1
|
Heddergott M, Lippert S, Schliephake A, Gaede W, Schleimer A, Frantz AC. Spread of the Zoonotic Nematode Baylisascaris procyonis into a Naive Raccoon Population. ECOHEALTH 2023; 20:263-272. [PMID: 37971598 PMCID: PMC10757695 DOI: 10.1007/s10393-023-01655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 11/19/2023]
Abstract
The raccoon roundworm (Baylisascaris procyonis), a gastrointestinal nematode of the raccoon (Procyon lotor), may cause a severe form of larva migrans in humans, which can lead to death or permanent neurological damage. Although roundworms were inadvertently introduced to Europe alongside their raccoon hosts, the parasite is not present in every raccoon population. It is important to understand the geographic distribution of B. procyonis, as early and rapid treatment can prevent severe pathologies in humans. We present evidence for the roundworm spreading into a naive raccoon population through natural dispersal of infected raccoons. We sampled 181 raccoons from Saxony-Anhalt, a German federal state containing contact zones of different raccoon populations, two of which were previously free of the parasite. We screened the raccoons for roundworms and used microsatellite-based assignment tests to determine the genetic origin of the raccoons and their parasites. We detected roundworms in 16 of 45 raccoons sampled in a previously roundworm-free area in the northern part of the state. The largest proportion of the genetic ancestry (≥ 0.5) of the 16 raccoon hosts was assigned to the previously naive raccoon population. Conversely, the genetic ancestry of almost all the roundworms was assigned to the nearest roundworm population in the southern part of the state. Infected raccoons have, therefore, spread to the north of the state, where they interbred with and infected local raccoons. It seems likely that the roundworms will continue to spread. Health authorities should consider continuous surveillance programmes of naive populations and raise public awareness.
Collapse
Affiliation(s)
- Mike Heddergott
- Musée National d'Histoire Naturelle, 25 rue Muenster, L-2160, Luxembourg, Luxembourg
| | - Stéphanie Lippert
- Musée National d'Histoire Naturelle, 25 rue Muenster, L-2160, Luxembourg, Luxembourg
| | - Annette Schliephake
- Department for Veterinary Medicine, State Institute for Consumer Protection of Saxony-Anhalt, Haferbreiter Weg 132-135, 39576, Stendal, Germany
| | - Wolfgang Gaede
- Department for Veterinary Medicine, State Institute for Consumer Protection of Saxony-Anhalt, Haferbreiter Weg 132-135, 39576, Stendal, Germany
| | - Anna Schleimer
- Musée National d'Histoire Naturelle, 25 rue Muenster, L-2160, Luxembourg, Luxembourg
- Fondation Faune Flore, 24 rue Muenster, L-2160, Luxembourg, Luxembourg
| | - Alain C Frantz
- Musée National d'Histoire Naturelle, 25 rue Muenster, L-2160, Luxembourg, Luxembourg.
| |
Collapse
|
2
|
Frantz AC, Lippert S, Heddergott M. Microsatellite profiling of hosts from parasite-extracted DNA illustrated with raccoons (Procyon lotor) and their Baylisascaris procyonis roundworms. Parasit Vectors 2023; 16:76. [PMID: 36841791 PMCID: PMC9960475 DOI: 10.1186/s13071-023-05703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Important information on movement pathways and introduction routes of invasive parasites can be obtained by comparing the genetic makeup of an invader with its spatial genetic structure in other distribution areas. Sometimes, the population genetic structure of the host might be more informative than that of the parasite itself, and it is important to collect tissue samples of both host and parasite. However, host tissue samples are frequently not available for analysis. We aimed to test whether it is possible to generate reliable microsatellite profiles of host individuals by amplifying DNA extracted from a nematode parasite, using the raccoon (Procyon lotor) and the raccoon roundworm (Baylisascaris procyonis) as a test case. METHODS Between 2020 and 2021, we collected tissue as well as a single roundworm each from 12 raccoons from central Germany. Both the raccoon and the roundworm DNA extracts were genotyped using 17 raccoon-specific microsatellite loci. For each roundworm DNA extract, we performed at least eight amplification reactions per microsatellite locus. RESULTS We extracted amplifiable raccoon DNA from all 12 roundworms. We obtained at least two amplification products for 186 of the 204 possible genotypes. Altogether 1077 of the 1106 genotypes (97.4%) matched the host-DNA derived reference genotypes and thus did not contain genotyping errors. Nine of the 12 roundworm-derived genetic profiles matched the reference profiles from the raccoon hosts, with one additional genetic profile containing genotyping errors at a single locus. The remaining two genetic profiles were deemed unsuitable for downstream analysis because of genotyping errors and/or a high proportion of missing data. CONCLUSIONS We showed that reliable microsatellite-based genetic profiles of host individuals can be obtained by amplifying DNA extracted from a parasitic nematode. Specifically, the approach can be applied to reconstruct invasion pathways of roundworms when samples of the raccoon hosts are lacking. Further research should assess whether this method can be replicated in smaller species of parasitic nematodes and other phyla of parasites more generally.
Collapse
Affiliation(s)
- Alain C. Frantz
- grid.507500.7Musée National d’Histoire Naturelle, Luxembourg, Luxembourg
| | - Stéphanie Lippert
- grid.507500.7Musée National d’Histoire Naturelle, Luxembourg, Luxembourg
| | - Mike Heddergott
- grid.507500.7Musée National d’Histoire Naturelle, Luxembourg, Luxembourg
| |
Collapse
|
3
|
Population Genetic Structure of Anisakis simplex Infecting the European Hake from North East Atlantic Fishing Grounds. Animals (Basel) 2023; 13:ani13020197. [PMID: 36670737 PMCID: PMC9854729 DOI: 10.3390/ani13020197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The European hake, one of the most commercially valuable species in ICES fishing areas, is considered an important neglected source of zoonotic risk by nematode parasites belonging to the genus Anisakis. Merluccius merluccius is, by far, the most important host of Anisakis spp. at the European fishing grounds, in terms of demographic infection values, and carries the highest parasite burden. These high parasite population densities within an individual fish host offer a chance to explore new sources of variations for the genetic structure of Anisakis spp. populations. A total of 873 Anisakis spp. third-stage larvae, originally sampled from viscera and muscular sections of hake collected at ten fishing grounds, were primarily identified using ITS rDNA region as molecular marker. After that, we used mtDNA cox2 gene to reveal the high haplotype diversity and the lack of genetic structure for A. simplex. Dominant haplotypes were shared among the different fishing areas and fish sections analyzed. Results indicate a clear connection of A. simplex from European hake along the Northern North Sea to the Portuguese coast, constituting a single genetic population but revealing a certain level of genetic sub-structuring on the Northwest coast of Scotland. This study also provides useful information to advance the understanding of parasite speciation to different fish host tissues or microenvironments.
