1
|
Afonin DA, Gerasimov ES, Škodová-Sveráková I, Záhonová K, Gahura O, Albanaz ATS, Myšková E, Bykova A, Paris Z, Lukeš J, Opperdoes FR, Horváth A, Zimmer SL, Yurchenko V. Blastocrithidia nonstop mitochondrial genome and its expression are remarkably insulated from nuclear codon reassignment. Nucleic Acids Res 2024; 52:3870-3885. [PMID: 38452217 DOI: 10.1093/nar/gkae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.
Collapse
MESH Headings
- Genome, Mitochondrial
- RNA Editing
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Open Reading Frames/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Trypanosomatina/genetics
- Trypanosomatina/metabolism
- Codon/genetics
- Mitochondria/genetics
- Mitochondria/metabolism
- Codon, Terminator/genetics
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- Genetic Code
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
Collapse
Affiliation(s)
- Dmitry A Afonin
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny S Gerasimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV 252 50 Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, T6G 2R3 Edmonton, Alberta, Canada
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
| | - Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
| | - Eva Myšková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
| | - Anastassia Bykova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| | - Fred R Opperdoes
- De Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Sara L Zimmer
- University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
| |
Collapse
|
2
|
Chrzanowska-Lightowlers ZM, Lightowlers RN. Mitochondrial RNA maturation. RNA Biol 2024; 21:28-39. [PMID: 39385590 PMCID: PMC11469412 DOI: 10.1080/15476286.2024.2414157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The vast majority of oxygen-utilizing eukaryotes need to express their own mitochondrial genome, mtDNA, to survive. In comparison to size of their nuclear genome, mtDNA is minimal, even in the most exceptional examples. Having evolved from bacteria in an endosymbiotic event, it might be expected that the process of mtDNA expression would be relatively simple. The aim of this short review is to illustrate just how wrong this assumption is. The production of functional mitochondrial RNA across species evolved in many directions. Organelles use a dizzying array of RNA processing, modifying, editing, splicing and maturation events that largely require the import of nuclear-encoded proteins from the cytosol. These processes are sometimes driven by the unusual behaviour of the mitochondrial genome from which the RNA is originally transcribed, but in many examples the complex processes that are essential for the production of functional RNA in the organelle, are fascinating and bewildering.
Collapse
Affiliation(s)
- Zofia M. Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert N. Lightowlers
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Aeschlimann S, Stettler P, Schneider A. DNA segregation in mitochondria and beyond: insights from the trypanosomal tripartite attachment complex. Trends Biochem Sci 2023; 48:1058-1070. [PMID: 37775421 DOI: 10.1016/j.tibs.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
The tripartite attachment complex (TAC) of the single mitochondrion of trypanosomes allows precise segregation of its single nucleoid mitochondrial genome during cytokinesis. It couples the segregation of the duplicated mitochondrial genome to the segregation of the basal bodies of the flagella. Here, we provide a model of the molecular architecture of the TAC that explains how its eight essential subunits connect the basal body, across the mitochondrial membranes, with the mitochondrial genome. We also discuss how the TAC subunits are imported into the mitochondrion and how they assemble to form a new TAC. Finally, we present a comparative analysis of the trypanosomal TAC with open and closed mitotic spindles, which reveals conserved concepts between these diverse DNA segregation systems.
Collapse
Affiliation(s)
- Salome Aeschlimann
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Philip Stettler
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern CH-3012, Switzerland
| | - André Schneider
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland; Institute for Advanced Study (Wissenschaftskolleg) Berlin, D-14193 Berlin, Germany.
