, tubulin, glutathione S-transferase, superoxide dismutase, enolase and fructose-bisphosphate aldolase, have already been proposed as target candidates for therapeutic or prophylactic purposes. CONCLUSIONS We have unambiguously demonstrated for the first time to our knowledge the secretion of EVs by an ectoparasitic flatworm, inferring their biogenesis machinery at a genomic and transcriptomic level, and by identifying their location and protein composition. The identification of multiple therapeutic targets among EVs' protein repertoire provides opportunities for target-based drug discovery and vaccine development for the first time in Polyopisthocotyla (sensu Monogenea), and in a fish-ectoparasite model.
Collapse
Affiliation(s)
- Enrique Riera-Ferrer
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Hynek Mazanec
- Laboratory of Helminthology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, (BC CAS), České Budějovice, Czech Republic
| | - Ivona Mladineo
- Laboratory of Functional Helminthology, Institute of Parasitology, Biology Centre Czech Academy of Sciences (BC CAS), České Budějovice, Czech Republic
| | - Peter Konik
- Faculty of Science, University of South Bohemia, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Roman Kuchta
- Laboratory of Helminthology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, (BC CAS), České Budějovice, Czech Republic
| | - Oswaldo Palenzuela
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain.
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| |
Collapse
|
3
|
Mashraqi MM, Alzamami A, Alturki NA, Almasaudi HH, Ahmed I, Alshamrani S, Basharat Z. Chimeric vaccine design against the conserved TonB-dependent receptor-like β-barrel domain from the outer membrane tbpA and hpuB proteins of Kingella kingae ATCC 23330. Front Mol Biosci 2023; 10:1258834. [PMID: 38053576 PMCID: PMC10694214 DOI: 10.3389/fmolb.2023.1258834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023] Open
Abstract
Kingella kingae is a Gram-negative bacterium that primarily causes pediatric infections such as septicemia, endocarditis, and osteoarticular infections. Its virulence is attributed to the outer membrane proteins having implications in bacterial adhesion, invasion, nutrition, and host tissue damage. TonB-dependent receptors (TBDRs) play an important role in nutrition and were previously implicated as vaccine targets in other bacteria. Therefore, we targeted the conserved β-barrel TBDR domain of these proteins for designing a vaccine construct that could elicit humoral and cellular immune responses. We used bioinformatic tools to mine TBDR-containing proteins from K. kingae ATCC 23330 and then predict B- and T-cell epitopes from their conserved β-barrel TDR domain. A chimeric vaccine construct was designed using three antigenic epitopes, covering >98% of the world population and capable of inciting humoral and adaptive immune responses. The final construct elicited a robust immune response. Docking and dynamics simulation showed good binding affinity of the vaccine construct to various receptors of the immune system. Additionally, the vaccine was predicted to be safe and non-allergenic, making it a promising candidate for further development. In conclusion, our study demonstrates the potential of immunoinformatics approaches in designing chimeric vaccines against K. kingae infections. The chimeric vaccine we designed can serve as a blueprint for future experimental studies to develop an effective vaccine against this pathogen, which can serve as a potential strategy to prevent K. kingae infections.
Collapse
Affiliation(s)
- Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan H. Almasaudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
4
|
Rojas-Pirela M, Kemmerling U, Quiñones W, Michels PAM, Rojas V. Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases? Biomolecules 2023; 13:biom13040599. [PMID: 37189347 DOI: 10.3390/biom13040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Trypanosomiases are a group of tropical diseases that have devastating health and socio-economic effects worldwide. In humans, these diseases are caused by the pathogenic kinetoplastids Trypanosoma brucei, causing African trypanosomiasis or sleeping sickness, and Trypanosoma cruzi, causing American trypanosomiasis or Chagas disease. Currently, these diseases lack effective treatment. This is attributed to the high toxicity and limited trypanocidal activity of registered drugs, as well as resistance development and difficulties in their administration. All this has prompted the search for new compounds that can serve as the basis for the development of treatment of these diseases. Antimicrobial peptides (AMPs) are small peptides synthesized by both prokaryotes and (unicellular and multicellular) eukaryotes, where they fulfill functions related to competition strategy with other organisms and immune defense. These AMPs can bind and induce perturbation in cell membranes, leading to permeation of molecules, alteration of morphology, disruption of cellular homeostasis, and activation of cell death. These peptides have activity against various pathogenic microorganisms, including parasitic protists. Therefore, they are being considered for new therapeutic strategies to treat some parasitic diseases. In this review, we analyze AMPs as therapeutic alternatives for the treatment of trypanosomiases, emphasizing their possible application as possible candidates for the development of future natural anti-trypanosome drugs.
Collapse
|
5
|
Sidorova TV, Kutyrev IA, Khabudaev KV, Sukhanova LV, Zheng Y, Dugarov ZN, Mazur OE. Comparative transcriptomic analysis of the larval and adult stages of Dibothriocephalus dendriticus (Cestoda: Diphyllobothriidea). Parasitol Res 2023; 122:145-156. [PMID: 36370234 DOI: 10.1007/s00436-022-07708-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
Tapeworms of the genus Dibothriocephalus are widely distributed throughout the world, some of which are agents of human diphyllobothriasis, one of the most important fish-borne zoonoses caused by a cestode parasite. Genomic and transcriptomic data can be used to develop future diagnostic tools and epidemiological studies. The present work focuses on a comparative analysis of the transcriptomes of adult and plerocercoid D. dendriticus and the identification of their differentially expressed genes (DEGs). Transcriptome assembly and analysis yielded and annotated 35,129 unigenes, noting that 16,568 (47%) unigenes were not annotated in known databases, which may indicate a unique set of expressed transcripts for D. dendriticus. A total of 8022 differentially expressed transcripts were identified, including 3225 upregulated and 4797 downregulated differentially expressed transcripts from the plerocercoid and adult animals. The analysis of DEGs has shown that among the most differentially expressed genes, there are important genes characteristic of each stage. Thus, several genes are characteristic of D. dendriticus plerocercoids, including fatty acid-binding protein and ferritin. Among the most highly expressed DEGs of the adult stage of D. dendriticus is the Kunitz-type serine protease inhibitor, in two putative isoforms. The analyses of GO and KEGG metabolic pathways revealed that a large number of the DEGs of D. dendriticus are associated with the biosynthesis of various substances such as arginine and folate, as well as with various metabolic pathways such as galactose metabolism, selenocompound metabolism, and phosphonate and phosphinate metabolism. This will contribute to further research aimed at identifying targets for new generation drugs and the development of specific vaccines.
Collapse
Affiliation(s)
- Tuyana Valeryevna Sidorova
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, 670047, Ulan-Ude, Russia.,Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Ivan Alexandrovich Kutyrev
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, 670047, Ulan-Ude, Russia.
| | | | | | - Yadong Zheng
- Zhejiang A&F University, Zhejiang Province, Hangzhou, China
| | - Zhargal Nimaevich Dugarov
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, 670047, Ulan-Ude, Russia
| | - Olga Evgenievna Mazur
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, 670047, Ulan-Ude, Russia
| |
Collapse
|
6
|
Capelli-Peixoto J, Saelao P, Johnson WC, Kappmeyer L, Reif KE, Masterson HE, Taus NS, Suarez CE, Brayton KA, Ueti MW. Comparison of high throughput RNA sequences between Babesia bigemina and Babesia bovis revealed consistent differential gene expression that is required for the Babesia life cycle in the vertebrate and invertebrate hosts. Front Cell Infect Microbiol 2022; 12:1093338. [PMID: 36601308 PMCID: PMC9806345 DOI: 10.3389/fcimb.2022.1093338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Bovine babesiosis caused by Babesia bigemina and Babesia bovis is an economically important disease that affects cattle worldwide. Both B. bigemina and B. bovis are transovarially transmitted by Rhipicephalus ticks. However, little is known regarding parasite gene expression during infection of the tick vector or mammalian host, which has limited the development of effective control strategies to alleviate the losses to the cattle industry. To understand Babesia gene regulation during tick and mammalian host infection, we performed high throughput RNA-sequencing using samples collected from calves and Rhipicephalus microplus ticks infected with B. bigemina. We evaluated gene expression between B. bigemina blood-stages and kinetes and compared them with previous B. bovis RNA-seq data. The results revealed similar patterns of gene regulation between these two tick-borne transovarially transmitted Babesia parasites. Like B. bovis, the transcription of several B. bigemina genes in kinetes exceeded a 1,000-fold change while a few of these genes had a >20,000-fold increase. To identify genes that may have important roles in B. bigemina and B. bovis transovarial transmission, we searched for genes upregulated in B. bigemina kinetes in the genomic datasets of B. bovis and non-transovarially transmitted parasites, Theileria spp. and Babesia microti. Using this approach, we identify genes that may be potential markers for transovarial transmission by B. bigemina and B. bovis. The findings presented herein demonstrate common Babesia genes linked to infection of the vector or mammalian host and may contribute to elucidating strategies used by the parasite to complete their life cycle.
