1
|
Ishtiaq F. Wastewater-based surveillance of vector-borne pathogens: a cautionary note. Trends Parasitol 2024; 40:93-95. [PMID: 38160180 DOI: 10.1016/j.pt.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Diamond et al. recently identified malaria and dengue as high-priority diseases in wastewater surveillance for climate-change-driven shifts in pathogen dynamics. When employing wastewater surveillance for vector-borne pathogens it is essential to take into account the geographical context, pathogen biology, and the availability of sewage networks for meaningful interventions.
Collapse
Affiliation(s)
- Farah Ishtiaq
- Tata Institute for Genetics and Society, New InStem Building, GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
2
|
Valkiūnas G, Iezhova TA. Keys to the avian Haemoproteus parasites (Haemosporida, Haemoproteidae). Malar J 2022; 21:269. [PMID: 36123731 PMCID: PMC9487097 DOI: 10.1186/s12936-022-04235-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Haemoproteus is a sister genus to malaria parasites (Plasmodium), which both belong to the order Haemosporida (Apicomplexa). Parasites of both genera are flourishing in birds, however, Haemoproteus species are noticeably less investigated. This is unfortunate because knowledge about close relatives of malaria pathogens is important for better understanding the evolutionary origin and basic biological features of the entire group of haemosporidian infections. Moreover, recent findings show that Haemoproteus species can cause severe damage of various bird organs due to megalomeronts and other exo-erythrocytic stages. These haemosporidians are remarkably diverse, but remain neglected partly due to difficulties in species identification. Hundreds of Haemoproteus genetic lineages have been reported in birds, and numerous new lineages are found each year, but most remain unidentified to the species level. Numerous new Haemoproteus pathogens were described during the past 20 years. However, keys for their identification are absent. Identification of Haemoproteus species remains a difficult task and is an obstacle for better understanding of the distribution and epidemiology of these parasites. This study aimed to develop comprehensive keys for the identification of described avian Haemoproteus species using morphological features of their blood stages (gametocytes). METHODS Type and voucher preparations of avian Haemoproteus species were accessed in museums in Europe, Australia and the USA. Gametocytes of most described species were examined, and these data formed a background for this study. The data also were considered from published articles containing parasite species descriptions. The method of dichotomous keys was applied. The most difficult steps in the keys were accompanied with references to the corresponding parasite pictures. RESULTS In all, 201 published articles were included in this review. Morphological diagnostic features of gametocytes of all described Haemoproteus species were analysed and compared. Illustrated keys for identification of these parasite species were developed. Available information about the molecular characterization of Haemoproteus parasites was provided. CONCLUSION This review shows that 177 described species of avian Haemoproteus can be distinguished and identified in blood films using morphological characters of their gametocytes and host cells. These species were incorporated in the keys. Information about possible morphologically cryptic parasites was provided. Molecular markers are available for only 42% of the described Haemoproteus parasites, calling for researchers to fill this gap.
Collapse
Affiliation(s)
| | - Tatjana A Iezhova
- Nature Research Centre, Akademijos 2, 2100, LT-08412, Vilnius, Lithuania
| |
Collapse
|
3
|
Escalante AA, Cepeda AS, Pacheco MA. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar J 2022; 21:139. [PMID: 35505356 PMCID: PMC9066883 DOI: 10.1186/s12936-022-04130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
The global malaria burden sometimes obscures that the genus Plasmodium comprises diverse clades with lineages that independently gave origin to the extant human parasites. Indeed, the differences between the human malaria parasites were highlighted in the classical taxonomy by dividing them into two subgenera, the subgenus Plasmodium, which included all the human parasites but Plasmodium falciparum that was placed in its separate subgenus, Laverania. Here, the evolution of Plasmodium in primates will be discussed in terms of their species diversity and some of their distinct phenotypes, putative molecular adaptations, and host–parasite biocenosis. Thus, in addition to a current phylogeny using genome-level data, some specific molecular features will be discussed as examples of how these parasites have diverged. The two subgenera of malaria parasites found in primates, Plasmodium and Laverania, reflect extant monophyletic groups that originated in Africa. However, the subgenus Plasmodium involves species in Southeast Asia that were likely the result of adaptive radiation. Such events led to the Plasmodium vivax lineage. Although the Laverania species, including P. falciparum, has been considered to share “avian characteristics,” molecular traits that were likely in the common ancestor of primate and avian parasites are sometimes kept in the Plasmodium subgenus while being lost in Laverania. Assessing how molecular traits in the primate malaria clades originated is a fundamental science problem that will likely provide new targets for interventions. However, given that the genus Plasmodium is paraphyletic (some descendant groups are in other genera), understanding the evolution of malaria parasites will benefit from studying “non-Plasmodium” Haemosporida.