| |
Collapse
|
4
|
Abstract
Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
5
|
Ehlert C, Poorinmohammad N, Mohammaei S, Zhang L, Salavati R. Structure-Function Analysis of RBP7910: An Editosome Z-Binding Protein in Trypanosomatids. Molecules 2023; 28:6963. [PMID: 37836806 PMCID: PMC10574248 DOI: 10.3390/molecules28196963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
RNA editing, a unique post-transcriptional modification, is observed in trypanosomatid parasites as a crucial procedure for the maturation of mitochondrial mRNAs. The editosome protein complex, involving multiple protein components, plays a key role in this process. In Trypanosoma brucei, a putative Z-DNA binding protein known as RBP7910 is associated with the editosome. However, the specific Z-DNA/Z-RNA binding activity and the interacting interface of RBP7910 have yet to be determined. In this study, we conducted a comparative analysis of the binding behavior of RBP7910 with different potential ligands using microscale thermophoresis (MST). Additionally, we generated a 3D model of the protein, revealing potential Z-α and Z-β nucleic acid-binding domains of RBP7910. RBP7910 belongs to the winged-helix-turn-helix (HTH) superfamily of proteins with an α1α2α3β1β2 topology. Finally, using docking techniques, potential interacting surface regions of RBP7910 with notable oligonucleotide ligands were identified. Our findings indicate that RBP7910 exhibits a notable affinity for (CG)n Z-DNA, both in single-stranded and double-stranded forms. Moreover, we observed a broader interacting interface across its Z-α domain when bound to Z-DNA/Z-RNA compared to when bound to non-Z-form nucleic acid ligands.
Collapse
Affiliation(s)
- Curtis Ehlert
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada; (C.E.); (N.P.); (S.M.); (L.Z.)
| | - Naghmeh Poorinmohammad
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada; (C.E.); (N.P.); (S.M.); (L.Z.)
| | - Saba Mohammaei
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada; (C.E.); (N.P.); (S.M.); (L.Z.)
| | - Linhua Zhang
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada; (C.E.); (N.P.); (S.M.); (L.Z.)
| | - Reza Salavati
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada; (C.E.); (N.P.); (S.M.); (L.Z.)
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
6
|
Davidge B, McDermott SM, Carnes J, Lewis I, Tracy M, Stuart KD. Multiple domains of the integral KREPA3 protein are critical for the structure and precise functions of RNA editing catalytic complexes in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2023; 29:1591-1609. [PMID: 37474258 PMCID: PMC10578492 DOI: 10.1261/rna.079691.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
The gRNA directed U-insertion and deletion editing of mitochondrial mRNAs that is essential in different life-cycle stages for the protozoan parasite Trypanosoma brucei is performed by three similar multiprotein catalytic complexes (CCs) that contain the requisite enzymes. These CCs also contain a common set of eight proteins that have no apparent direct catalytic function, including six that have an OB-fold domain. We show here that one of these OB-fold proteins, KREPA3 (A3), has structural homology to other editing proteins, is essential for editing, and is multifunctional. We investigated A3 function by analyzing the effects of single amino acid loss of function mutations, most of which were identified by screening bloodstream form (BF) parasites for loss of growth following random mutagenesis. Mutations in the zinc fingers (ZFs), an intrinsically disordered region (IDR), and several within or near the carboxy-terminal OB-fold domain variably impacted CC structural integrity and editing. Some mutations resulted in almost complete loss of CCs and its proteins and editing, whereas others retained CCs but had aberrant editing. All but a mutation which is near the OB-fold affected growth and editing in BF but not procyclic form (PF) parasites. These data indicate that multiple positions within A3 have essential functions that contribute to the structural integrity of CCs, the precision of editing and the developmental differences in editing between BF and PF stages.