Collapse
Affiliation(s)
- Janaina Capelli-Peixoto
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,*Correspondence: Janaina Capelli-Peixoto,
| | - Perot Saelao
- Veterinary Pest Genetic Research Unit, USDA-ARS, Kerrville, TX, United States
| | | | - Lowell Kappmeyer
- Animal Disease Research Unit, USDA-ARS, Pullman, WA, United States
| | - Kathryn E. Reif
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Hayley E. Masterson
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Naomi S. Taus
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,Animal Disease Research Unit, USDA-ARS, Pullman, WA, United States
| | - Carlos E. Suarez
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,Animal Disease Research Unit, USDA-ARS, Pullman, WA, United States
| | - Kelly A. Brayton
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Massaro W. Ueti
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,Animal Disease Research Unit, USDA-ARS, Pullman, WA, United States
| |
Collapse
|
7
|
Kawase O, Iwaya H, Asano Y, Inoue H, Kudo S, Sasahira M, Azuma N, Kondoh D, Ichikawa-Seki M, Xuan X, Sakamoto K, Okamoto H, Nakadate H, Inoue W, Saito I, Narita M, Sekii K, Kobayashi K. Identification of novel yolk ferritins unique to planarians: planarians supply aluminum rather than iron to vitellaria in egg capsules. Cell Tissue Res 2021; 386:391-413. [PMID: 34319433 DOI: 10.1007/s00441-021-03506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
All animals, other than Platyhelminthes, produce eggs containing yolk, referred to as "entolecithal" eggs. However, only Neoophora, in the phylum Platyhelminthes, produce "ectolecithal" eggs (egg capsules), in which yolk is stored in the vitelline cells surrounding oocytes. Vitelline cells are derived from vitellaria (yolk glands). Vitellaria are important reproductive organs that may be studied to elucidate unique mechanisms that have been evolutionarily conserved within Platyhelminthes. Currently, only limited molecular level information is available on vitellaria. The current study identified major vitellaria-specific proteins in a freshwater planarian, Dugesia ryukyuensis, using peptide mass fingerprinting (PMF) and expression analyses. Amino acid sequence analysis and orthology analysis via OrthoFinder ver.2.3.8 indicated that the identified major vitellaria-specific novel yolk ferritins were conserved in planarians (Tricladida). Because ferritins play an important role in Fe (iron) storage, we examined the metal elements contained in vitellaria and ectolecithal eggs, using non-heme iron histochemistry, elemental analysis based on inductively coupled plasma mass spectrometry and transmission electron microscopy- energy-dispersive X-ray spectroscopy analysis. Interestingly, vitellaria and egg capsules contained large amounts of aluminum (Al), but not Fe. The knockdown of the yolk ferritin genes caused a decrease in the volume of egg capsules, abnormality in juveniles, and increase in Al content in vitellaria. Yolk ferritins of D. ryukyuensis may regulate Al concentration in vitellaria via their pooling function of Al and protect the egg capsule production and normal embryogenesis from Al toxicity.
Collapse
Affiliation(s)
- Osamu Kawase
- Department of Biology, Premedical Sciences, Dokkyo Medical University, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Hisashi Iwaya
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiromoto Inoue
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Seiya Kudo
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Motoki Sasahira
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Nobuyuki Azuma
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Daisuke Kondoh
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inaba-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Madoka Ichikawa-Seki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inaba-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Kimitoshi Sakamoto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hikaru Okamoto
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hinaki Nakadate
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Wataru Inoue
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Ikuma Saito
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Miyu Narita
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Kiyono Sekii
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Kazuya Kobayashi
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
8
|
Vorel J, Cwiklinski K, Roudnický P, Ilgová J, Jedličková L, Dalton JP, Mikeš L, Gelnar M, Kašný M. Eudiplozoon nipponicum (Monogenea, Diplozoidae) and its adaptation to haematophagy as revealed by transcriptome and secretome profiling. BMC Genomics 2021; 22:274. [PMID: 33858339 PMCID: PMC8050918 DOI: 10.1186/s12864-021-07589-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of physiological processes involved in host–parasite interaction, such as evasion of the immune system and its regulation, digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of expressed genes and proteins secreted by the adult stage of Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio). Results RNA-seq raw reads (324,941 Roche 454 and 149,697,864 Illumina) were generated, de novo assembled, and filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins), feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK7, tetraspanin) and ability to digest host macromolecules (cathepsins B, D, L1). Conclusions In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their interactions with the fish hosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07589-z.
Collapse
Affiliation(s)
- Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jana Ilgová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.,Department of Zoology and Fisheries, Centre of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
9
|
King M, Carson J, Stewart MT, Gobert GN. Revisiting the Schistosoma japonicum life cycle transcriptome for new insights into lung schistosomula development. Exp Parasitol 2021; 223:108080. [PMID: 33548219 DOI: 10.1016/j.exppara.2021.108080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022]
Abstract
Schistosome parasites are complex trematode blood flukes responsible for the disease schistosomiasis; a global health concern prevalent in many tropical and sub-tropical countries. While established transcriptomic databases are accessed ad hoc to facilitate studies characterising specific genes or gene families, a more comprehensive systematic updating of gene annotation and survey of the literature to aid in annotation and context is rarely addressed. We have reanalysed an online transcriptomic dataset originally published in 2009, where seven life cycle stages of Schistosoma japonicum were examined. Using the online pathway analysis tool Reactome, we have revisited key data from the original study. A key focus of this study was to improve the interpretation of the gene expression profile of the developmental lung-stage schistosomula, since it is one of the principle targets for worm elimination. Highly enriched transcripts, associated with lung schistosomula, were related to a number of important biological pathways including host immune evasion, energy metabolism and parasitic development. Revisiting large transcriptomic databases should be considered in the context of substantial new literature. This approach could aid in the improved understanding of the molecular basis of parasite biology. This may lead to the identification of new targets for diagnosis and therapies for schistosomes, and other helminths.
Collapse
Affiliation(s)
- Meághan King
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Jack Carson
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Michael T Stewart
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
10
|
Huwait EA, AL-Ghamdi MA, Ghattas MH, Hinnis AR, El-Maaty DAA, Abo-Elmatty DM, Abdel-Hamed AR. Role of heme oxygenase-1, cytokines, and vascular endothelial growth factor in murine Schistosoma mansoni. Int J Health Sci (Qassim) 2021; 15:22-28. [PMID: 33456439 PMCID: PMC7786444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES Among tropical diseases, schistosomiasis caused by Schistosoma mansoni is the second major cause of morbidity and mortality worldwide. Inflammation was considered as an adverse event that contributes to the pathology associated with schistosomiasis. Heme oxygenase-1 (HO-1) and vascular endothelial growth factor (VEGF) have been implicated in the process of angiogenesis. The current study aimed to evaluate the effect of S. mansoni infection on HO-1 gene expression, IL-4, IL-12, and VEGF to address the role of these factors in the pathogenesis of schistosomiasis. METHODS Thirty mice divided equally into three groups comprised a non-infected control group and two S. mansoni-infected groups. Infected animals were studied at 8 and 12 weeks post-infection. Serum IL-4, IL-12, and VEGF were measured. HO-1 mRNA was detected by RT-PCR of liver homogenates and HO activity was assessed as percentage of carboxy hemoglobin. RESULTS S. mansoni-infected mice showed a progressive increase in serum IL-4 and VEGF and decrease in IL-12 levels. In addition, HO-1 expression and activity were increased in infected mice compared to control group with the maximum increase at egg deposition stage. CONCLUSION Our results suggested that the body response to acute stage of S. mansoni infection by elevating the expression of the stress gene HO-1 and that VEGF may serve as a new indicator of progression of S. mansoni associated angiogenesis which regulates granuloma and/or fibrosis development in the liver of infected mice. Understanding the role of HO-1 and VEGF in pathogenesis of S. mansoni may provide a new pharmacological target.