Collapse
|
4
|
Montarry J, Mimee B, Danchin EGJ, Koutsovoulos GD, Ste-Croix DT, Grenier E. Recent Advances in Population Genomics of Plant-Parasitic Nematodes. PHYTOPATHOLOGY 2021; 111:40-48. [PMID: 33151824 DOI: 10.1094/phyto-09-20-0418-rvw] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant-parasitic nematodes are a costly burden of crop production. Ubiquitous in nature, phytoparasitic nematodes are associated with nearly every important agricultural crop and represent a significant constraint on global food security. Population genetics is a key discipline in plant nematology to understand aspects of the life strategies of these parasites, in particular their modes of reproduction, geographic origins, evolutionary histories, and dispersion abilities. Advances in high-throughput sequencing technologies have enabled a recent but active effort in genomic analyses of plant-parasitic nematodes. Such genomic approaches applied to multiple populations are providing new insights into the molecular and evolutionary processes that underpin the establishment of these nematodes and into a better understanding of the genetic and mechanistic basis of their pathogenicity and adaptation to their host plants. In this review, we attempt to update information about genome resources and genotyping techniques useful for nematologists who are thinking about initiating population genomics or genome sequencing projects. This review is intended also to foster the development of population genomics in plant-parasitic nematodes through highlighting recent publications that illustrate the potential for this approach to identify novel molecular markers or genes of interest and improve our knowledge of the genome variability, pathogenicity, and evolutionary potential of plant-parasitic nematodes.
Collapse
Affiliation(s)
| | - Benjamin Mimee
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | | | - Dave T Ste-Croix
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Eric Grenier
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35650, Le Rheu, France
| |
Collapse
|
5
|
Fontaneto D. Long-distance passive dispersal in microscopic aquatic animals. MOVEMENT ECOLOGY 2019; 7:10. [PMID: 30962931 PMCID: PMC6434837 DOI: 10.1186/s40462-019-0155-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 05/21/2023]
Abstract
Given their dormancy capability (long-term resistant stages) and their ability to colonise and reproduce, microscopic aquatic animals have been suggested having cosmopolitan distribution. Their dormant stages may be continuously moved by mobile elements through the entire planet to any suitable habitat, preventing the formation of biogeographical patterns. In this review, I will go through the evidence we have on the most common microscopic aquatic animals, namely nematodes, rotifers, and tardigrades, for each of the assumptions allowing long-distance dispersal (dormancy, viability, and reproduction) and all the evidence we have for transportation, directly from surveys of dispersing stages, and indirectly from the outcome of successful dispersal in biogeographical and phylogeographical studies. The current knowledge reveals biogeographical patterns also for microscopic organisms, with species-specific differences in ecological features that make some taxa indeed cosmopolitan with the potential for long-distance dispersal, but others with restricted geographic distributions.
Collapse
Affiliation(s)
- Diego Fontaneto
- National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| |
Collapse
|
6
|
Cole R, Viney M. The population genetics of parasitic nematodes of wild animals. Parasit Vectors 2018; 11:590. [PMID: 30424774 PMCID: PMC6234597 DOI: 10.1186/s13071-018-3137-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Parasitic nematodes are highly diverse and common, infecting virtually all animal species, and the importance of their roles in natural ecosystems is increasingly becoming apparent. How genes flow within and among populations of these parasites - their population genetics - has profound implications for the epidemiology of host infection and disease, and for the response of parasite populations to selection pressures. The population genetics of nematode parasites of wild animals may have consequences for host conservation, or influence the risk of zoonotic disease. Host movement has long been recognised as an important determinant of parasitic nematode population genetic structure, and recent research has also highlighted the importance of nematode life histories, environmental conditions, and other aspects of host ecology. Commonly, factors influencing parasitic nematode population genetics have been studied in isolation, such that an integrated view of the drivers of population genetic structure of parasitic nematodes is still lacking. Here, we seek to provide a comprehensive, broad, and integrative picture of these factors in parasitic nematodes of wild animals that will be a useful resource for investigators studying non-model parasitic nematodes in natural ecosystems. Increasingly, new methods of analysing the population genetics of nematodes are becoming available, and we consider the opportunities that these afford in resolving hitherto inaccessible questions of the population genetics of these important animals.
Collapse
Affiliation(s)
- Rebecca Cole
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Mark Viney
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
7
|
Establishment of co-infection and hybridization of Haemonchus contortus and Haemonchus placei in sheep. J Helminthol 2018; 93:697-703. [DOI: 10.1017/s0022149x18000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThis study aimed to evaluate the simultaneous infections of Haemonchus contortus and Haemonchus placei in sheep, as well as the production of hybrids. A parental group of lambs (n = 6) were mix-infected with 2000 infective larvae (L3) of H. placei and 2000 L3 of H. contortus. Faecal samples were taken from each of these six lambs to produce the first generation of L3 (F1-L3) in individual cultures. These F1-L3 were used to infect 12 lambs; six of them were euthanized at 42 days (Group F1-42) and six at 84 days (Group F1-84) post infection. Polymerase chain reaction (PCR) analysis, using species-specific primer pairs, was the gold standard method for identification of Haemonchus adult species and hybrids. The establishment rate of both species was similar in the parental group: 51.7% H. contortus and 48.3% H. placei. Of the 219 adult specimens from groups F1-42 and F1-84 analysed by PCR, eight (3.65%) were hybrids, 111 were H. contortus and 100 were H. placei. The morphological evaluation of the F1-L3 from the parental group showed a predominance of larvae with H. contortus size (51.5%) in comparison with H. placei (42.8%). In the second generation of L3 (F2-L3) produced by the F1-lambs, larvae with H. contortus morphology predominated, with 81.5% in the F1-42 group and 84.0% in the F1-84 group. In conclusion, an artificial mixed infection by H. contortus and H. placei was established in lambs and resulted in the production of a small number of hybrids among their offspring.