Collapse
Affiliation(s)
- Brittney Davidge
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Isaac Lewis
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Maxwell Tracy
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Kenneth D Stuart
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Department of Global Health, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
7
|
Brogli R, Cristodero M, Schneider A, Polacek N. A ribosome-bound tRNA half stimulates mitochondrial translation during stress recovery in Trypanosoma brucei. Cell Rep 2023; 42:113112. [PMID: 37703180 DOI: 10.1016/j.celrep.2023.113112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei and its disease-causing relatives are among the few organisms that barely regulate the transcription of protein-coding genes. Yet, alterations in its gene expression are essential to survive in different host environments. Recently, tRNA-derived RNAs have been implicated as regulators of many cellular processes within and beyond translation. Previously, we identified the tRNAThr-3'-half (AGU) as a ribosome-associated non-coding RNA able to enhance global translation. Here we report that the tRNAThr-3'-half is generated upon starvation inside the mitochondria. The tRNAThr-3'-half associates with mitochondrial ribosomes and stimulates translation during stress recovery, positively affecting mitochondrial activity and, consequently, cellular energy production capacity. Our results describe an organelle ribosome-associated ncRNA involved in translation regulation to boost the central hub of energy metabolism as an immediate stress recovery response.
Collapse
Affiliation(s)
- Rebecca Brogli
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; Graduate School for Cellular and Biochemical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Marina Cristodero
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
8
|
Davidge B, McDermott SM, Carnes J, Lewis I, Tracy M, Stuart KD. Multiple domains of the integral KREPA3 protein are critical for the structure and precise functions of RNA Editing Catalytic Complexes in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537538. [PMID: 37131796 PMCID: PMC10153193 DOI: 10.1101/2023.04.19.537538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The gRNA directed U-insertion and deletion editing of mitochondrial mRNAs that is essential in different life cycle stages for the protozoan parasite Trypanosoma brucei is performed by three similar multi-protein catalytic complexes (CCs) that contain the requisite enzymes. These CCs also contain a common set of eight proteins that have no apparent direct catalytic function, including six that have an OB-fold domain. We show here that one of these OB-fold proteins, KREPA3 (A3), has structural homology to other editing proteins, is essential for editing and is multifunctional. We investigated A3 function by analyzing the effects of single amino acid loss of function mutations most of which were identified by screening bloodstream form (BF) parasites for loss of growth following random mutagenesis. Mutations in the ZFs, an intrinsically disordered region (IDR) and several within or near the C-terminal OB-fold domain variably impacted CC structural integrity and editing. Some mutations resulted in almost complete loss of CCs and its proteins and editing whereas others retained CCs but had aberrant editing. All but a mutation which is near the OB-fold affected growth and editing in BF but not procyclic form (PF) parasites. These data indicate that multiple positions within A3 have essential functions that contribute to the structural integrity of CCs, the precision of editing and the developmental differences in editing between BF and PF stages.
Collapse
Affiliation(s)
- Brittney Davidge
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Jason Carnes
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Isaac Lewis
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Maxwell Tracy
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Kenneth D Stuart
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
9
|
Salinas R, Cannistraci E, Schumacher MA. Structure of the T. brucei kinetoplastid RNA editing substrate-binding complex core component, RESC5. PLoS One 2023; 18:e0282155. [PMID: 36862634 PMCID: PMC9980740 DOI: 10.1371/journal.pone.0282155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Kinetoplastid protists such as Trypanosoma brucei undergo an unusual process of mitochondrial uridine (U) insertion and deletion editing termed kinetoplastid RNA editing (kRNA editing). This extensive form of editing, which is mediated by guide RNAs (gRNAs), can involve the insertion of hundreds of Us and deletion of tens of Us to form a functional mitochondrial mRNA transcript. kRNA editing is catalyzed by the 20 S editosome/RECC. However, gRNA directed, processive editing requires the RNA editing substrate binding complex (RESC), which is comprised of 6 core proteins, RESC1-RESC6. To date there are no structures of RESC proteins or complexes and because RESC proteins show no homology to proteins of known structure, their molecular architecture remains unknown. RESC5 is a key core component in forming the foundation of the RESC complex. To gain insight into the RESC5 protein we performed biochemical and structural studies. We show that RESC5 is monomeric and we report the T. brucei RESC5 crystal structure to 1.95 Å. RESC5 harbors a dimethylarginine dimethylaminohydrolase-like (DDAH) fold. DDAH enzymes hydrolyze methylated arginine residues produced during protein degradation. However, RESC5 is missing two key catalytic DDAH residues and does bind DDAH substrate or product. Implications of the fold for RESC5 function are discussed. This structure provides the first structural view of an RESC protein.