Collapse
Affiliation(s)
- Etimad A. Huwait
- Department of Biochemistry, Science College, King Abdulaziz University, Saudi Arabia
| | - Maryam A. AL-Ghamdi
- Department of Biochemistry, Science College, King Abdulaziz University, Saudi Arabia
| | - Maivel H. Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Adel R. Hinnis
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Dalia A. Abo El-Maaty
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt,
Address for correspondence: Asmaa R. Abdel-Hamed, Lecturer of Biochemistry, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt. E-mail:
| |
Collapse
|
11
|
Rosa BA, Choi YJ, McNulty SN, Jung H, Martin J, Agatsuma T, Sugiyama H, Le TH, Doanh PN, Maleewong W, Blair D, Brindley PJ, Fischer PU, Mitreva M. Comparative genomics and transcriptomics of 4 Paragonimus species provide insights into lung fluke parasitism and pathogenesis. Gigascience 2020; 9:giaa073. [PMID: 32687148 PMCID: PMC7370270 DOI: 10.1093/gigascience/giaa073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/19/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Paragonimus spp. (lung flukes) are among the most injurious foodborne helminths, infecting ∼23 million people and subjecting ∼292 million to infection risk. Paragonimiasis is acquired from infected undercooked crustaceans and primarily affects the lungs but often causes lesions elsewhere including the brain. The disease is easily mistaken for tuberculosis owing to similar pulmonary symptoms, and accordingly, diagnostics are in demand. RESULTS We assembled, annotated, and compared draft genomes of 4 prevalent and distinct Paragonimus species: Paragonimus miyazakii, Paragonimus westermani, Paragonimus kellicotti, and Paragonimus heterotremus. Genomes ranged from 697 to 923 Mb, included 12,072-12,853 genes, and were 71.6-90.1% complete according to BUSCO. Orthologous group analysis spanning 21 species (lung, liver, and blood flukes, additional platyhelminths, and hosts) provided insights into lung fluke biology. We identified 256 lung fluke-specific and conserved orthologous groups with consistent transcriptional adult-stage Paragonimus expression profiles and enriched for iron acquisition, immune modulation, and other parasite functions. Previously identified Paragonimus diagnostic antigens were matched to genes, providing an opportunity to optimize and ensure pan-Paragonimus reactivity for diagnostic assays. CONCLUSIONS This report provides advances in molecular understanding of Paragonimus and underpins future studies into the biology, evolution, and pathogenesis of Paragonimus and related foodborne flukes. We anticipate that these novel genomic and transcriptomic resources will be invaluable for future lung fluke research.
Collapse
Affiliation(s)
- Bruce A Rosa
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Young-Jun Choi
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Samantha N McNulty
- The McDonnell Genome Institute at Washington University, School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| | - Hyeim Jung
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - John Martin
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Takeshi Agatsuma
- Department of Environmental Health Sciences, Kochi Medical School, Kohasu, Oko-cho 185-1, Nankoku, Kochi, 783-8505, Japan
| | - Hiromu Sugiyama
- Laboratory of Helminthology, Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Thanh Hoa Le
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
| | - Pham Ngoc Doanh
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
| | - Wanchai Maleewong
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Paul J Brindley
- Departments of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, and Pathology School of Medicine & Health Sciences, George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037, USA
| | - Peter U Fischer
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Makedonka Mitreva
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
- The McDonnell Genome Institute at Washington University, School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| |
Collapse
|
12
|
Wangwiwatsin A, Protasio AV, Wilson S, Owusu C, Holroyd NE, Sanders MJ, Keane J, Doenhoff MJ, Rinaldi G, Berriman M. Transcriptome of the parasitic flatworm Schistosoma mansoni during intra-mammalian development. PLoS Negl Trop Dis 2020; 14:e0007743. [PMID: 32374726 PMCID: PMC7263636 DOI: 10.1371/journal.pntd.0007743] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/01/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Schistosomes are parasitic blood flukes that survive for many years within the mammalian host vasculature. How the parasites establish a chronic infection in the hostile bloodstream environment, whilst evading the host immune response is poorly understood. The parasite develops morphologically and grows as it migrates to its preferred vascular niche, avoiding or repairing damage from the host immune system. In this study, we investigated temporal changes in gene expression during the intra-mammalian development of Schistosoma mansoni. RNA-seq data were analysed from parasites developing in the lung through to egg-laying mature adult worms, providing a comprehensive picture of in vivo intra-mammalian development. Remarkably, genes involved in signalling pathways, developmental control, and adaptation to oxidative stress were up-regulated in the lung stage. The data also suggested a potential role in immune evasion for a previously uncharacterised gene. This study not only provides a large and comprehensive data resource for the research community, but also reveals new directions for further characterising host-parasite interactions that could ultimately lead to new control strategies for this neglected tropical disease pathogen.
Collapse
Affiliation(s)
- Arporn Wangwiwatsin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Anna V. Protasio
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge, United Kingdom
| | - Shona Wilson
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge, United Kingdom
| | - Christian Owusu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nancy E. Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Mandy J. Sanders
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jacqueline Keane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Mike J. Doenhoff
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
13
|
Pirovich DB, Da'dara AA, Skelly PJ. Schistosoma mansoni glyceraldehyde-3-phosphate dehydrogenase enhances formation of the blood-clot lysis protein plasmin. Biol Open 2020; 9:bio050385. [PMID: 32098782 PMCID: PMC7104858 DOI: 10.1242/bio.050385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Schistosomes are intravascular blood flukes that cause the parasitic disease schistosomiasis. In agreement with Schistosoma mansoni (Sm) proteomic analysis, we show here that the normally intracellular glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is also found at the parasite surface; live worms from all intravascular life stages display GAPDH activity. Suppressing GAPDH gene expression using RNA interference significantly lowers this live worm surface activity. Medium in which the worms are cultured overnight displays essentially no activity, showing that the enzyme is not shed or excreted but remains associated with the worm surface. Immunolocalization experiments confirm that the enzyme is highly expressed in the parasite tegument (skin). Surface activity in schistosomula amounts to ∼8% of that displayed by equivalent parasite lysates. To address the functional role of SmGAPDH, we purified the protein following its expression in Escherichiacoli strain DS113. The recombinant protein displays optimal enzymatic activity at pH 9.2, shows robust activity at the temperature of the parasite's hosts, and has a Michaelis-Menten constant for glyceraldehyde-3-phosphate (GAP) of 1.4 mM±0.24. We show that recombinant SmGAPDH binds plasminogen (PLMG) and promotes PLMG conversion to its active form (plasmin) in a dose response in the presence of tissue plasminogen activator. Since plasmin is a key mediator of thrombolysis, our results support the hypothesis that SmGAPDH, a host-interactive tegumental protein that can enhance PLMG activation, could help degrade blood clots around the worms in the vascular microenvironment and thus promote parasite survival in vivoThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- David B Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
14
|
Abdelgelil NH, Abdellatif MZM, Abdel-Hafeez EH, Belal US, Mohamed RM, Abdel-Razik ARH, Hassanin KMA, Abdel-Wahab A. Effects of iron chelating agent on Schistosoma mansoni infected murine model. Biomed Pharmacother 2018; 109:28-38. [PMID: 30391706 DOI: 10.1016/j.biopha.2018.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/29/2022] Open
Abstract
Schistosomiasis is one of the major health problems in many tropical and developing countries. Infection takes place once cerceriae penetrate human skin, then it changed into schistosomules. The schistosomules takes iron in the form of heme from host's haemoglobin, ferritin and transferrin. Iron is a vital element not only for growth and sexual maturity of schistosomules to adults but also for oogenesis. Since the trapped eggs are the pathological causative agent for most of pathogenesis and complications, the current work was designed to study the effects of early deprivation of schistosomules from iron in the host (in vivo) by chelating it with deferoxamine (DFO). The iron chelation has effects on growth, maturity and egg deposition, as well as it has ameliorative effects on liver pathology such as hepatic fibrosis. Mice were classified into four groups, normal control, DFO treated only, Schistosoma mansoni (S. mansoni) infected DFO untreated and S. mansoni infected DFO treated. The infected DFO treated mice showed significant reduction in fecal egg excretion with increased percentage of dead eggs and this was accompanied with a significant reduction of both total worm burden and hepatic egg load and increased dead egg percentage compared to the infected DFO untreated group. There was also a significant reduction in both serum and hepatic tissue ferritin concentrations in the infected DFO treated mice in comparison to the infected DFO untreated group. Additionally, a significant decrease in number and size of granulomas with subsequent improvement of liver fibrosis was recorded in the infected DFO treated group. This immunopathology was also associated with significant up regulation of Interlukine12 (IL12), Interferon gamma (IFN γ) and significant down regulation in interleukin4 (IL4), interleukin10 (IL10) in both serum and hepatic tissue in the infected DFO treated compared to other groups. Entirely, DFO succeeded in diminishing the growth, maturity and fecundity of S. mansoni with a subsequent improvement of hepatic pathology. As a result of the above findings, it can be concluded that DFO could be considered as a useful treatment against schistosomal infection.