Collapse
|
8
|
Llorens C, Arcos SC, Robertson L, Ramos R, Futami R, Soriano B, Ciordia S, Careche M, González-Muñoz M, Jiménez-Ruiz Y, Carballeda-Sangiao N, Moneo I, Albar JP, Blaxter M, Navas A. Functional insights into the infective larval stage of Anisakis simplex s.s., Anisakis pegreffii and their hybrids based on gene expression patterns. BMC Genomics 2018; 19:592. [PMID: 30086708 PMCID: PMC6080401 DOI: 10.1186/s12864-018-4970-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Anisakis simplex sensu stricto and Anisakis pegreffii are sibling species of nematodes parasitic on marine mammals. Zoonotic human infection with third stage infective larvae causes anisakiasis, a debilitating and potentially fatal disease. These 2 species show evidence of hybridisation in geographical areas where they are sympatric. How the species and their hybrids differ is still poorly understood. RESULTS Third stage larvae of Anisakis simplex s.s., Anisakis pegreffii and hybrids were sampled from Merluccius merluccius (Teleosti) hosts captured in waters of the FAO 27 geographical area. Specimens of each species and hybrids were distinguished with a diagnostic genetic marker (ITS). RNA was extracted from pools of 10 individuals of each taxon. Transcriptomes were generated using Illumina RNA-Seq, and assembled de novo. A joint assembly (here called merged transcriptome) of all 3 samples was also generated. The inferred transcript sets were functionally annotated and compared globally and also on subsets of secreted proteins and putative allergen families. While intermediary metabolism appeared to be typical for nematodes in the 3 evaluated taxa, their transcriptomes present strong levels of differential expression and enrichment, mainly of transcripts related to metabolic pathways and gene ontologies associated to energy metabolism and other pathways, with significant presence of excreted/secreted proteins, most of them allergens. The allergome of the 2 species and their hybrids has also been thoroughly studied; at least 74 different allergen families were identified in the transcriptomes. CONCLUSIONS A. simplex s.s., A. pegreffi and their hybrids differ in gene expression patterns in the L3 stage. Strong parent-of-origin effects were observed: A. pegreffi alleles dominate in the expression patterns of hybrids albeit the latter, and A. pegreffii also display significant differences indicating that hybrids are intermediate biological entities among their parental species, and thus of outstanding interest in the study of speciation in nematodes. Analyses of differential expression based on genes coding for secreted proteins suggests that co-infections presents different repertoires of released protein to the host environment. Both species and their hybrids, share more allergen genes than previously thought and are likely to induce overlapping disease responses.
Collapse
Affiliation(s)
- C. Llorens
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia Spain
| | - S. C. Arcos
- Departamento Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - L. Robertson
- Departamento Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - R. Ramos
- Unidad de Genómica, Campus de Cantoblanco, Scientific Park of Madrid, Calle Faraday, 7, Campus de Cantoblanco, 28049 Madrid, Spain
| | - R. Futami
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia Spain
| | - B. Soriano
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia Spain
| | - S. Ciordia
- Unidad de Proteomica Centro Nacional de Biotecnología, CSIC, Calle Darwin, 3, 28049 Madrid, Spain
| | - M. Careche
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Calle José Antonio Novais, 10, 28040 Madrid, Spain
| | - M. González-Muñoz
- Servicio de Immunología, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Y. Jiménez-Ruiz
- Departamento Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - N. Carballeda-Sangiao
- Servicio de Immunología, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - I. Moneo
- Servicio de Immunología, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - J. P. Albar
- Unidad de Proteomica Centro Nacional de Biotecnología, CSIC, Calle Darwin, 3, 28049 Madrid, Spain
| | - M. Blaxter
- Edinburgh Genomics, and Institute of Evolutionary Biology, School of Biological Sciences, The King’s Buildings, The University of Edinburgh, Edinburgh, EH9 3JT UK
| | - A. Navas
- Departamento Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| |
Collapse
|
9
|
Mattiucci S, Cipriani P, Levsen A, Paoletti M, Nascetti G. Molecular Epidemiology of Anisakis and Anisakiasis: An Ecological and Evolutionary Road Map. ADVANCES IN PARASITOLOGY 2018. [PMID: 29530312 DOI: 10.1016/bs.apar.2017.12.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review addresses the biodiversity, biology, distribution, ecology, epidemiology, and consumer health significance of the so far known species of Anisakis, both in their natural hosts and in human accidental host populations, worldwide. These key aspects of the Anisakis species' biology are highlighted, since we consider them as main driving forces behind which most of the research in this field has been carried out over the past decade. From a public health perspective, the human disease caused by Anisakis species (anisakiasis) appears to be considerably underreported and underestimated in many countries or regions around the globe. Indeed, when considering the importance of marine fish species as part of the everyday diet in many coastal communities around the globe, there still exist significant knowledge gaps as to local epidemiological and ecological drivers of the transmission of Anisakis spp. to humans. We further identify some key knowledge gaps related to Anisakis species epidemiology in both natural and accidental hosts, to be filled in light of new 'omic' technologies yet to be fully developed. Moreover, we suggest that future Anisakis research takes a 'holistic' approach by integrating genetic, ecological, immunobiological, and environmental factors, thus allowing proper assessment of the epidemiology of Anisakis spp. in their natural hosts, in human populations, and in the marine ecosystem, in both space and time.