Collapse
Affiliation(s)
- Raul Salinas
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| | - Emily Cannistraci
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| |
Collapse
|
10
|
The Spliced Leader RNA Silencing (SLS) Pathway in Trypanosoma brucei Is Induced by Perturbations of Endoplasmic Reticulum, Golgi Complex, or Mitochondrial Protein Factors: Functional Analysis of SLS-Inducing Kinase PK3. mBio 2021; 12:e0260221. [PMID: 34844425 PMCID: PMC8630539 DOI: 10.1128/mbio.02602-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, all mRNAs are trans-spliced to generate a common 5′ exon derived from the spliced leader (SL) RNA. Perturbations of protein translocation across the endoplasmic reticulum (ER) induce the spliced leader RNA silencing (SLS) pathway. SLS activation is mediated by a serine-threonine kinase, PK3, which translocates from the cytosolic face of the ER to the nucleus, where it phosphorylates the TATA-binding protein TRF4, leading to the shutoff of SL RNA transcription, followed by induction of programmed cell death. Here, we demonstrate that SLS is also induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS. The PK3 kinase, which integrates SLS signals, is modified by phosphorylation on multiple sites. To determine which of the phosphorylation events activate PK3, several individual mutations or their combination were generated. These mutations failed to completely eliminate the phosphorylation or translocation of the kinase to the nucleus. The structures of PK3 kinase and its ATP binding domain were therefore modeled. A conserved phenylalanine at position 771 was proposed to interact with ATP, and the PK3F771L mutation completely eliminated phosphorylation under SLS, suggesting that the activation involves most if not all of the phosphorylation sites. The study suggests that the SLS occurs broadly in response to failures in protein sorting, folding, or modification across multiple compartments.
Collapse
|
11
|
Dubey AP, Tylec BL, McAdams NM, Sortino K, Read L. Trypanosome RNAEditing Substrate Binding Complex integrity and function depends on the upstream action of RESC10. Nucleic Acids Res 2021; 49:3557-3572. [PMID: 33677542 PMCID: PMC8034615 DOI: 10.1093/nar/gkab129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 01/17/2023] Open
Abstract
Uridine insertion/deletion editing of mitochondrial mRNAs is a characteristic feature of kinetoplastids, including Trypanosoma brucei. Editing is directed by trans-acting gRNAs and catalyzed by related RNA Editing Core Complexes (RECCs). The non-catalytic RNA Editing Substrate Binding Complex (RESC) coordinates interactions between RECC, gRNA and mRNA. RESC is a dynamic complex comprising GRBC (Guide RNA Binding Complex) and heterogeneous REMCs (RNA Editing Mediator Complexes). Here, we show that RESC10 is an essential, low abundance, RNA binding protein that exhibits RNase-sensitive and RNase-insensitive interactions with RESC proteins, albeit its minimal in vivo interaction with RESC13. RESC10 RNAi causes extensive RESC disorganization, including disruption of intra-GRBC protein-protein interactions, as well as mRNA depletion from GRBC and accumulation on REMCs. Analysis of mitochondrial RNAs at single nucleotide resolution reveals transcript-specific effects: RESC10 dramatically impacts editing progression in pan-edited RPS12 mRNA, but is critical for editing initiation in mRNAs with internally initiating gRNAs, pointing to distinct initiation mechanisms for these RNA classes. Correlations between sites at which editing pauses in RESC10 depleted cells and those in knockdowns of previously studied RESC proteins suggest that RESC10 acts upstream of these factors and that RESC is particularly important in promoting transitions between uridine insertion and deletion RECCs.