Collapse
Affiliation(s)
- Noha H Abdelgelil
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Manal Z M Abdellatif
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Ekhlas H Abdel-Hafeez
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Usama S Belal
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Rabie M Mohamed
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni - Suef University, Beni - Suef 62511, Egypt
| | - Kamel M A Hassanin
- Department of Biochemistry, Faculty of Veterinary Medicine, Minia University, Minia 61519, Egypt
| | - Ahmed Abdel-Wahab
- Department of Physiology, Faculty of Veterinary Medicine, Minia University, Minia 61519, Egypt.
| |
Collapse
|
15
|
Ballesteros C, Geary JF, Mackenzie CD, Geary TG. Characterization of Divalent Metal Transporter 1 (DMT1) in Brugia malayi suggests an intestinal-associated pathway for iron absorption. Int J Parasitol Drugs Drug Resist 2018; 8:341-349. [PMID: 29957332 PMCID: PMC6038845 DOI: 10.1016/j.ijpddr.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023]
Abstract
Lymphatic filariasis and onchocerciasis are neglected parasitic diseases which pose a threat to public health in tropical and sub-tropical regions. Strategies for control and elimination of these diseases by mass drug administration (MDA) campaigns are designed to reduce symptoms of onchocerciasis and transmission of both parasites to eventually eliminate the burden on public health. Drugs used for MDA are predominantly microfilaricidal, and prolonged rounds of treatment are required for eradication. Understanding parasite biology is crucial to unravelling the complex processes involved in host-parasite interactions, disease transmission, parasite immune evasion, and the emergence of drug resistance. In nematode biology, large gaps still exist in our understanding of iron metabolism, iron-dependent processes and their regulation. The acquisition of iron from the host is a crucial determinant of the success of a parasitic infection. Here we identify a filarial ortholog of Divalent Metal Transporter 1 (DMT1), a member of a highly conserved family of NRAMP proteins that play an essential role in the transport of ferrous iron in many species. We cloned and expressed the B. malayi NRAMP ortholog in the iron-deficient fet3fet4 strain of Saccharomyces cerevisiae, performed qPCR to estimate stage-specific expression, and localized expression of this gene by immunohistochemistry. Results from functional iron uptake assays showed that expression of this gene in the iron transport-deficient yeast strain significantly rescued growth in low-iron medium. DMT1 was highly expressed in adult female and male B. malayi and Onchocerca volvulus. Immunolocalization revealed that DMT1 is expressed in the intestinal brush border, lateral chords, and reproductive tissues of males and females, areas also inhabited by Wolbachia. We hypothesize based on our results that DMT1 in B. malayi functions as an iron transporter. The presence of this transporter in the intestine supports the hypothesis that iron acquisition by adult females requires oral ingestion and suggests that the intestine plays a functional role in at least some aspects of nutrient uptake.
Collapse
Affiliation(s)
- Cristina Ballesteros
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - James F Geary
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Charles D Mackenzie
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Timothy G Geary
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
16
|
Muller-Steffner H, Jacques SA, Kuhn I, Schultz MD, Botta D, Osswald P, Maechling C, Lund FE, Kellenberger E. Efficient Inhibition of SmNACE by Coordination Complexes Is Abolished by S. mansoni Sequestration of Metal. ACS Chem Biol 2017; 12:1787-1795. [PMID: 28481502 DOI: 10.1021/acschembio.7b00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SmNACE is a NAD catabolizing enzyme expressed on the outer tegument of S. mansoni, a human parasite that is one of the major agents of the neglected tropical disease schistosomiasis. Recently, we identified aroylhydrazone derivatives capable of inhibiting the recombinant form of the enzyme with variable potency (IC50 ranging from 88 μM to 33 nM). In the present study, we investigated the mechanism of action of the least potent micromolar inhibitor (compound 1) and the most potent nanomolar inhibitor (compound 2) in the series on both the recombinant and native SmNACE enzymes. Using mass spectroscopy, spectrophotometry, and activity assays under different experimental conditions, we demonstrated that the >3 log gain in potency against recombinant SmNACE by this class of compounds is dependent on the formation of a coordination complex with metal cations, such as Ni(II), Zn(II), and Fe(II), that are loaded on the protein surface. Testing the compounds on live parasites, we observed that only the weak micromolar compound 1 was active on the native enzyme. We showed that S. mansoni effectively sequesters the metal from the coordination complex, resulting in the loss of inhibitory activity of the potent nanomolar compound 2. Importantly, the modeling of the transition complex between Zn(II) and compound 2 enabled the discovery of a new metal-independent aroylhydrazone analogue, which is now the most potent and selective inhibitor of native SmNACE known.
Collapse
Affiliation(s)
- Hélène Muller-Steffner
- Laboratoire des Systèmes Chimiques Fonctionnels, CAMB UMR 7199 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| | - Sylvain A. Jacques
- Laboratoire d’Innovation Thérapeutique, LIT UMR 7200 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| | - Isabelle Kuhn
- Laboratoire des Systèmes Chimiques Fonctionnels, CAMB UMR 7199 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| | - Michael D. Schultz
- Department
of Microbiology, University of Alabama at Birmingham, 276 BBRB Box
11, 1720 Second Avenue South, Birmingham, Alabama, United States
| | - Davide Botta
- Department
of Microbiology, University of Alabama at Birmingham, 276 BBRB Box
11, 1720 Second Avenue South, Birmingham, Alabama, United States
| | - Paul Osswald
- Laboratoire des Systèmes Chimiques Fonctionnels, CAMB UMR 7199 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| | - Clarisse Maechling
- Laboratoire d’Innovation Thérapeutique, LIT UMR 7200 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| | - Frances E. Lund
- Department
of Microbiology, University of Alabama at Birmingham, 276 BBRB Box
11, 1720 Second Avenue South, Birmingham, Alabama, United States
| | - Esther Kellenberger
- Laboratoire d’Innovation Thérapeutique, LIT UMR 7200 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| |
Collapse
|
17
|
Xiao SH, Sun J. Schistosoma hemozoin and its possible roles. Int J Parasitol 2016; 47:171-183. [PMID: 28012717 DOI: 10.1016/j.ijpara.2016.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022]
Abstract
More than 95years ago Schistosoma pigment had been deemed as a degradation product of haemoglobin. Until the 1950s, scientists initiated to pay attention to understand the hematophagous habit of schistosomes, and to study the degradation of haemoglobin as well as the formation of hemozoin inside the gut of the worms. For a long time, the formation of hemozoin in both Plasmodium and in Schistosoma was considered to be the major route of heme detoxification, and hemozoin served a role in waste disposal. At the beginning of this century, the chemical structure of Schistosoma pigment was confirmed to be identical to that of malarial pigment (hemozoin) and its synthetic analogue, β-hematin. Since then, studies on Schistosoma hemozoin have been investigated by some workers and the results showed that Schistosoma hemozoin may play important roles in pathogenicity, immune modulation, iron supply for egg formation, and interaction with some anti-schistosomal drugs. In this review, we briefly review and discuss the hematophagous habit of schistosomes, degradation of haemoglobin, formation of hemozoin in the worm gut, and possible roles of hemozoin.
