1
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Tian Y, Zheng Z, Wang X, Liu S, Gu L, Mu J, Zheng X, Li Y, Shen S. Establishment and evaluation of glucose-modified nanocomposite liposomes for the treatment of cerebral malaria. J Nanobiotechnology 2022; 20:318. [PMID: 35794597 PMCID: PMC9258070 DOI: 10.1186/s12951-022-01493-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening neurological complication caused by Plasmodium falciparum. About 627,000 patients died of malaria in 2020. Currently, artemisinin and its derivatives are the front-line drugs used for the treatment of cerebral malaria. However, they cannot target the brain, which decreases their effectiveness. Therefore, increasing their ability to target the brain by the nano-delivery system with brain-targeted materials is of great significance for enhancing the effects of antimalarials and reducing CM mortality. This study used glucose transporter 1 (GLUT1) on the blood-brain barrier as a target for a synthesized cholesterol-undecanoic acid-glucose conjugate. The molecular dynamics simulation found that the structural fragment of glucose in the conjugate faced the outside the phospholipid bilayers, which was conducive to the recognition of brain-targeted liposomes by GLUT1. The fluorescence intensity of the brain-targeted liposomes (na-ATS/TMP@lipoBX) in the mouse brain was significantly higher than that of the non-targeted liposomes (na-ATS/TMP@lipo) in vivo (P < 0.001) after intranasal administration. The infection and recurrence rate of the mice receiving na-ATS/TMP@lipoBX treatment were significantly decreased, which had more advantages than those of other administration groups. The analysis of pharmacokinetic data showed that na-ATS/TMP@lipoBX could enter the brain in both systemic circulation and nasal-brain pathway to treat malaria. Taken together, these results in this study provide a new approach to the treatment of cerebral malaria.
Collapse
Affiliation(s)
- Ya Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- The Hospital of Nanbu County, Sichuan, People's Republic of China
| | - Zhongyuan Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xi Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Shuzhi Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Liwei Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jing Mu
- Chinese Traditional Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xiaojun Zheng
- Pharmacy Department of the first hospital of Shanxi Medical University, Shanxi, 10114, People's Republic of China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Shuo Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
3
|
Abstract
Systemic inflammation mediated by Plasmodium parasites is central to malaria disease and its complications. Plasmodium parasites reside in erythrocytes and can theoretically reach all host tissues via the circulation. However, actual interactions between parasitized erythrocytes and host tissues, along with the consequent damage and pathological changes, are limited locally to specific tissue sites. Such tissue specificity of the parasite can alter the outcome of malaria disease, determining whether acute or chronic complications occur. Here, we give an overview of the recent progress that has been made in understanding tissue-specific immunopathology during Plasmodium infection. As knowledge on tissue-specific host-parasite interactions accumulates, better treatment modalities and targets may emerge for intervention in malaria disease.
Collapse
|
4
|
Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria. Sci Rep 2015; 5:12671. [PMID: 26227888 PMCID: PMC4521148 DOI: 10.1038/srep12671] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/01/2015] [Indexed: 11/08/2022] Open
Abstract
Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15–20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8+ T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM.
Collapse
|