Collapse
Affiliation(s)
- Ashutosh P Dubey
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Brianna L Tylec
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Natalie M McAdams
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Katherine Sortino
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
12
|
Li SJ, Zhang X, Lukeš J, Li BQ, Wang JF, Qu LH, Hide G, Lai DH, Lun ZR. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Res 2020; 48:9747-9761. [PMID: 32853372 PMCID: PMC7515712 DOI: 10.1093/nar/gkaa700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Kinetoplastid flagellates are known for several unusual features, one of which is their complex mitochondrial genome, known as kinetoplast (k) DNA, composed of mutually catenated maxi- and minicircles. Trypanosoma lewisi is a member of the Stercorarian group of trypanosomes which is, based on human infections and experimental data, now considered a zoonotic pathogen. By assembling a total of 58 minicircle classes, which fall into two distinct categories, we describe a novel type of kDNA organization in T. lewisi. RNA-seq approaches allowed us to map the details of uridine insertion and deletion editing events upon the kDNA transcriptome. Moreover, sequencing of small RNA molecules enabled the identification of 169 unique guide (g) RNA genes, with two differently organized minicircle categories both encoding essential gRNAs. The unprecedented organization of minicircles and gRNAs in T. lewisi broadens our knowledge of the structure and expression of the mitochondrial genomes of these human and animal pathogens. Finally, a scenario describing the evolution of minicircles is presented.
Collapse
Affiliation(s)
- Su-Jin Li
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Xuan Zhang
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis) 37005, Czech Republic
| | - Bi-Qi Li
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Ju-Feng Wang
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| |
Collapse
|
13
|
Smith Jr. JT, Doleželová E, Tylec B, Bard JE, Chen R, Sun Y, Zíková A, Read LK. Developmental regulation of edited CYb and COIII mitochondrial mRNAs is achieved by distinct mechanisms in Trypanosoma brucei. Nucleic Acids Res 2020; 48:8704-8723. [PMID: 32738044 PMCID: PMC7470970 DOI: 10.1093/nar/gkaa641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma brucei is a parasitic protozoan that undergoes a complex life cycle involving insect and mammalian hosts that present dramatically different nutritional environments. Mitochondrial metabolism and gene expression are highly regulated to accommodate these environmental changes, including regulation of mRNAs that require extensive uridine insertion/deletion (U-indel) editing for their maturation. Here, we use high throughput sequencing and a method for promoting life cycle changes in vitro to assess the mechanisms and timing of developmentally regulated edited mRNA expression. We show that edited CYb mRNA is downregulated in mammalian bloodstream forms (BSF) at the level of editing initiation and/or edited mRNA stability. In contrast, edited COIII mRNAs are depleted in BSF by inhibition of editing progression. We identify cell line-specific differences in the mechanisms abrogating COIII mRNA editing, including the possible utilization of terminator gRNAs that preclude the 3' to 5' progression of editing. By examining the developmental timing of altered mitochondrial mRNA levels, we also reveal transcript-specific developmental checkpoints in epimastigote (EMF), metacyclic (MCF), and BSF. These studies represent the first analysis of the mechanisms governing edited mRNA levels during T. brucei development and the first to interrogate U-indel editing in EMF and MCF life cycle stages.
Collapse
Affiliation(s)
- Joseph T Smith Jr.
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Eva Doleželová
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budejovice, Czech Republic
| | - Brianna Tylec
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Jonathan E Bard
- Genomics and Bioinformatics Core, University at Buffalo, Buffalo, NY 14203, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budejovice, Czech Republic
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
14
|
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Göringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, McDermott SM, Ochsenreiter T, Read LK, Salavati R, Schnaufer A, Schneider A, Simpson L, Stuart K, Yurchenko V, Zhou ZH, Zíková A, Zhang L, Zimmer S, Aphasizhev R. Lexis and Grammar of Mitochondrial RNA Processing in Trypanosomes. Trends Parasitol 2020; 36:337-355. [PMID: 32191849 PMCID: PMC7083771 DOI: 10.1016/j.pt.2020.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA.