Collapse
Affiliation(s)
- Shu-Hua Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Shanghai 200025, China.
| | - Jun Sun
- Institute for Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
18
|
Influence of Schistosoma mansoni and Hookworm Infection Intensities on Anaemia in Ugandan Villages. PLoS Negl Trop Dis 2015; 9:e0004193. [PMID: 26513151 PMCID: PMC4626098 DOI: 10.1371/journal.pntd.0004193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The association of anaemia with intestinal schistosomiasis and hookworm infections are poorly explored in populations that are not limited to children or pregnant women. METHODS We sampled 1,832 individuals aged 5-90 years from 30 communities in Mayuge District, Uganda. Demographic, village, and parasitological data were collected. Infection risk factors were compared in ordinal logistic regressions. Anaemia and infection intensities were analyzed in multilevel models, and population attributable fractions were estimated. FINDINGS Household and village-level predictors of Schistosoma mansoni and hookworm were opposite in direction or significant for single infections. S. mansoni was found primarily in children, whereas hookworm was prevalent amongst the elderly. Anaemia was more prevalent in individuals with S. mansoni and increased by 2.86 fold (p-value<0.001) with heavy S. mansoni infection intensity. Individuals with heavy hookworm were 1.65 times (p-value = 0.008) more likely to have anaemia than uninfected participants. Amongst individuals with heavy S. mansoni infection intensity, 32.0% (p-value<0.001) of anaemia could be attributed to S. mansoni. For people with heavy hookworm infections, 23.7% (p-value = 0.002) of anaemia could be attributed to hookworm. A greater fraction of anaemia (24.9%, p-value = 0.002) was attributable to heavy hookworm infections in adults (excluding pregnant women) as opposed to heavy hookworm infections in school-aged children and pregnant women (20.2%, p-value = 0.001). CONCLUSION Community-based surveys captured anaemia in children and adults affected by S. mansoni and hookworm infections. For areas endemic with schistosomiasis or hookworm infections, WHO guidelines should include adults for treatment in helminth control programmes.
Collapse
|
19
|
Toh SQ, Gobert GN, Malagón Martínez D, Jones MK. Haem uptake is essential for egg production in the haematophagous blood fluke of humans, Schistosoma mansoni. FEBS J 2015; 282:3632-46. [PMID: 26153121 DOI: 10.1111/febs.13368] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/31/2015] [Accepted: 07/01/2015] [Indexed: 11/28/2022]
Abstract
Schistosomes ingest host erythrocytes, liberating large quantities of haem. Despite its toxicity, haem is an essential factor for numerous biological reactions, and may be an important iron source for these helminths. We used a fluorescence haem analogue, palladium mesoporphyrin, to investigate pathways of haem acquisition, and showed that palladium mesoporphyrin accumulates in the vitellaria (eggshell precursor glands) and ovary of female Schistosoma mansoni. Furthermore, incubation of adult females in 10-100 μm cyclosporin A (IC50 = 2.3 μm) inhibits the uptake of palladium mesoporphyrin to these tissues, with tenfold reductions in fluorescence intensity of the ovary. In vitro exposure to cyclosporin A resulted in significant perturbation of egg production, reducing egg output from 34 eggs per female to 5.7 eggs per female over the incubation period, and retardation of egg development. We characterized a S. mansoni homologue of the haem-responsive genes of Caenorhabditis elegans. The gene (Smhrg-1) encodes a protein with a molecular weight of approximately 17 kDa. SmHRG-1 was able to rescue growth in haem transport-deficient HEM1Δ yeast. Transcriptional suppression of Smhrg-1 in adult S. mansoni worms resulted in significant delay in egg maturation, with 47% of eggs from transcriptionally suppressed worms being identified as immature compared with only 27% of eggs laid by control worms treated with firefly luciferase. Our findings indicate the presence of transmembrane haem transporters in schistosomes, with a high abundance of these molecules being present in tissues involved in oogenesis.
Collapse
Affiliation(s)
- Shu Qin Toh
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Geoffrey N Gobert
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
20
|
Characterization of a gene family encoding SEA (sea-urchin sperm protein, enterokinase and agrin)-domain proteins with lectin-like and heme-binding properties from Schistosoma japonicum. PLoS Negl Trop Dis 2014; 8:e2644. [PMID: 24416467 PMCID: PMC3886910 DOI: 10.1371/journal.pntd.0002644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/28/2013] [Indexed: 11/23/2022] Open
Abstract
Background We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. Methodology/Principal Findings Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (KD = 1.605×10−6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. Conclusions The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted. While isolating membrane-bound and secreted proteins as targets for Schistosoma japonicum vaccine, we identified a novel potentially functional gene family which had originated by a gene duplication mechanism. Here, we integrated structural homology modeling and biochemical methods to show that this gene family encodes proteins with sea-urchin sperm protein, enterokinase and agrin (SEA) –domain, with heme-binding properties. Typical of SEA-structural domains, the characterized proteins specifically interacted with glycosaminoglycans (GAGs), with implication in ligand gathering and immune-evasion. Consistent with modeled heme-binding pocket, we observed high affinity heme-binding and spectroscopic attributes of hexa-coordinated heme iron. Localization of the native gene-products on adult worm tegument and gastrodermis, host interfaces for heme-sequestration and acquisition, suggests potential roles for this gene family in heme-detoxification and heme-iron uptake.
Collapse
|
21
|
Sun J, Wang SW, Li C, Hu W, Ren YJ, Wang JQ. Transcriptome profilings of female Schistosoma japonicum reveal significant differential expression of genes after pairing. Parasitol Res 2013; 113:881-92. [PMID: 24297695 DOI: 10.1007/s00436-013-3719-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
Abstract
Pairing of Schistosoma japonicum initiates female development, leads to female sexual maturation, and maintains this mature state. To understand the mechanism involved in these processes, we studied parasites isolated from single- and double-sex cercariae-infected mice using deep-sequencing analysis, Solexa, to uncover pair-regulated transcriptional profiles. In this study, we report the results of high-throughput tag-sequencing (Tag-seq) analysis of the transcriptome of female worms 18 and 23 days postsingle- and double-sex infections. We sequenced over 3 million tags, obtained a total of 14,034, 27,251, 22,755, and 22,555 distinct tags corresponding to 5,773, 9,794, 8,885, and 8,870 tag-mapped genes for 23-day-old female schistosomula from double-sex infections (23DSI), 23-day-old female schistosomula from single-sex infections (23SSI), 18-day-old female schistosomula from double-sex infections (18DSI), and 18-day-old female schistosomula from single-sex infections (18SSI), respectively. Analyses of differentially expressed genes revealed similarities in the gene expression profiles between 18SSI and 18DSI as well as rational differential gene expression between 18SSI and 23SSI. However, fewer upregulated genes were found in 23DSI compared with 18DSI. Of the 3,446 differentially expressed genes between 23DSI and 23SSI, 2,913 genes were upregulated in 23SSI, whereas only 533 genes were upregulated in 23DSI. In these upregulated genes in 23DSI, phosphoglycerate mutase, superoxide dismutase, egg antigen, ribosomal proteins, ferritin-1 heavy chain, and eukaryotic translation initiation factor 2 were detected. Detection of these genes suggests that gene expression in 23DSI is specialized for functions such as promotion and maintenance of female sexual maturation and egg production. Quantitative real-time (RT)-PCR analysis confirmed the Solexa results, thereby supporting the reliability of the system. Our results offer new insights into the biological significance of pairing, which directs the expression of genes specific for sexual maturation and egg production.