Collapse
Affiliation(s)
- Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA.
| | - Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| |
Collapse
|
4
|
The success of sequence capture in relation to phylogenetic distance from a reference genome: a case study of avian haemosporidian parasites. Int J Parasitol 2018; 48:947-954. [PMID: 30107149 DOI: 10.1016/j.ijpara.2018.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 11/20/2022]
Abstract
Genomic sequencing of avian haemosporidian parasites (Haemosporida) has been challenging due to excessive contamination from host DNA. In this study, we developed a cost-effective protocol to obtain parasite sequences from naturally infected birds, based on targeted sequence capture and next generation sequencing. With the genomic data of Haemoproteus tartakovskyi as a reference, we successfully sequenced up to 1000 genes from each of the 15 selected samples belonging to nine different cytochrome b lineages, eight of which belong to Haemoproteus and one to Plasmodium. The targeted sequences were enriched to ∼104-fold, and mixed infections were identified as well as the proportions of each mixed lineage. We found that the total number of reads and the proportions of exons sequenced decreased when the parasite lineage became more divergent from the reference genome. For each of the samples, the recovery of sequences from different exons varied with the function and GC content of the exon. From the obtained sequences, we detected within-lineage variation in both mitochondrial and nuclear genes, which may be a result of local adaptation to different host species and environmental conditions. This targeted sequence capture protocol can be applied to a broader range of species and will open a new door for further studies on disease diagnostics and comparative analysis of haemosporidians evolution.
Collapse
|
5
|
Abstract
The genomic architecture of organisms, including nucleotide composition, can be highly variable, even among closely-related species. To better understand the causes leading to structural variation in genomes, information on distinct and diverse genomic features is needed. Malaria parasites are known for encompassing a wide range of genomic GC-content and it has long been thought that Plasmodium falciparum, the virulent malaria parasite of humans, has the most AT-biased eukaryotic genome. Here, I perform comparative genomic analyses of the most AT-rich eukaryotes sequenced to date, and show that the avian malaria parasites Plasmodium gallinaceum, P. ashfordi, and P. relictum have the most extreme coding sequences in terms of AT-bias. Their mean GC-content is 21.21, 21.22 and 21.60 %, respectively, which is considerably lower than the transcriptome of P. falciparum (23.79 %) and other eukaryotes. This information enables a better understanding of genome evolution and raises the question of how certain organisms are able to prosper despite severe compositional constraints.
Collapse
|
6
|
Ishtiaq F, Bowden CGR, Jhala YV. Seasonal dynamics in mosquito abundance and temperature do not influence avian malaria prevalence in the Himalayan foothills. Ecol Evol 2017; 7:8040-8057. [PMID: 29043055 PMCID: PMC5632643 DOI: 10.1002/ece3.3319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/26/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022] Open
Abstract
We examined seasonal prevalence in avian haemosporidians (Plasmodium and Haemoproteus) in migrant and resident birds in western Himalaya, India. We investigated how infection with haemosporidians in avian hosts is associated with temporal changes in temperature and mosquito abundance along with host abundance and life‐history traits (body mass). Using molecular methods for parasite detection and sequencing partial cytochrome b gene, 12 Plasmodium and 27 Haemoproteus lineages were isolated. Our 1‐year study from December 2008 to December 2009 in tropical Himalayan foothills revealed a lack of seasonal variation in Plasmodium spp. prevalence in birds despite a strong correlation between mosquito abundance and temperature. The probability of infection with Plasmodium decreased with increase in temperature. Total parasite prevalence and specifically Plasmodium prevalence showed an increase with average avian body mass. In addition, total prevalence exhibited a U‐shaped relationship with avian host abundance. There was no difference in prevalence of Plasmodium spp. or Haemoproteus spp. across altitudes; parasite prevalence in high‐altitude locations was mainly driven by the seasonal migrants. One Haemoproteus lineage showed cross‐species infections between migrant and resident birds. This is the first molecular study in the tropical Himalayan bird community that emphasizes the importance of studying seasonal variation in parasite prevalence. Our study provides a basis for further evolutionary study on the epidemiology of avian malaria and spread of disease across Himalayan bird communities, which may not have been exposed to vectors and parasites throughout the year, with consequential implications to the risk of infection to naïve resident birds in high altitude.