| | - Juan Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - H Ulrich Göringer
- Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Stephen Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Susan Madison-Antenucci
- Parasitology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Dmitri A Maslov
- Department of Molecular, Cell, and Systems Biology, University of California - Riverside, Riverside, CA 92521, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern CH-3012, Switzerland
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sara Zimmer
- University of Minnesota Medical School, Duluth campus, Duluth, MN 55812, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
15
|
Kirby LE, Koslowsky D. Cell-line specific RNA editing patterns in Trypanosoma brucei suggest a unique mechanism to generate protein variation in a system intolerant to genetic mutations. Nucleic Acids Res 2020; 48:1479-1493. [PMID: 31840176 PMCID: PMC7026638 DOI: 10.1093/nar/gkz1131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/11/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Trypanosoma brucei possesses a highly complex RNA editing system that uses guide RNAs to direct the insertion and deletion of uridines in mitochondrial mRNAs. These changes extensively alter the target mRNAs and can more than double them in length. Recently, analyses showed that several of the edited genes possess the capacity to encode two different protein products. The overlapped reading frames can be accessed through alternative RNA editing that shifts the translated reading frame. In this study, we analyzed the editing patterns of three putative dual-coding genes, ribosomal protein S12 (RPS12), the 5′ editing domain of NADH dehydrogenase subunit 7 (ND7 5′), and C-rich region 3 (CR3). We found evidence that alternatively 5′-edited ND7 5′ and CR3 transcripts are present in the transcriptome, providing evidence for the use of dual ORFs in these transcripts. Moreover, we found that CR3 has a complex set of editing pathways that vary substantially between cell lines. These findings suggest that alternative editing can work to introduce genetic variation in a system that selects against nucleotide mutations.
Collapse
Affiliation(s)
- Laura E Kirby
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Donna Koslowsky
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Schumacher MA, Henderson M, Zeng W. Structures of MERS1, the 5' processing enzyme of mitochondrial mRNAs in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2020; 26:69-82. [PMID: 31704716 PMCID: PMC6913127 DOI: 10.1261/rna.072231.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/25/2019] [Indexed: 05/05/2023]
Abstract
Most mitochondrial mRNAs are transcribed as polycistronic precursors that are cleaved by endonucleases to produce mature mRNA transcripts. However, recent studies have shown that mitochondrial transcripts in the kinetoplastid protozoan, Trypanosoma brucei, are transcribed individually. Also unlike most mitochondrial mRNAs, the 5' end of these transcripts harbor a triphosphate that is hydrolyzed. This modification is carried out by a putative Nudix hydrolase called MERS1. The Nudix motif in MERS1 is degenerate, lacking a conserved glutamic acid, thus it is unclear how it may bind its substrates and whether it contains a Nudix fold. To obtain insight into this unusual hydrolase, we determined structures of apo, GTP-bound and RNA-bound T. brucei MERS1 to 2.30 Å, 2.45 Å, and 2.60 Å, respectively. The MERS1 structure has a unique fold that indeed contains a Nudix motif. The nucleotide bound structures combined with binding studies reveal that MERS1 shows preference for RNA sequences with a central guanine repeat which it binds in a single-stranded conformation. The apo MERS1 structure indicates that a significant portion of its nucleotide binding site folds upon substrate binding. Finally, a potential interaction region for a binding partner, MERS2, that activates MERS1 was identified. The MERS2-like peptide inserts a glutamate near the missing Nudix acidic residue in the RNA binding pocket, suggesting how the enzyme may be activated. Thus, the combined studies reveal insight into the structure and enzyme properties of MERS1 and its substrate-binding activities.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Max Henderson