Collapse
|
10
|
Osten-Sacken N, Heddergott M, Schleimer A, Anheyer-Behmenburg HE, Runge M, Horsburgh GJ, Camp L, Nadler SA, Frantz AC. Similar yet different: co-analysis of the genetic diversity and structure of an invasive nematode parasite and its invasive mammalian host. Int J Parasitol 2017; 48:233-243. [PMID: 29102623 DOI: 10.1016/j.ijpara.2017.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 01/13/2023]
Abstract
Animal parasitic nematodes can cause serious diseases and their emergence in new areas can be an issue of major concern for biodiversity conservation and human health. Their ability to adapt to new environments and hosts is likely to be affected by their degree of genetic diversity, with gene flow between distinct populations counteracting genetic drift and increasing effective population size. The raccoon roundworm (Baylisascaris procyonis), a gastrointestinal parasite of the raccoon (Procyon lotor), has increased its global geographic range after being translocated with its host. The raccoon has been introduced multiple times to Germany, but not all its populations are infected with the parasite. While fewer introduced individuals may have led to reduced diversity in the parasite, admixture between different founder populations may have counteracted genetic drift and bottlenecks. Here, we analyse the population genetic structure of the roundworm and its raccoon host at the intersection of distinct raccoon populations infected with B. procyonis. We found evidence for two parasite clusters resulting from independent introductions. Both clusters exhibited an extremely low genetic diversity, suggesting small founding populations subjected to inbreeding and genetic drift with no, or very limited, genetic influx from population admixture. Comparison of the population genetic structures of both host and parasite suggested that the parasite spread to an uninfected raccoon founder population. On the other hand, an almost perfect match between cluster boundaries also suggested that the population genetic structure of B. procyonis has remained stable since its introduction, mirroring that of its raccoon host.
Collapse
Affiliation(s)
- Natalia Osten-Sacken
- Musée National d, Histoire Naturelle, 25 rue Muenster, L-2160 Luxembourg, Luxembourg; Fondation Faune-Flore, 25 rue Muenster, L-2160 Luxembourg, Luxembourg
| | - Mike Heddergott
- Musée National d, Histoire Naturelle, 25 rue Muenster, L-2160 Luxembourg, Luxembourg
| | - Anna Schleimer
- Musée National d, Histoire Naturelle, 25 rue Muenster, L-2160 Luxembourg, Luxembourg
| | - Helena E Anheyer-Behmenburg
- Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, D-30173 Hannover, Germany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, D-30173 Hannover, Germany
| | - Gavin J Horsburgh
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Lauren Camp
- Department of Entomology and Nematology, University of California, One Shields Avenue, Davis, CA 95616-8668, USA
| | - Steven A Nadler
- Department of Entomology and Nematology, University of California, One Shields Avenue, Davis, CA 95616-8668, USA
| | - Alain C Frantz
- Musée National d, Histoire Naturelle, 25 rue Muenster, L-2160 Luxembourg, Luxembourg.
| |
Collapse
|
11
|
No more time to stay 'single' in the detection of Anisakis pegreffii, A. simplex (s. s.) and hybridization events between them: a multi-marker nuclear genotyping approach. Parasitology 2017; 143:998-1011. [PMID: 27046418 PMCID: PMC4890558 DOI: 10.1017/s0031182016000330] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A multi-marker nuclear genotyping approach was performed on larval and adult specimens of Anisakis spp. (N = 689) collected from fish and cetaceans in allopatric and sympatric areas of the two species Anisakis pegreffii and Anisakis simplex (s. s.), in order to: (1) identify specimens belonging to the parental taxa by using nuclear markers (allozymes loci) and sequence analysis of a new diagnostic nuclear DNA locus (i.e. partial sequence of the EF1 α-1 nDNA region) and (2) recognize hybrid categories. According to the Bayesian clustering algorithms, based on those markers, most of the individuals (N = 678) were identified as the parental species [i.e. A. pegreffii or A. simplex (s. s.)], whereas a smaller portion (N = 11) were recognized as F1 hybrids. Discordant results were obtained when using the polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) of the internal transcribed spacer (ITS) ribosomal DNA (rDNA) on the same specimens, which indicated the occurrence of a large number of 'hybrids' both in sympatry and allopatry. These findings raise the question of possible misidentification of specimens belonging to the two parental Anisakis and their hybrid categories derived from the application of that single marker (i.e. PCR-RFLPs analysis of the ITS of rDNA). Finally, Bayesian clustering, using allozymes and EF1 α-1 nDNA markers, has demonstrated that hybridization between A. pegreffii and A. simplex (s. s.) is a contemporary phenomenon in sympatric areas, while no introgressive hybridization takes place between the two species.
Collapse
|
12
|
Yin F, Gasser RB, Li F, Bao M, Huang W, Zou F, Zhao G, Wang C, Yang X, Zhou Y, Zhao J, Fang R, Hu M. Population structure of Haemonchus contortus from seven geographical regions in China, determined on the basis of microsatellite markers. Parasit Vectors 2016; 9:586. [PMID: 27846862 PMCID: PMC5111246 DOI: 10.1186/s13071-016-1864-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022] Open
Abstract
Background Studying genetic variation within and among Haemonchus contortus populations can inform some aspects of this parasite’s population genetics and epidemiology. However, almost nothing is known about such variation in China. Methods Adult males of H. contortus (n = 184) representing seven distinct populations in China were collected, and genetic variation within and among these populations was explored using eight distinct microsatellite markers. Results Genetic parameters, such as heterozygosity and inbreeding coefficient (FIS) indicated that all eight microsatellites were highly polymorphic. Various analyses (AMOVA, FST, phylogenetic, structure, mantel test and population dynamics) revealed high within-population variation, low population genetic differentiation and high gene flow for H. contortus in China. Conclusions This study provides a first snapshot of the genetic substructuring of H. contortus populations in China using polymorphic markers, and might provide a starting point for assessing genetic changes over space and time during or following the implementation of particular treatment or control strategies, or changes as a consequence of environmental, management and climatic factors. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1864-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fangyuan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Robin B Gasser
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Facai Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Min Bao
- College of Animal Sciences and Veterinary Medicine, Liaoling Medical College, Jingzhou, 121000, Liaoling Province, People's Republic of China
| | - Weiyi Huang
- Department of Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Nationality Autonomous Region, People's Republic of China
| | - Fengcai Zou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Guanghui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - Chunren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
13
|
Gracianne C, Jan P, Fournet S, Olivier E, Arnaud J, Porte C, Bardou‐Valette S, Denis M, Petit EJ. Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 2. Separating the relative effects of gene flow and genetic drift. Evol Appl 2016; 9:1005-16. [PMID: 27606008 PMCID: PMC4999530 DOI: 10.1111/eva.12401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/06/2016] [Indexed: 11/29/2022] Open
Abstract
Studying wild pathogen populations in natural ecosystems offers the opportunity to better understand the evolutionary dynamics of biotic diseases in crops and to enhance pest control strategies. We used simulations and genetic markers to investigate the spatial and temporal population genetic structure of wild populations of the beet cyst nematode Heterodera schachtii on a wild host plant species, the sea beet (Beta vulgaris spp. maritima), the wild ancestor of cultivated beets. Our analysis of the variation of eight microsatellite loci across four study sites showed that (i) wild H. schachtii populations displayed fine-scaled genetic structure with no evidence of substantial levels of gene flow beyond the scale of the host plant, and comparisons with simulations indicated that (ii) genetic drift substantially affected the residual signals of isolation-by-distance processes, leading to departures from migration-drift equilibrium. In contrast to what can be suspected for (crop) field populations, this showed that wild cyst nematodes have very low dispersal capabilities and are strongly disconnected from each other. Our results provide some key elements for designing pest control strategies, such as decreasing passive dispersal events to limit the spread of virulence among field nematode populations.