Collapse
Affiliation(s)
- Farah Ishtiaq
- Centre for Ecological Sciences Indian Institute of Science Bangalore India.,Wildlife Institute of India Dehradun Uttarakhand India
| | | | | |
Collapse
|
7
|
Perkins SL, Schaer J. A Modern Menagerie of Mammalian Malaria. Trends Parasitol 2016; 32:772-782. [PMID: 27492115 DOI: 10.1016/j.pt.2016.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022]
Abstract
Malaria parasites belong to the diverse apicomplexan order Haemospororida and use a variety of vertebrate and dipteran hosts worldwide. Recently, the utilization of molecular methods has resulted in a burst of newly discovered and rediscovered taxa infecting mammalian hosts, particularly in apes, ungulates, and bats. Additional study of these diverse mammal-infecting taxa is crucial for better understanding the evolutionary history of malaria parasites, especially given that most previous comparative phylogenetic analyses have tended to use both limited taxon sampling and a small set of genetic loci, resulting in weakly supported (and sometimes hotly contested) hypotheses. The ability to generate genomic data from these mammalian parasites, even from subpatent infections, will open up exciting prospects for research on malaria parasites.
Collapse
Affiliation(s)
- Susan L Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, NY, NY 10024, USA.
| | - Juliane Schaer
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
8
|
Liu W, Sundararaman SA, Loy DE, Learn GH, Li Y, Plenderleith LJ, Ndjango JBN, Speede S, Atencia R, Cox D, Shaw GM, Ayouba A, Peeters M, Rayner JC, Hahn BH, Sharp PM. Multigenomic Delineation of Plasmodium Species of the Laverania Subgenus Infecting Wild-Living Chimpanzees and Gorillas. Genome Biol Evol 2016; 8:1929-39. [PMID: 27289102 PMCID: PMC4943199 DOI: 10.1093/gbe/evw128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 12/15/2022] Open
Abstract
Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related to other human malaria parasites and has thus been placed in a separate subgenus, termed Laverania Parasites morphologically similar to P. falciparum have been identified in African apes, but only one other Laverania species, Plasmodium reichenowi from chimpanzees, has been formally described. Although recent studies have pointed to the existence of additional Laverania species, their precise number and host associations remain uncertain, primarily because of limited sampling and a paucity of parasite sequences other than from mitochondrial DNA. To address this, we used limiting dilution polymerase chain reaction to amplify additional parasite sequences from a large number of chimpanzee and gorilla blood and fecal samples collected at two sanctuaries and 30 field sites across equatorial Africa. Phylogenetic analyses of more than 2,000 new sequences derived from the mitochondrial, nuclear, and apicoplast genomes revealed six divergent and well-supported clades within the Laverania parasite group. Although two of these clades exhibited deep subdivisions in phylogenies estimated from organelle gene sequences, these sublineages were geographically defined and not present in trees from four unlinked nuclear loci. This greatly expanded sequence data set thus confirms six, and not seven or more, ape Laverania species, of which P. reichenowi, Plasmodium gaboni, and Plasmodium billcollinsi only infect chimpanzees, whereas Plasmodium praefalciparum, Plasmodium adleri, and Pladmodium blacklocki only infect gorillas. The new sequence data also confirm the P. praefalciparum origin of human P. falciparum.