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Wenjie Zeng
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
17
|
Cooper S, Wadsworth ES, Ochsenreiter T, Ivens A, Savill NJ, Schnaufer A. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res 2019; 47:11304-11325. [PMID: 31665448 PMCID: PMC6868439 DOI: 10.1093/nar/gkz928] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/10/2023] Open
Abstract
Kinetoplastids are protists defined by one of the most complex mitochondrial genomes in nature, the kinetoplast. In the sleeping sickness parasite Trypanosoma brucei, the kinetoplast is a chain mail-like network of two types of interlocked DNA molecules: a few dozen ∼23-kb maxicircles (homologs of the mitochondrial genome of other eukaryotes) and thousands of ∼1-kb minicircles. Maxicircles encode components of respiratory chain complexes and the mitoribosome. Several maxicircle-encoded mRNAs undergo extensive post-transcriptional RNA editing via addition and deletion of uridines. The process is mediated by hundreds of species of minicircle-encoded guide RNAs (gRNAs), but the precise number of minicircle classes and gRNA genes was unknown. Here we present the first essentially complete assembly and annotation of the kinetoplast genome of T. brucei. We have identified 391 minicircles, encoding not only ∼930 predicted 'canonical' gRNA genes that cover nearly all known editing events (accessible via the web at http://hank.bio.ed.ac.uk), but also ∼370 'non-canonical' gRNA genes of unknown function. Small RNA transcriptome data confirmed expression of the majority of both categories of gRNAs. Finally, we have used our data set to refine definitions for minicircle structure and to explore dynamics of minicircle copy numbers.
Collapse
Affiliation(s)
- Sinclair Cooper
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, Scotland EH9 3FL, UK
| | - Elizabeth S Wadsworth
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, Scotland EH9 3FL, UK
| | | | - Alasdair Ivens
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, Scotland EH9 3FL, UK
| | - Nicholas J Savill
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, Scotland EH9 3FL, UK
| | - Achim Schnaufer
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, Scotland EH9 3FL, UK
| |
Collapse
|
18
|
McAdams NM, Harrison GL, Tylec BL, Ammerman ML, Chen R, Sun Y, Read LK. MRB10130 is a RESC assembly factor that promotes kinetoplastid RNA editing initiation and progression. RNA (NEW YORK, N.Y.) 2019; 25:1177-1191. [PMID: 31221726 PMCID: PMC6800514 DOI: 10.1261/rna.071902.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/18/2019] [Indexed: 05/03/2023]
Abstract
Uridine insertion deletion editing in kinetoplastid protozoa requires a complex machinery, a primary component of which is the RNA editing substrate binding complex (RESC). RESC contains two modules termed GRBC (guide RNA binding complex) and REMC (RNA editing mediator complex), although how interactions between these modules and their mRNA and gRNA binding partners are controlled is not well understood. Here, we demonstrate that the ARM/HEAT repeat containing RESC protein, MRB10130, controls REMC association with mRNA- and gRNA-loaded GRBC. High-throughput sequencing analyses show that MRB10130 functions in both initiation and 3' to 5' progression of editing through gRNA-defined domains. Editing intermediates that accumulate upon MRB10130 depletion significantly intersect those in cells depleted of another RESC organizer, MRB7260, but are distinct from those in cells depleted of specific REMC proteins. We present a model in which MRB10130 coordinates numerous protein-protein and protein-RNA interactions during editing progression.