Collapse
Affiliation(s)
- Cécile Gracianne
- IGEPPINRA, Agrocampus OuestUniversité Rennes 1Le RheuFrance
- VetAgro Sup, UMR 1095, GDECClermont UniversitéClermont‐FerrandFrance
| | - Pierre‐Loup Jan
- IGEPPINRA, Agrocampus OuestUniversité Rennes 1Le RheuFrance
- ESE, Ecology and Ecosystems HealthAgrocampus OuestINRARennesFrance
| | | | - Eric Olivier
- IGEPPINRA, Agrocampus OuestUniversité Rennes 1Le RheuFrance
| | - Jean‐François Arnaud
- UMR CNRS 8198 ÉvolutionÉcologie et PaléontologieUniversité Lille 1 ‐ Sciences et TechnologiesVilleneuve d'Ascq CedexFrance
| | | | | | | | - Eric J. Petit
- ESE, Ecology and Ecosystems HealthAgrocampus OuestINRARennesFrance
| |
Collapse
|
14
|
Origin of a major infectious disease in vertebrates: The timing of Cryptosporidium evolution and its hosts. Parasitology 2016; 143:1683-1690. [DOI: 10.1017/s0031182016001323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYProtozoan parasites of the genus Cryptosporidium infect all vertebrate groups and display some host specificity in their infections. It is therefore possible to assume that Cryptosporidium parasites evolved intimately aside with vertebrate lineages. Here we propose a scenario of Cryptosporidium–Vertebrata coevolution testing the hypothesis that the origin of Cryptosporidium parasites follows that of the origin of modern vertebrates. We use calibrated molecular clocks and cophylogeny analyses to provide and compare age estimates and patterns of association between these clades. Our study provides strong support for the evolution of parasitism of Cryptosporidium with the rise of the vertebrates about 600 million years ago (Mya). Interestingly, periods of increased diversification in Cryptosporidium coincides with diversification of crown mammalian and avian orders after the Cretaceous-Palaeogene (K-Pg) boundary, suggesting that adaptive radiation to new mammalian and avian hosts triggered the diversification of this parasite lineage. Despite evidence for ongoing host shifts we also found significant correlation between protozoan parasites and vertebrate hosts trees in the cophylogenetic analysis. These results help us to understand the underlying macroevolutionary mechanisms driving evolution in Cryptosporidium and may have important implications for the ecology, dynamics and epidemiology of cryptosporidiosis disease in humans and other animals.
Collapse
|
15
|
Ács Z, Hayward A, Sugár L. Genetic diversity and population genetics of large lungworms (Dictyocaulus, Nematoda) in wild deer in Hungary. Parasitol Res 2016; 115:3295-312. [PMID: 27150969 PMCID: PMC4980422 DOI: 10.1007/s00436-016-5088-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/21/2016] [Indexed: 11/29/2022]
Abstract
Dictyocaulus nematode worms live as parasites in the lower airways of ungulates and can cause significant disease in both wild and farmed hosts. This study represents the first population genetic analysis of large lungworms in wildlife. Specifically, we quantify genetic variation in Dictyocaulus lungworms from wild deer (red deer, fallow deer and roe deer) in Hungary, based on mitochondrial cytochrome c oxidase subunit 1 (cox1) sequence data, using population genetic and phylogenetic analyses. The studied Dictyocaulus taxa display considerable genetic diversity. At least one cryptic species and a new parasite–host relationship are revealed by our molecular study. Population genetic analyses for Dictyocaulus eckerti revealed high gene flow amongst weakly structured spatial populations that utilise the three host deer species considered here. Our results suggest that D. eckerti is a widespread generalist parasite in ungulates, with a diverse genetic backround and high evolutionary potential. In contrast, evidence of cryptic genetic structure at regional geographic scales was observed for Dictyocaulus capreolus, which infects just one host species, suggesting it is a specialist within the studied area. D. capreolus displayed lower genetic diversity overall, with only moderate gene flow compared to the closely related D. eckerti. We suggest that the differing vagility and dispersal behaviour of hosts are important contributing factors to the population structure of lungworms, and possibly other nematode parasites with single-host life cycles. Our findings are of relevance for the management of lungworms in deer farms and wild deer populations.