Collapse
Affiliation(s)
- Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Department of Microbiology, Perelman School of Medicine, University of Pennsylvania
| | - Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Department of Microbiology, Perelman School of Medicine, University of Pennsylvania
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom
| | | | - Sheri Speede
- Sanaga-Yong Chimpanzee Rescue Center, IDA-Africa, Portland, Oregon
| | - Rebeca Atencia
- Tchimpounga Chimpanzee Rehabilitation Center, Pointe-Noire, Republic of the Congo
| | - Debby Cox
- Tchimpounga Chimpanzee Rehabilitation Center, Pointe-Noire, Republic of the Congo Africa Programmes, Jane Goodall Institute, Vienna, Virginia
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Department of Microbiology, Perelman School of Medicine, University of Pennsylvania
| | - Ahidjo Ayouba
- UMI 233, Institut de Recherche pour le Développement (IRD), INSERM U1175, and University of Montpellier, France
| | - Martine Peeters
- UMI 233, Institut de Recherche pour le Développement (IRD), INSERM U1175, and University of Montpellier, France
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Department of Microbiology, Perelman School of Medicine, University of Pennsylvania
| | - Paul M Sharp
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom
| |
Collapse
|
9
|
Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 2016; 47:87-97. [PMID: 27381764 DOI: 10.1016/j.ijpara.2016.05.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Faust C, Dobson AP. Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium. One Health 2015; 1:66-75. [PMID: 28616467 PMCID: PMC5441356 DOI: 10.1016/j.onehlt.2015.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/15/2015] [Accepted: 10/01/2015] [Indexed: 12/30/2022] Open
Abstract
Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi, in Southeast Asia highlights the permeability of species barriers in Plasmodium. Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence-absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.
Collapse
Affiliation(s)
- Christina Faust
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
11
|
Silva JC, Egan A, Arze C, Spouge JL, Harris DG. A new method for estimating species age supports the coexistence of malaria parasites and their Mammalian hosts. Mol Biol Evol 2015; 32:1354-64. [PMID: 25589738 PMCID: PMC4408405 DOI: 10.1093/molbev/msv005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Species in the genus Plasmodium cause malaria in humans and infect a variety of mammals and other vertebrates. Currently, estimated ages for several mammalian Plasmodium parasites differ by as much as one order of magnitude, an inaccuracy that frustrates reliable estimation of evolutionary rates of disease-related traits. We developed a novel statistical approach to dating the relative age of evolutionary lineages, based on Total Least Squares regression. We validated this lineage dating approach by applying it to the genus Drosophila. Using data from the Drosophila 12 Genomes project, our approach accurately reconstructs the age of well-established Drosophila clades, including the speciation event that led to the subgenera Drosophila and Sophophora, and age of the melanogaster species subgroup. We applied this approach to hundreds of loci from seven mammalian Plasmodium species. We demonstrate the existence of a molecular clock specific to individual Plasmodium proteins, and estimate the relative age of mammalian-infecting Plasmodium. These analyses indicate that: 1) the split between the human parasite Plasmodium vivax and P. knowlesi, from Old World monkeys, occurred 6.1 times earlier than that between P. falciparum and P. reichenowi, parasites of humans and chimpanzees, respectively; and 2) mammalian Plasmodium parasites originated 22 times earlier than the split between P. falciparum and P. reichenowi. Calibrating the absolute divergence times for Plasmodium with eukaryotic substitution rates, we show that the split between P. falciparum and P. reichenowi occurred 3.0-5.5 Ma, and that mammalian Plasmodium parasites originated over 64 Ma. Our results indicate that mammalian-infecting Plasmodium evolved contemporaneously with their hosts, with little evidence for parasite host-switching on an evolutionary scale, and provide a solid timeframe within which to place the evolution of new Plasmodium species.