Collapse
Affiliation(s)
- Jun Sun
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
22
|
Thétiot-Laurent SAL, Boissier J, Robert A, Meunier B. Chemotherapie gegen Schistosomiasis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Thétiot-Laurent SAL, Boissier J, Robert A, Meunier B. Schistosomiasis chemotherapy. Angew Chem Int Ed Engl 2013; 52:7936-56. [PMID: 23813602 DOI: 10.1002/anie.201208390] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Indexed: 01/08/2023]
Abstract
After malaria, schistosomiasis (or bilharzia) is the second most prevalent disease in Africa, and is occurring in over 70 countries in tropical and subtropical regions. It is estimated that 600 million people are at risk of infection, 200 million people are infected, and at least 200,000 deaths per year are associated with the disease. All schistosome species are transmitted through contact with fresh water that is infested with free-swimming forms of the parasite, which is known as cercariae and produced by snails. When located in the blood vessels of the host, larval and adult schistosomes digest red cells to acquire amino acids for growth and development. Vaccine candidates have been unsuccessful up to now. Against such devastating parasitic disease, the antischistosomal arsenal is currently limited to a single drug, praziquantel, which has been used for more than 35 years. Because the question of the reduction of the activity of praziquantel was raised recently, it is thus urgent to create new and safe antischistosomal drugs that should be combined with praziquantel to develop efficient bitherapies.
Collapse
Affiliation(s)
- Sophie A-L Thétiot-Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077 Toulouse cedex 4, France
| | | | | | | |
Collapse
|
24
|
Sun J, Hu W, Li C. Beyond heme detoxification: a role for hemozoin in iron transport in S. japonicum. Parasitol Res 2013; 112:2983-90. [PMID: 23733233 DOI: 10.1007/s00436-013-3470-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/21/2013] [Indexed: 11/30/2022]
Abstract
Hemozoin (Hz) is considered a disposal product during the digestion of red blood cells by some blood-feeding parasites, such as Plasmodium, Schistosome, and Rhodnius. The only function of Hz that has been reported is to detoxify the free heme (Fe((III))-protoporphyrin-IX) in worms. Here we report a new role for Hz in iron transport in Schistosoma japonicum. Using transmission electron microscopy (TEM), we observed that S. japonicum hemozoin (sjHz) granules were a group of electron-dense, globe-, and comma-shaped granules. At the anterior end of female worm gut, these dark brown granules were found to be mixed with biconcave disc-shaped erythrocytes, in the middle portion of the gut these granules attached to destroyed erythrocytes and in the posterior portion of the gut no intact erythrocytes were observed except free sjHz granules. By energy dispersive spectroscopy (EDS) and Prussian blue iron staining, we found that these iron-containing sjHz granules are degraded near the microvilli adjacent to vitelline glands, resulting in the accumulation of a large amount of iron in the vitelline cells and eggs of developed S. japonicum. The accumulation of iron in vitelline glands was synchronized with the increase of sjHz granules in the gut. When S. japonicum just contained a little amount of sjHz granules in gut, hardly any accumulation of iron was detected in vitelline glands. However, when the lumen of gut filled full with sjHz granules, large amounts of iron was detected in vitelline glands. Solexa sequencing revealed that expression of iron store protein, ferritin-1 (CAX77379.1), is just significantly up-regulated in worms that contained a large amount of sjHz in gut. In contrast to the idea that sjHz granules are simply by-product of heme detoxification, we found that formation and degradation of sjHz granules in vivo likely serve for the iron transport. Our findings provide new insights into the biological significance of Hz formation.
Collapse
Affiliation(s)
- Jun Sun
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | | | | |
Collapse
|
25
|
Dixon SD, Janes BK, Bourgis A, Carlson PE, Hanna PC. Multiple ABC transporters are involved in the acquisition of petrobactin in Bacillus anthracis. Mol Microbiol 2012; 84:370-82. [PMID: 22429808 DOI: 10.1111/j.1365-2958.2012.08028.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Bacillus anthracis the siderophore petrobactin is vital for iron acquisition and virulence. The petrobactin-binding receptor FpuA is required for these processes. Here additional components of petrobactin reacquisition are described. To identify these proteins, mutants of candidate permease and ATPase genes were generated allowing for characterization of multiple petrobactin ATP-binding cassette (ABC)-import systems. Either of two distinct permeases, FpuB or FatCD, is required for iron acquisition and play redundant roles in petrobactin transport. A mutant strain lacking both permeases, ΔfpuBΔfatCD, was incapable of using petrobactin as an iron source and exhibited attenuated virulence in a murine model of inhalational anthrax infection. ATPase mutants were generated in either of the permease mutant backgrounds to identify the ATPase(s) interacting with each individual permease channel. Mutants lacking the FpuB permease and FatE ATPase (ΔfpuBΔfatE) and a mutant lacking the distinct ATPases FpuC and FpuD generated in the ΔfatCD background (ΔfatCDΔfpuCΔfpuD) displayed phenotypic characteristics of a mutant deficient in petrobactin import. A mutant lacking all three of the identified ATPases (ΔfatEΔfpuCΔfpuD) exhibited the same growth defect in iron-depleted conditions. Taken together, these results provide the first description of the permease and ATPase proteins required for the import of petrobactin in B. anthracis.
Collapse
Affiliation(s)
- Shandee D Dixon
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | | | | | | | | |
Collapse
|
26
|
Portela J, Boissier J, Gourbal B, Pradines V, Collière V, Coslédan F, Meunier B, Robert A. Antischistosomal activity of trioxaquines: in vivo efficacy and mechanism of action on Schistosoma mansoni. PLoS Negl Trop Dis 2012; 6:e1474. [PMID: 22348155 PMCID: PMC3279339 DOI: 10.1371/journal.pntd.0001474] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/25/2011] [Indexed: 12/18/2022] Open
Abstract
Schistosomiasis is among the most neglected tropical diseases, since its mode of spreading tends to limit the contamination to people who are in contact with contaminated waters in endemic countries. Here we report the in vitro and in vivo anti-schistosomal activities of trioxaquines. These hybrid molecules are highly active on the larval forms of the worms and exhibit different modes of action, not only the alkylation of heme. The synergy observed with praziquantel on infected mice is in favor of the development of these trioxaquines as potential anti-schistosomal agents. Schistosomiasis is a tropical disease affecting more than 200 million people throughout the sub-tropical and tropical world. The treatment and control of schistosomiasis rely on the use of a single drug, the praziquantel and no vaccine is available. However, schistosome species with low sensitivity or resistance to praziquantel have been identified in several countries. It is an urgent need to develop new drugs against this parasite. In this context, our study reports the activity the trioxaquine PA1259. PA1259 is an hybrid drug containing two pharmacophores within a single molecule: a trioxane and an aminoquinoline. Initially developed against malaria, the trioxaquines target the heme a disposal product resulting from the digestion of the hemoglobin. The first action of the trioxaquine is an alkylation of the heme with the trioxane entity, and the second action is stacking with the heme due to the aminoquinoline moiety. In this study we show that this new drug is active in vitro against all schistosome stages (cercariae, schistosomule and adult). The PA1259 is also active in vivo and shows synergistic action in association with praziquantel. This opens the route to an efficient bitherapy of a highly neglected disease.