Collapse
Affiliation(s)
- Zoltán Ács
- Department of Wildlife Biology and Ethology, Faculty of Animal and Environmental Sciences, Kaposvar University, 7400, Kaposvár, Hungary
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9E2, UK.
| | - László Sugár
- Department of Wildlife Biology and Ethology, Faculty of Animal and Environmental Sciences, Kaposvar University, 7400, Kaposvár, Hungary
| |
Collapse
|
16
|
Dharmarajan G, Beasley JC, Beatty WS, Olson ZH, Fike JA, Rhodes OE. Genetic co‐structuring in host‐parasite systems: Empirical data from raccoons and raccoon ticks. Ecosphere 2016. [DOI: 10.1002/ecs2.1269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Guha Dharmarajan
- Department of Forestry and Natural ResourcesPurdue University West Lafayette Indiana 47907 USA
- Department of Biological SciencesIndian Institute of Science Education and Research – Kolkata Mohanpur West Bengal 741246 India
| | - James C. Beasley
- Department of Forestry and Natural ResourcesPurdue University West Lafayette Indiana 47907 USA
- Savannah River Ecology LaboratoryWarnell School of Forestry and Natural ResourcesUniversity of Georgia Drawer E Aiken South Carolina 29802 USA
| | - William S. Beatty
- Department of Forestry and Natural ResourcesPurdue University West Lafayette Indiana 47907 USA
- Alaska Science CenterUnited States Geological Survey Anchorage Alaska 99508 USA
| | - Zachary H. Olson
- Department of Forestry and Natural ResourcesPurdue University West Lafayette Indiana 47907 USA
- University of New England Biddeford Maine 04005 USA
| | - Jennifer A. Fike
- Department of Forestry and Natural ResourcesPurdue University West Lafayette Indiana 47907 USA
- Fort Collins Science Center Fort Collins Colorado 80526 USA
| | - Olin E. Rhodes
- Department of Forestry and Natural ResourcesPurdue University West Lafayette Indiana 47907 USA
- Savannah River Ecology LaboratoryOdum School of EcologyUniversity of Georgia Drawer E Aiken South Carolina 29802 USA
| |
Collapse
|
17
|
Hawash MBF, Betson M, Al-Jubury A, Ketzis J, LeeWillingham A, Bertelsen MF, Cooper PJ, Littlewood DTJ, Zhu XQ, Nejsum P. Whipworms in humans and pigs: origins and demography. Parasit Vectors 2016; 9:37. [PMID: 26800683 PMCID: PMC4724142 DOI: 10.1186/s13071-016-1325-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
Background Trichuris suis and T. trichiura are two different whipworm species that infect pigs and humans, respectively. T. suis is found in pigs worldwide while T. trichiura is responsible for nearly 460 million infections in people, mainly in areas of poor sanitation in tropical and subtropical areas. The evolutionary relationship and the historical factors responsible for this worldwide distribution are poorly understood. In this study, we aimed to reconstruct the demographic history of Trichuris in humans and pigs, the evolutionary origin of Trichuris in these hosts and factors responsible for parasite dispersal globally. Methods Parts of the mitochondrial nad1 and rrnL genes were sequenced followed by population genetic and phylogenetic analyses. Populations of Trichuris examined were recovered from humans (n = 31), pigs (n = 58) and non-human primates (n = 49) in different countries on different continents, namely Denmark, USA, Uganda, Ecuador, China and St. Kitts (Caribbean). Additional sequences available from GenBank were incorporated into the analyses. Results We found no differentiation between human-derived Trichuris in Uganda and the majority of the Trichuris samples from non-human primates suggesting a common African origin of the parasite, which then was transmitted to Asia and further to South America. On the other hand, there was no differentiation between pig-derived Trichuris from Europe and the New World suggesting dispersal relates to human activities by transporting pigs and their parasites through colonisation and trade. Evidence for recent pig transport from China to Ecuador and from Europe to Uganda was also observed from their parasites. In contrast, there was high genetic differentiation between the pig Trichuris in Denmark and China in concordance with the host genetics. Conclusions We found evidence for an African origin of T. trichiura which were then transmitted with human ancestors to Asia and further to South America. A host shift to pigs may have occurred in Asia from where T. suis seems to have been transmitted globally by a combination of natural host dispersal and anthropogenic factors. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1325-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed B F Hawash
- Department of Veterinary Disease Biology, Faculty of Health Sciences, Copenhagen University, Dyrlaegevej 100, DK-1870, Frederiksberg C, Copenhagen, Denmark. .,Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Martha Betson
- Department of Production and Population Health, Royal Veterinary College, Hatfield, Hertfordshire, UK. .,School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK.
| | - Azmi Al-Jubury
- Department of Veterinary Disease Biology, Faculty of Health Sciences, Copenhagen University, Dyrlaegevej 100, DK-1870, Frederiksberg C, Copenhagen, Denmark.
| | - Jennifer Ketzis
- Ross University School of Veterinary Medicine, West Indies, Basseterre, St Kitts and Nevis.
| | - Arve LeeWillingham
- Ross University School of Veterinary Medicine, West Indies, Basseterre, St Kitts and Nevis.
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Copenhagen, Denmark.
| | - Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK.
| | | | - Xing-Quan Zhu
- Lanzhou Veterinary Research Institute, State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, P R China.
| | - Peter Nejsum
- Department of Veterinary Disease Biology, Faculty of Health Sciences, Copenhagen University, Dyrlaegevej 100, DK-1870, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
18
|
Reid K, Mitha JR, Greeff JM, de Waal PJ. Molecular genomics resource for the parasitic nematode Spirocerca lupi: Identification of 149 microsatellite loci using FIASCO and next generation sequencing. Mol Biochem Parasitol 2015; 203:1-4. [DOI: 10.1016/j.molbiopara.2015.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 11/24/2022]
|
19
|
Montarry J, Jan PL, Gracianne C, Overall ADJ, Bardou-Valette S, Olivier E, Fournet S, Grenier E, Petit EJ. Heterozygote deficits in cyst plant-parasitic nematodes: possible causes and consequences. Mol Ecol 2015; 24:1654-77. [PMID: 25735762 DOI: 10.1111/mec.13142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/14/2015] [Accepted: 02/23/2015] [Indexed: 11/29/2022]
Abstract
Deviations of genotypic frequencies from Hardy-Weinberg equilibrium (HWE) expectations could reveal important aspects of the biology of populations. Deviations from HWE due to heterozygote deficits have been recorded for three plant-parasitic nematode species. However, it has never been determined whether the observed deficits were due (i) to the presence of null alleles, (ii) to a high level of consanguinity and/or (iii) to a Wahlund effect. The aim of the present work was, while taking into the possible confounding effect of null alleles, to disentangle consanguinity and Wahlund effect in natural populations of those three economically important cyst nematodes using microsatellite markers: Globodera pallida, G. tabacum and Heterodera schachtii, pests of potato, tobacco and sugar beet, respectively. The results show a consistent pattern of heterozygote deficiency in the three nematode species sampled at the spatial scale of the host plant. We demonstrate that the prevalence of null alleles is weak and that heterozygote deficits do not have a single origin. Our results suggested that it is restricted dispersal that leads to heterozygote deficits through both consanguinity and substructure, which effects can be linked to soil movement, cyst density, and the number of generations per year. We discuss potential implications for the durability of plant resistances that are used to protect crops against parasites in which mating between relatives occur. While consanguineous mating leads to homozygosity at all loci, including loci governing avirulence/virulence, which favours the expression of virulence when recessive, the Wahlund effect is expected to have no particular effect on the adaptation of nematodes to resistances.