Collapse
Affiliation(s)
- Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine Department of Microbiology and Immunology, University of Maryland School of Medicine
| | - Amy Egan
- Institute for Genome Sciences, University of Maryland School of Medicine
| | - Cesar Arze
- Institute for Genome Sciences, University of Maryland School of Medicine
| | - John L Spouge
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - David G Harris
- Department of Applied Mathematics and Statistics, University of Maryland, College Park
| |
Collapse
|
12
|
Palinauskas V, Žiegytė R, Ilgūnas M, Iezhova TA, Bernotienė R, Bolshakov C, Valkiūnas G. Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. Int J Parasitol 2015; 45:51-62. [DOI: 10.1016/j.ijpara.2014.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
13
|
Description, molecular characterization, and patterns of distribution of a widespread New World avian malaria parasite (Haemosporida: Plasmodiidae), Plasmodium (Novyella) homopolare sp. nov. Parasitol Res 2014; 113:3319-32. [DOI: 10.1007/s00436-014-3995-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
14
|
Abstract
SUMMARY Malaria remains one of the most significant global public health burdens, with nearly half of the world's population at risk of infection. Malaria is not however a monolithic disease - it can be caused by multiple different parasite species of the Plasmodium genus, each of which can induce different symptoms and pathology, and which pose quite different challenges for control. Furthermore, malaria is in no way restricted to humans. There are Plasmodium species that have adapted to infect most warm-blooded vertebrate species, and the genus as a whole is both highly successful and highly diverse. How, where and when human malaria parasites originated from within this diversity has long been a subject of fascination and sometimes also controversy. The past decade has seen the publication of a number of important discoveries about malaria parasite origins, all based on the application of molecular diagnostic tools to new sources of samples. This review summarizes some of those recent discoveries and discusses their implication for our current understanding of the origin and evolution of the Plasmodium genus. The nature of these discoveries and the manner in which they are made are then used to lay out a series of opportunities and challenges for the next wave of parasite hunters.
Collapse
|
15
|
Species limits in avian malaria parasites (Haemosporida): how to move forward in the molecular era. Parasitology 2014; 141:1223-32. [PMID: 24813385 DOI: 10.1017/s0031182014000560] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Delimiting species of malaria parasites (Haemosporida) has become increasingly problematic as new lineages of parasites are identified solely by molecular information, particularly mitochondrial cytochrome b sequence data. In this review, we highlight some of the issues, both historical and contemporary, that have hindered the development of objective criteria to diagnose, delimit and define species of haemosporidians. Defining species is not the focal interest of most researchers, most of whom merely wish to determine whether lineages identified in their samples match those of other researchers, and if so, where and in which host species. Rather than revisiting all the issues with respect to delimiting and naming species, we instead focus on finding a practical near-term resolution to the 'species problem' that utilizes the community's largest resource: mitochondrial cytochrome b DNA sequences. We recommend a standardized procedure to 'tag' these sequences, based on per cent sequence similarity, that will allow researchers to directly assess the novelty, known hosts and geographic distribution of avian malaria parasite lineages.
Collapse
|
16
|
Tibayrenc M, Ayala FJ. New insights into clonality and panmixia in Plasmodium and toxoplasma. ADVANCES IN PARASITOLOGY 2014; 84:253-68. [PMID: 24480316 DOI: 10.1016/b978-0-12-800099-1.00005-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Until the 1990s, Plasmodium and Toxoplasma were widely considered to be potentially panmictic species, because they both undergo a meiotic sexual cycle in their definitive hosts. We have proposed that both parasites are able of clonal (nonrecombining) propagation, at least in some cycles. Toxoplasma was soon shown to be a paradigmatic case of clonal population structure in North American and in European cycles. But the proposal provoked an outcry in the case of Plasmodium and still appears as doubtful to many scientists. However, the existence of Plasmodium nonrecombining lines has been fully confirmed, although the origin of these lines is debatable. We discuss the current state of knowledge concerning the population structure of both parasites in the light of the recent developments of pathogen clonal evolution proposed by us and of new hypotheses presented here.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), IRD Center, Montpellier, France.
| | - Francisco J Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
17
|
Dunn JC, Goodman SJ, Benton TG, Hamer KC. Active blood parasite infection is not limited to the breeding season in a declining farmland bird. J Parasitol 2014; 100:260-6. [PMID: 24450288 DOI: 10.1645/13-256.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Avian blood parasites can have significant impacts on adult breeding birds but studies of parasitism outside the breeding season are rare, despite their potentially important implications for host-parasite dynamics. Here we investigate temporal dynamics of blood parasite infection in adult yellowhammers Emberiza citrinella . We screened blood samples collected between December and April of 2 consecutive winters using PCR. We found a high prevalence of both Haemoproteus and Leucocytozoon parasites, with a mean prevalence of 50% across 2 winters. Prevalence of both parasites was higher during the second, colder winter of the study. Temporal trends differed between the 2 genera, suggesting that chronic Haemoproteus infections gradually disappear throughout the winter but that Leucocytozoon infections exhibit a relapse during late winter, possibly coincident with reduced food availability. Our results highlight the difference in temporal dynamics between 2 blood parasite genera infecting the same host population and emphasize the need for accurate assessment of infection status at appropriate time periods when examining impacts of, and associations with, blood parasite infection. We suggest that further research should investigate the implications of over-winter infection for birds' physiology, behavior, and survival.