Collapse
Affiliation(s)
- Julien Portela
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Écologie et Évolution des Interactions, Perpignan, France
| | - Jérôme Boissier
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Écologie et Évolution des Interactions, Perpignan, France
- * E-mail: (JB); (AR)
| | - Benjamin Gourbal
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Écologie et Évolution des Interactions, Perpignan, France
| | | | | | | | - Bernard Meunier
- Laboratoire de Chimie de Coordination du CNRS, Toulouse, France
- Palumed, Castanet-Tolosan, France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS, Toulouse, France
- * E-mail: (JB); (AR)
| |
Collapse
|
27
|
Huang HH, Rigouin C, Williams DL. The redox biology of schistosome parasites and applications for drug development. Curr Pharm Des 2012; 18:3595-3611. [PMID: 22607149 PMCID: PMC3638776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/09/2012] [Indexed: 05/31/2023]
Abstract
Schistosomiasis caused by Schistosoma spp. is a serious public health concern, especially in sub-Saharan Africa. Praziquantel is the only drug currently administrated to treat this disease. However, praziquantel-resistant parasites have been identified in endemic areas and can be generated in the laboratory. Therefore, it is essential to find new therapeutics. Antioxidants are appealing drug targets. In order to survive in their hosts, schistosomes are challenged by reactive oxygen species from intrinsic and extrinsic sources. Schistosome antioxidant enzymes have been identified as essential proteins and novel drug targets and inhibition of the antioxidant response can lead to parasite death. Because the organization of the redox network in schistosomes is significantly different from that in humans, new drugs are being developed targeting schistosome antioxidants. In this paper the redox biology of schistosomes is discussed and their potential use as drug targets is reviewed. It is hoped that compounds targeting parasite antioxidant responses will become clinically relevant drugs in the near future.
Collapse
Affiliation(s)
| | | | - David L. Williams
- Correspondence should be addressed to: Dr. David L. Williams, Department of Microbiology and Immunology, Rush University Medical Center, Chicago, IL 60612-3824 . Phone: (312) 942-1375; Fax: (312) 942-2808
| |
Collapse
|
28
|
Cabán-Hernández K, Gaudier JF, Espino AM. Characterization and differential expression of a ferritin protein from Fasciola hepatica. Mol Biochem Parasitol 2011; 182:54-61. [PMID: 22240114 DOI: 10.1016/j.molbiopara.2011.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/21/2011] [Accepted: 12/20/2011] [Indexed: 12/31/2022]
Abstract
Ferritins are proteins that play a central role in maintaining intracellular iron balance. A cDNA clone of Fasciola hepatica (687 bp long) encoding a putative 228-amino acid polypeptide (FhFtn-1) homologous with ferritins of vertebrates and invertebrates was identified. FhFtn-1 contains a conserved motif of the ferroxidase center typical of vertebrate ferritins. Phylogenetic tree analysis showed that FhFtn-1 clusters with two ferritins of Paragonimus westermani, which suggests a common ancestry for the ferritins of these two trematodes. Recombinant FhFtn-1 protein expressed and purified from an Escherichia coli system showed iron-uptake ability. Moreover, FhFtn-1 showed strong reactivity with sera from rabbits infected with F. hepatica for 2-12 weeks, which suggests that this protein could be a potential antigen for immunodiagnosis of fascioliasis. qPCR analysis demonstrated that FhFtn-1-mRNA is expressed at significantly higher levels in adults and unembryonated eggs than in juveniles or miracidia. These results represent the first characterization of a ferritin protein from the liver fluke F. hepatica.
Collapse
Affiliation(s)
- Kimberly Cabán-Hernández
- Department of Microbiology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | | | | |
Collapse
|
29
|
Ray D, Williams DL. Characterization of the phytochelatin synthase of Schistosoma mansoni. PLoS Negl Trop Dis 2011; 5:e1168. [PMID: 21629724 PMCID: PMC3101182 DOI: 10.1371/journal.pntd.0001168] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/28/2011] [Indexed: 02/07/2023] Open
Abstract
Treatment for schistosomiasis, which is responsible for more than 280,000 deaths annually, depends exclusively on the use of praziquantel. Millions of people are treated annually with praziquantel and drug resistant parasites are likely to evolve. In order to identify novel drug targets the Schistosoma mansoni sequence databases were queried for proteins involved in glutathione metabolism. One potential target identified was phytochelatin synthase (PCS). Phytochelatins are oligopeptides synthesized enzymatically from glutathione by PCS that sequester toxic heavy metals in many organisms. However, humans do not have a PCS gene and do not synthesize phytochelatins. In this study we have characterized the PCS of S. mansoni (SmPCS). The conserved catalytic triad of cysteine-histidine-aspartate found in PCS proteins and cysteine proteases is also found in SmPCS, as are several cysteine residues thought to be involved in heavy metal binding and enzyme activation. The SmPCS open reading frame is considerably extended at both the N- and C-termini compared to PCS from other organisms. Multiple PCS transcripts are produced from the single encoded gene by alternative splicing, resulting in both mitochondrial and cytoplasmic protein variants. Expression of SmPCS in yeast increased cadmium tolerance from less than 50 µM to more than 1,000 µM. We confirmed the function of SmPCS by identifying PCs in yeast cell extracts using HPLC-mass spectrometry. SmPCS was found to be expressed in all mammalian stages of worm development investigated. Increases in SmPCS expression were seen in ex vivo worms cultured in the presence of iron, copper, cadmium, or zinc. Collectively, these results indicate that SmPCS plays an important role in schistosome response to heavy metals and that PCS is a potential drug target for schistosomiasis treatment. This is the first characterization of a PCS from a parasitic organism. Schistosomiasis is a chronic, debilitating disease that affects hundreds of millions of people. The treatment of schistosomiasis relies solely on monotherapy with praziquantel and there is concern that drug-resistant parasites will evolve. Therefore, it is imperative to identify new drugs for schistosomiasis treatment. In this study our goal was to characterize a unique gene of Schistosoma mansoni that may be a candidate for drug targeting to control schistosomiasis. This gene, phytochelatin synthase (PCS), is a single copy gene in S. mansoni but is absent from humans. Our results confirm that schistosome PCS produces phytochelatins that are capable of scavenging and detoxifying heavy metals. The expression of the PCS gene in ex vivo adult schistosome worms was increased by exposure to a number of heavy metals. These results indicate that S. mansoni PCS regulates the availability of metal ions that the worm may be exposed to, either as co-factors in metalloenzymes or as excess metals encountered in the blood stream of their mammalian host. Collectively, these results have important implications for drug development for the control of schistosomiasis. Since other helminth parasites have PCS, drug development targeting this enzyme may have wide applications in the control of multiple neglected diseases.
Collapse
Affiliation(s)
- Debalina Ray
- Department of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - David L. Williams
- Department of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
30
|
Schulte L, Glanfield A, Nawaratna S, Gobert GN, McManus DP, Jones MK. Molecular analysis of zinc transporters in Schistosoma japonicum. Exp Parasitol 2011; 127:768-76. [PMID: 21255570 DOI: 10.1016/j.exppara.2011.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 11/19/2010] [Accepted: 01/11/2011] [Indexed: 11/30/2022]
Abstract
Members of the zinc-regulated transporter/iron-regulated transporter-like protein (ZIP) family of proteins transport metal ions across cell membranes. Genes encoding ZIPs are present in the genomes of schistosomes. Here, we describe molecular characterisation of six ZIPs (SjZIPA-F) from Schistosoma japonicum. Quantitative PCR analyses of these ZIPs through the lifecycle showed that each is expressed predominantly during the intramammalian stage and are particularly enriched in adult females. Using laser microdissected tissue as template, SjZIPA-D were transcriptionally enriched in female reproductive tissues, SjZIPE was not expressed in specific tissues and SjZIPF was expressed similarly in each tissue. Whole mount in situ hybridization revealed that SjZIPA and SjZIPB were localised to the oesophageal gland of adults and the vitellaria. We have shown that multiple ZIPs are expressed by schistosomes during the intramammalian parasitic phases and propose that the encoded products perform diverse cellular functions related to metal transport in different cells of S. japonicum.