Collapse
Affiliation(s)
- Josselin Montarry
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), F-35653, Le Rheu, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Modelling the effects of mass drug administration on the molecular epidemiology of schistosomes. ADVANCES IN PARASITOLOGY 2015; 87:293-327. [PMID: 25765198 DOI: 10.1016/bs.apar.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As national governments scale up mass drug administration (MDA) programs aimed to combat neglected tropical diseases (NTDs), novel selection pressures on these parasites increase. To understand how parasite populations are affected by MDA and how to maximize the success of control programmes, it is imperative for epidemiological, molecular and mathematical modelling approaches to be combined. Modelling of parasite population genetic and genomic structure, particularly of the NTDs, has been limited through the availability of only a few molecular markers to date. The landscape of infectious disease research is being dramatically reshaped by next-generation sequencing technologies and our understanding of how repeated selective pressures are shaping parasite populations is radically altering. Genomics can provide high-resolution data on parasite population structure, and identify how loci may contribute to key phenotypes such as virulence and/or drug resistance. We discuss the incorporation of genetic and genomic data, focussing on the recently sequenced Schistosoma spp., into novel mathematical transmission models to inform our understanding of the impact of MDA and other control methods. We summarize what is known to date, the models that exist and how population genetics has given us an understanding of the effects of MDA on the parasites. We consider how genetic and genomic data have the potential to shape future research, highlighting key areas where data are lacking, and how future molecular epidemiology knowledge can aid understanding of transmission dynamics and the effects of MDA, ultimately informing public health policy makers of the best interventions for NTDs.
Collapse
|
21
|
Small ST, Tisch DJ, Zimmerman PA. Molecular epidemiology, phylogeny and evolution of the filarial nematode Wuchereria bancrofti. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 28:33-43. [PMID: 25176600 PMCID: PMC4257870 DOI: 10.1016/j.meegid.2014.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/17/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022]
Abstract
Wuchereria bancrofti (Wb) is the most widely distributed of the three nematodes known to cause lymphatic filariasis (LF), the other two being Brugia malayi and Brugia timori. Current tools available to monitor LF are limited to diagnostic tests targeting DNA repeats, filarial antigens, and anti-filarial antibodies. While these tools are useful for detection and surveillance, elimination programs have yet to take full advantage of molecular typing for inferring infection history, strain fingerprinting, and evolution. To date, molecular typing approaches have included whole mitochondrial genomes, genotyping, targeted sequencing, and random amplified polymorphic DNA (RAPDs). These studies have revealed much about Wb biology. For example, in one study in Papua New Guinea researchers identified 5 major strains that were widespread and many minor strains some of which exhibit geographic stratification. Genome data, while rare, has been utilized to reconstruct evolutionary relationships among taxa of the Onchocercidae (the clade of filarial nematodes) and identify gene synteny. Their phylogeny reveals that speciation from the common ancestor of both B. malayi and Wb occurred around 5-6 millions years ago with shared ancestry to other filarial nematodes as recent as 15 million years ago. These discoveries hold promise for gene discovery and identifying drug targets in species that are more amenable to in vivo experiments. Continued technological developments in whole genome sequencing and data analysis will likely replace many other forms of molecular typing, multiplying the amount of data available on population structure, genetic diversity, and phylogenetics. Once widely available, the addition of population genetic data from genomic studies should hasten the elimination of LF parasites like Wb. Infectious disease control programs have benefited greatly from population genetics data and recently from population genomics data. However, while there is currently a surplus of data for diseases like malaria and HIV, there is a scarcity of this data for filarial nematodes. With the falling cost of genome sequencing, research on filarial nematodes could benefit from the addition of population genetics statistics and phylogenetics especially in dealing with elimination programs. A comprehensive review focusing on population genetics of filarial nematode does not yet exist. Here our goal is to provide a current overview of the molecular epidemiology of W. bancrofti (Wb) the primary causative agent of LF. We begin by reviewing studies utilizing molecular typing techniques with specific focus on genomic and population datasets. Next, we used whole mitochondrial genome data to construct a phylogeny and examine the evolutionary history of the Onchocercidae. Then, we provide a perspective to aid in understanding how population genetic techniques translate to modern epidemiology. Finally, we introduce the concept of genomic epidemiology and provide some examples that will aid in future studies of Wb.
Collapse
Affiliation(s)
- Scott T Small
- The Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, OH, United States.
| | - Daniel J Tisch
- The Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Peter A Zimmerman
- The Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| |
Collapse
|
22
|
Haynes BT, Marcus AD, Higgins DP, Gongora J, Gray R, Šlapeta J. Unexpected absence of genetic separation of a highly diverse population of hookworms from geographically isolated hosts. INFECTION GENETICS AND EVOLUTION 2014; 28:192-200. [PMID: 25262830 DOI: 10.1016/j.meegid.2014.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/29/2014] [Accepted: 09/17/2014] [Indexed: 11/29/2022]
Abstract
The high natal site fidelity of endangered Australian sea lions (Neophoca cinerea) along the southern Australian coast suggests that their maternally transmitted parasitic species, such as hookworms, will have restricted potential for dispersal. If this is the case, we would expect to find a hookworm haplotype structure corresponding to that of the host mtDNA haplotype structure; that is, restricted among geographically separated colonies. In this study, we used a fragment of the cytochrome c oxidase I mitochondrial DNA (mtDNA) gene to investigate the diversity of hookworms (Uncinaria sanguinis) in N. cinerea to assess the importance of host distribution and ecology on the evolutionary history of the parasite. High haplotype (h=0.986) and nucleotide diversity (π=0.013) were seen, with 45 unique hookworm mtDNA haplotypes across N. cinerea colonies; with most of the variation (78%) arising from variability within hookworms from individual colonies. This is supported by the low genetic differentiation co-efficient (GST=0.007) and a high gene flow (Nm=35.25) indicating a high migration rate between the populations of hookworms. The haplotype network demonstrated no clear distribution and delineation of haplotypes according to geographical location. Our data rejects the vicariance hypothesis; that female host natal site fidelity and the transmammary route of infection restrict hookworm gene flow between N. cinerea populations and highlights the value of studies of parasite diversity and dispersal to challenge our understanding of parasite and host ecology.