Collapse
Affiliation(s)
- Jenny C Dunn
- RSPB Centre for Conservation Science, RSPB, The Lodge, Potton Road, Sandy, Bedfordshire, SG19 2DL, U.K
| | | | | | | |
Collapse
|
18
|
Perkins SL. Malaria's many mates: past, present, and future of the systematics of the order Haemosporida. J Parasitol 2013; 100:11-25. [PMID: 24059436 DOI: 10.1645/13-362.1] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Malaria has been one of the most important diseases of humans throughout history and continues to be a major public health concern. The 5 species of Plasmodium that cause the disease in humans are part of the order Haemosporida, a diverse group of parasites that all have heteroxenous life cycles, alternating between a vertebrate host and a free-flying, blood-feeding dipteran vector. Traditionally, the identification and taxonomy of these parasites relied heavily on life-history characteristics, basic morphological features, and the host species infected. However, molecular approaches to resolving the phylogeny of the group have sometimes challenged many of these traditional hypotheses. One of the greatest debates has concerned the origin of the most virulent of the human-infecting parasites, Plasmodium falciparum, with early results suggesting a close relationship with an avian parasite. Subsequent phylogenetic studies placed it firmly within the mammalian clade instead, but the avian origin hypothesis has been revived with recent genome-based analyses. The rooting of the tree of Haemosporida has also been inconsistent, and the various topologies that result certainly affect our interpretation of the history of the group. There is clearly a pressing need to obtain a much more complete degree of taxon sampling of haemosporidians, as well as a greater number of characters before confidence can be placed in any hypothesis regarding the evolutionary history of the order. There are numerous challenges moving forward, particularly for generating complete genome sequences of avian and saurian parasites.
Collapse
Affiliation(s)
- Susan L Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024
| |
Collapse
|
19
|
Pacheco MA, Cranfield M, Cameron K, Escalante AA. Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens. Malar J 2013; 12:328. [PMID: 24044371 PMCID: PMC3848613 DOI: 10.1186/1475-2875-12-328] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/13/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Plasmodium falciparum shares its most recent common ancestor with parasites found in African apes; these species constitute the so-called Laverania clade. In this investigation, the evolutionary history of Plasmodium lineages found in chimpanzees (Pan troglodytes) was explored. METHODS Here, the remainders of 74 blood samples collected as part of the chimpanzees' routine health examinations were studied. For all positive samples with parasite lineages belonging to the Laverania clade, the complete mitochondrial genome (mtDNA), the gene encoding dihydrofolate reductase-thymidylate synthase (dhfr-ts), the chloroquine resistance transporter (Pfcrt), the circumsporozoite protein (csp), merozoite surface protein 2 (msp2), and the DBL-1 domain from var2CSA were amplified, cloned, and sequenced. Other Plasmodium species were included in the mtDNA, dhfr-ts, and csp analyses. Phylogenetic and evolutionary genetic analyses were performed, including molecular clock analyses on the mtDNA. RESULTS/CONCLUSIONS Nine chimpanzees were malaria positive (12.2%); four of those infections were identified as P. falciparum, two as a Plasmodium reichenowi-like parasite or Plasmodium sp., one as Plasmodium gaboni, and two as Plasmodium malariae. All P. falciparum isolates were resistant to chloroquine indicating that the chimpanzees acquired such infections from humans in recent times. Such findings, however, are not sufficient for implicating chimpanzees as an animal reservoir for P. falciparum.Timing estimates support that the Laverania clade has co-existed with hominids for a long-period of time. The proposed species P. gaboni, Plasmodium billbrayi, and Plasmodium billcollinsi are monophyletic groups supporting that they are indeed different species.An expanded CSP phylogeny is presented, including all the Laverania species and other malarial parasites. Contrasting with other Plasmodium, the Laverania csp exhibits great conservation at the central tandem repeat region. Msp2 and var2CSA, however, show extended recent polymorphism in P. falciparum that likely originated after the P. reichenowi-P. falciparum split. The accumulation of such diversity may indicate adaptation to the human host. These examples support the notion that comparative approaches among P. falciparum and its related species will be of great value in understanding the evolution of proteins that are important in parasite invasion of the human red blood cell, as well as those involved in malaria pathogenesis.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