Collapse
Affiliation(s)
- Leigh Schulte
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Qld 4006, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Toh SQ, Glanfield A, Gobert GN, Jones MK. Heme and blood-feeding parasites: friends or foes? Parasit Vectors 2010; 3:108. [PMID: 21087517 PMCID: PMC2999593 DOI: 10.1186/1756-3305-3-108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/18/2010] [Indexed: 12/01/2022] Open
Abstract
Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification.
Collapse
Affiliation(s)
- Shu Qin Toh
- Queensland Institute of Medical Research, Herston, Queensland, 4006, Australia.
| | | | | | | |
Collapse
|
32
|
Glanfield A, McManus DP, Smyth DJ, Lovas EM, Loukas A, Gobert GN, Jones MK. A cytochrome b561 with ferric reductase activity from the parasitic blood fluke, Schistosoma japonicum. PLoS Negl Trop Dis 2010; 4:e884. [PMID: 21103361 PMCID: PMC2982821 DOI: 10.1371/journal.pntd.0000884] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 10/18/2010] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Iron has an integral role in numerous cellular reactions and is required by virtually all organisms. In physiological conditions, iron is abundant in a largely insoluble ferric state. Ferric reductases are an essential component of iron uptake by cells, reducing iron to the soluble ferrous form. Cytochromes b561 (cyts-b561) are a family of ascorbate reducing transmembrane proteins found in most eukaryotic cells. The identification of the ferric reductase duodenal cytochrome b (dcytb) and recent observations that other cyts-b561 may be involved in iron metabolism have opened novel perspectives for elucidating their physiological function. METHODOLOGY/PRINCIPAL FINDINGS Here we have identified a new member of the cytochrome b561 (Sjcytb561) family in the pathogenic blood fluke Schistosoma japonicum that localises to the outer surface of this parasitic trematode. Heterologous expression of recombinant Sjcyt-b561 in a Saccharomyces cerevisiae mutant strain that lacks plasma membrane ferrireductase activity demonstrated that the molecule could rescue ferric reductase activity in the yeast. SIGNIFICANCE/CONCLUSIONS This finding of a new member of the cytochrome b561 family further supports the notion that a ferric reductase function is likely for other members of this protein family. Additionally, the localisation of Sjcytb561 in the surface epithelium of these blood-dwelling schistosomes contributes further to our knowledge concerning nutrient acquisition in these parasites and may provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Amber Glanfield
- Queensland Institute of Medical Research, Herston, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Kamgno J, Djomo PN, Pion SD, Thylefors B, Boussinesq M. A controlled trial to assess the effect of quinine, chloroquine, amodiaquine, and artesunate on Loa loa microfilaremia. Am J Trop Med Hyg 2010; 82:379-85. [PMID: 20207860 DOI: 10.4269/ajtmh.2010.09-0573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Onchocerciasis control is currently based on mass ivermectin treatment. Unfortunately, this drug can induce serious adverse events (SAEs) in persons with high levels of Loa loa microfilaremia (> 30,000 microfilaria/mL). A means of preventing SAEs would be to treat at risk populations with a drug that would progressively reduce the microfilarial loads before administering ivermectin. Antimalarial drugs are a potential solution because they have shown some activity against various filarial species. A controlled trial was conducted to assess the effect of standard doses of quinine, chloroquine, amodiaquine, and artesunate on L. loa microfilaremia. Ninety-eight patients were randomly allocated into five groups (one for each drug and a control group) after stratification on microfilarial load. Loa loa microfilaremia was monitored on days 0, 3, 7, 15, 30, 60, and 90. No significant change in the loads was recorded in any of the treatment groups. A comprehensive review of the effects of antimalarial drugs against filariae is also provided.
Collapse
Affiliation(s)
- Joseph Kamgno
- Filariasis Research Centre, University of Yaounde I, Yaounde, Cameroon.
| | | | | | | | | |
Collapse
|
34
|
Carlson PE, Dixon SD, Janes BK, Carr KA, Nusca TD, Anderson EC, Keene SE, Sherman DH, Hanna PC. Genetic analysis of petrobactin transport in Bacillus anthracis. Mol Microbiol 2010; 75:900-9. [PMID: 20487286 DOI: 10.1111/j.1365-2958.2009.07025.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Iron acquisition mechanisms play an important role in the pathogenesis of many infectious microbes. In Bacillus anthracis, the siderophore petrobactin is required for both growth in iron-depleted conditions and for full virulence of the bacterium. Here we demonstrate the roles of two putative petrobactin binding proteins FatB and FpuA (encoded by GBAA5330 and GBAA4766 respectively) in B. anthracis iron acquisition and pathogenesis. Markerless deletion mutants were created using allelic exchange. The Delta fatB strain was capable of wild-type levels of growth in iron-depleted conditions, indicating that FatB does not play an essential role in petrobactin uptake. In contrast, Delta fpuA bacteria exhibited a significant decrease in growth under low-iron conditions when compared with wild-type bacteria. This mutant could not be rescued by the addition of exogenous purified petrobactin. Further examination of this strain demonstrated increased levels of petrobactin accumulation in the culture supernatants, suggesting no defect in siderophore synthesis or export but, instead, an inability of Delta fpuA to import this siderophore. Delta fpuA spores were also significantly attenuated in a murine model of inhalational anthrax. These results provide the first genetic evidence demonstrating the role of FpuA in petrobactin uptake.
Collapse
Affiliation(s)
- Paul E Carlson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tissue specific profiling of females of Schistosoma japonicum by integrated laser microdissection microscopy and microarray analysis. PLoS Negl Trop Dis 2009; 3:e469. [PMID: 19564906 PMCID: PMC2696939 DOI: 10.1371/journal.pntd.0000469] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/27/2009] [Indexed: 12/14/2022] Open
Abstract
Background The functions of many schistosome gene products remain to be characterized. A major step towards elucidating function of these genes would be in defining their sites of expression. This goal is rendered difficult to achieve by the generally small size of the parasites and the lack of a body cavity, which precludes analysis of transcriptional profiles of the tissues in isolation. Methodology/Principal Findings Here, we describe a combined laser microdissection microscopy (LMM) and microarray analysis approach to expedite tissue specific profiling and gene atlasing for tissues of adult female Schistosoma japonicum. This approach helps to solve the gene characterization “bottle-neck” brought about by acoelomy and the size of these parasites. Complementary RNA obtained after isolation from gastrodermis (parasite gut mucosa), vitelline glands and ovary by LMM were subjected to microarray analyses, resulting in identification of 147 genes upregulated in the gastrodermis, 4,149 genes in the ovary and 2,553 in the vitellaria. Conclusions This work will help to shed light on the molecular pathobiology of this debilitating human parasite and aid in the discovery of new targets for the development of anti-schistosome vaccines and drugs. Schistosomes are parasitic worms responsible for important human diseases in tropical and developing nations. There is urgent need to develop new drugs and vaccines to augment current treatments for this disease. In recent years, concerted efforts by many laboratories have led to extensive genetic sequencing of the parasites, and the publication of genome sequence for two agents of schistosomiasis appears imminent. This genetic information has revealed many molecules expressed by the schistosome parasites for which no functional information is available. This lack of information extends to ignorance of where in the complex multicellular schistosome parasites the genes are expressed. We integrated two molecular and cellular techniques to address these knowledge gaps. We used laser microdissection microscopy to dissect small but highly important tissues involved in nutrition and reproduction from sections of female Schistosoma japonicum. From these dissected tissues we then used a broad molecular biology method to identify the multiple genes active in these tissues. Our approach has allowed us to formulate the basis of a “gene atlas” for schistosome parasites, defining the expression repertoire of specific tissues. The better understanding of the roles of tissues in parasite biology, especially in development, reproduction and interactions with its human hosts, should promote future investigations into pathogenesis and control of these significant parasites.
Collapse
|