Collapse
Affiliation(s)
- Benjamin T Haynes
- Faculty of Veterinary Science, The University of Sydney, New South Wales, Australia
| | - Alan D Marcus
- Faculty of Veterinary Science, The University of Sydney, New South Wales, Australia
| | - Damien P Higgins
- Faculty of Veterinary Science, The University of Sydney, New South Wales, Australia
| | - Jaime Gongora
- Faculty of Veterinary Science, The University of Sydney, New South Wales, Australia
| | - Rachael Gray
- Faculty of Veterinary Science, The University of Sydney, New South Wales, Australia
| | - Jan Šlapeta
- Faculty of Veterinary Science, The University of Sydney, New South Wales, Australia.
| |
Collapse
|
23
|
Šnábel V, Utsuki D, Kato T, Sunaga F, Ooi HK, Gambetta B, Taira K. Molecular identification of Heterakis spumosa obtained from brown rats (Rattus norvegicus) in Japan and its infectivity in experimental mice. Parasitol Res 2014; 113:3449-55. [PMID: 24997621 DOI: 10.1007/s00436-014-4014-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Heterakis spumosa is a nematode of invasive rodents, mainly affiliated with Rattus spp. of Asian origin. Despite the ecological importance and cosmopolitan distribution, little information is available on the genetic characteristics and infectivity to experimental animals of this roundworm. Heterakis isolates obtained from naturally infected brown rats caught in 2007 in the city of Sagamihara, east central Honshu, Japan, and maintained by laboratory passages were subjected to mitochondrial sequence analysis and experimental infection in mice. Sequencing of the cox1 gene revealed that nucleotides of H. spumosa and previously examined Heterakis isolonche isolates from gallinaceous birds in Japan differed by 11.2-12.2% that conforms to the range expected for interspecific differences. The two H. spumosa isolates differed by a single 138T/C non-synonymous substitution in the 393-bp mt sequence. In a dendrogram, the H. spumosa samples formed a subcluster with members of the nematode superfamily Heterakoidea, H. isolonche and Ascaridia galli. In an experimental infection study, ICR, AKR, B10.BR and C57BL/6 mice strains were inoculated with 200 H. spumosa eggs/head and necropsied at 14 and 90 days post-inoculation (DPI) when the number of worms was recorded. Eggs were initially detected in faeces from 32-35 DPI in ICR, AKR and B10.BR mice and the highest mean number of eggs per gram of faeces (EPG) was 4,800 at 38 DPI, 2,200 at 58 DPI and 800 at 44 and 72 DPI in ICR, AKR and B10.BR mice, respectively. No eggs were observed in faeces of the C57BL/6 mouse strain during the experiment. A similar number of juvenile worms were isolated from all mouse strains at 14 DPI, whereas no adult worms were detected in C57BL/6 mice at 90 DPI.
Collapse
Affiliation(s)
- Viliam Šnábel
- Institute of Parasitology, Slovak Academy of Sciences, 040 01, Košice, Slovakia,
| | | | | | | | | | | | | |
Collapse
|
24
|
Besnard G, Jühling F, Chapuis É, Zedane L, Lhuillier É, Mateille T, Bellafiore S. Fast assembly of the mitochondrial genome of a plant parasitic nematode (Meloidogyne graminicola) using next generation sequencing. C R Biol 2014; 337:295-301. [PMID: 24841955 DOI: 10.1016/j.crvi.2014.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
Abstract
Little is known about the variations of nematode mitogenomes (mtDNA). Sequencing a complete mtDNA using a PCR approach remains a challenge due to frequent genome reorganizations and low sequence similarities between divergent nematode lineages. Here, a genome skimming approach based on HiSeq sequencing (shotgun) was used to assemble de novo the first complete mtDNA sequence of a root-knot nematode (Meloidogyne graminicola). An AT-rich genome (84.3%) of 20,030 bp was obtained with a mean sequencing depth superior to 300. Thirty-six genes were identified with a semi-automated approach. A comparison with a gene map of the M. javanica mitochondrial genome indicates that the gene order is conserved within this nematode lineage. However, deep genome rearrangements were observed when comparing with other species of the superfamily Hoplolaimoidea. Repeat elements of 111 bp and 94 bp were found in a long non-coding region of 7.5 kb, as similarly reported in M. javanica and M. hapla. This study points out the power of next generation sequencing to produce complete mitochondrial genomes, even without a reference sequence, and possibly opening new avenues for species/race identification, phylogenetics and population genetics of nematodes.
Collapse
Affiliation(s)
- Guillaume Besnard
- CNRS-UPS-ENFA, UMR5174, EDB (Laboratoire Évolution & Diversité biologique), 118, route de Narbonne, 31062 Toulouse, France.
| | - Frank Jühling
- University of Leipzig, Interdisciplinary Center for Bioinformatics, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Élodie Chapuis
- IRD, UMR186 "Résistance des plantes aux bioagresseurs", 911, avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Loubab Zedane
- CNRS-UPS-ENFA, UMR5174, EDB (Laboratoire Évolution & Diversité biologique), 118, route de Narbonne, 31062 Toulouse, France
| | - Émeline Lhuillier
- INRA, GeT-PlaGe, UAR 1209 Département de génétique animale, INRA Auzeville, 31326 Castanet-Tolosan, France
| | - Thierry Mateille
- IRD, UMR 022 Centre de biologie pour la gestion des populations, campus de Baillarguet, CS30016, 34988 Montferrier-sur-Lez cedex, France
| | - Stéphane Bellafiore
- IRD, UMR186 "Résistance des plantes aux bioagresseurs", 911, avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| |
Collapse
|