| | | | | | | |
Collapse
|
20
|
Pinto CM, Helgen KM, Fleischer RC, Perkins SL. HepatozoonParasites (Apicomplexa: Adeleorina) in Bats. J Parasitol 2013; 99:722-4. [DOI: 10.1645/12-18.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Bensch S, Hellgren O, Križanauskienė A, Palinauskas V, Valkiūnas G, Outlaw D, Ricklefs RE. How can we determine the molecular clock of malaria parasites? Trends Parasitol 2013; 29:363-9. [DOI: 10.1016/j.pt.2013.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 01/02/2023]
|
22
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
23
|
Jirků M, Pomajbíková K, Petrželková KJ, Hůzová Z, Modrý D, Lukeš J. Detection of Plasmodium spp. in human feces. Emerg Infect Dis 2012; 18:634-6. [PMID: 22469389 PMCID: PMC3309680 DOI: 10.3201/eid1804.110984] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Comparison of diagnostic methods for Plasmodium spp. in humans from Uganda and the Central African Republic showed that parasites can be efficiently detected by PCR in fecal samples. These results, which rely solely on PCR-based examination of feces, validate numerous estimates of the prevalence of malaria in great apes.
Collapse
Affiliation(s)
- Milan Jirků
- Biology Centre, Institute of Parasitology, ASCR, České Budějovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
24
|
Zehtindjiev P, Križanauskienė A, Bensch S, Palinauskas V, Asghar M, Dimitrov D, Scebba S, Valkiūnas G. A New Morphologically Distinct Avian Malaria Parasite That Fails Detection By Established Polymerase Chain Reaction–Based Protocols for Amplification of the Cytochrome B Gene. J Parasitol 2012; 98:657-65. [DOI: 10.1645/ge-3006.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
CORNUAULT JOSSELIN, BATAILLARD ANAÏS, WARREN BENH, LOOTVOET AMÉLIE, MIRLEAU PASCAL, DUVAL THOMAS, MILÁ BORJA, THÉBAUD CHRISTOPHE, HEEB PHILIPP. The role of immigration andin-situradiation in explaining blood parasite assemblages in an island bird clade. Mol Ecol 2012; 21:1438-52. [DOI: 10.1111/j.1365-294x.2012.05483.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Braga EM, Silveira P, Belo NO, Valkiūnas G. Recent advances in the study of avian malaria: an overview with an emphasis on the distribution of Plasmodium spp in Brazil. Mem Inst Oswaldo Cruz 2012; 106 Suppl 1:3-11. [PMID: 21881752 DOI: 10.1590/s0074-02762011000900002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/07/2011] [Indexed: 11/22/2022] Open
Abstract
Avian malaria parasites (Plasmodium) have a worldwide distribution except for Antarctica. They are transmitted exclusively by mosquito vectors (Diptera: Culicidae) and are of particular interest to health care research due to their phylogenetic relationship with human plasmodia and their ability to cause avian malaria, which is frequently lethal in non-adapted avian hosts. However, different features of avian Plasmodium spp, including their taxonomy and aspects of their life-history traits, need to be examined in more detail. Over the last 10 years, ecologists, evolutionary biologists and wildlife researchers have recognized the importance of studying avian malaria parasites and other related haemosporidians, which are the largest group of the order Haemosporida by number of species. These studies have included understanding the ecological, behavioral and evolutionary aspects that arise in this wildlife host-parasite system. Molecular tools have provided new and exiting opportunities for such research. This review discusses several emerging topics related to the current research of avian Plasmodium spp and some related avian haemosporidians. We also summarize some important discoveries in this field and emphasize the value of using both polymerase chain reaction-based and microscopy-based methods in parallel for wildlife studies. We will focus on the genus Plasmodium, with an emphasis on the distribution and pathogenicity of these parasites in wild birds in Brazil.
Collapse
Affiliation(s)
- Erika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | | | | | | |
Collapse
|