Collapse
Affiliation(s)
- Natalie M McAdams
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Gregory L Harrison
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Brianna L Tylec
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Michelle L Ammerman
- Department of Chemistry and Biochemistry, Kettering University, Flint, Michigan 48504, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| |
Collapse
|
19
|
Gerasimov ES, Gasparyan AA, Kaurov I, Tichý B, Logacheva MD, Kolesnikov AA, Lukeš J, Yurchenko V, Zimmer SL, Flegontov P. Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res 2019; 46:765-781. [PMID: 29220521 PMCID: PMC5778460 DOI: 10.1093/nar/gkx1202] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
RNA editing by targeted insertion and deletion of uridine is crucial to generate translatable mRNAs from the cryptogenes of the mitochondrial genome of kinetoplastids. This type of editing consists of a stepwise cascade of reactions generally proceeding from 3′ to 5′ on a transcript, resulting in a population of partially edited as well as pre-edited and completely edited molecules for each mitochondrial cryptogene of these protozoans. Often, the number of uridines inserted and deleted exceed the number of nucleotides that are genome-encoded. Thus, analysis of kinetoplastid mitochondrial transcriptomes has proven frustratingly complex. Here we present our analysis of Leptomonas pyrrhocoris mitochondrial cDNA deep sequencing reads using T-Aligner, our new tool which allows comprehensive characterization of RNA editing, not relying on targeted transcript amplification and on prior knowledge of final edited products. T-Aligner implements a pipeline of read mapping, visualization of all editing states and their coverage, and assembly of canonical and alternative translatable mRNAs. We also assess T-Aligner functionality on a more challenging deep sequencing read input from Trypanosoma cruzi. The analysis reveals that transcripts of cryptogenes of both species undergo very complex editing that includes the formation of alternative open reading frames and whole categories of truncated editing products.
Collapse
Affiliation(s)
- Evgeny S Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Anna A Gasparyan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Iosif Kaurov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Boris Tichý
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Maria D Logacheva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Russia Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia.,Skolkovo Institute of Science and Technology, Moscow, 14326, Russia
| | | | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Vyacheslav Yurchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812-3031, USA
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic.,Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| |
Collapse
|
20
|
Maslov DA. Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria. Pathogens 2019; 8:E105. [PMID: 31323762 PMCID: PMC6789859 DOI: 10.3390/pathogens8030105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022] Open
Abstract
In the mitochondria of trypanosomes and related kinetoplastid protists, most mRNAs undergo a long and sophisticated maturation pathway before they can be productively translated by mitochondrial ribosomes. Some of the aspects of this pathway (identity of the promotors, transcription initiation, and termination signals) remain obscure, and some (post-transcriptional modification by U-insertion/deletion, RNA editing, 3'-end maturation) have been illuminated by research during the last decades. The RNA editing creates an open reading frame for a productive translation, but the fully edited mRNA often represents a minor fraction in the pool of pre-edited and partially edited precursors. Therefore, it has been expected that the final stages of the mRNA processing generate molecular hallmarks, which allow for the efficient and selective recognition of translation-competent templates. The general contours and several important details of this process have become known only recently and represent the subject of this review.
Collapse
Affiliation(s)
- Dmitri A Maslov
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
21
|
Voigt C, Dobrychlop M, Kruse E, Czerwoniec A, Kasprzak JM, Bytner P, Campo CD, Leeder WM, Bujnicki JM, Göringer HU. The OB-fold proteins of the Trypanosoma brucei editosome execute RNA-chaperone activity. Nucleic Acids Res 2019; 46:10353-10367. [PMID: 30060205 PMCID: PMC6212840 DOI: 10.1093/nar/gky668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/13/2018] [Indexed: 02/01/2023] Open
Abstract
Sequence-deficient mitochondrial pre-mRNAs in African trypanosomes are substrates of a U-nucleotide-specific RNA editing reaction to generate translation-competent mRNAs. The reaction is catalyzed by a macromolecular protein complex termed the editosome. Editosomes execute RNA-chaperone activity to overcome the highly folded nature of pre-edited substrate mRNAs. The molecular basis for this activity is unknown. Here we test five of the OB-fold proteins of the Trypanosoma brucei editosome as candidates. We demonstrate that all proteins execute RNA-chaperone activity albeit to different degrees. We further show that the activities correlate to the surface areas of the proteins and we map the protein-induced RNA-structure changes using SHAPE-chemical probing. To provide a structural context for our findings we calculate a coarse-grained model of the editosome. The model has a shell-like structure: Structurally well-defined protein domains are separated from an outer shell of intrinsically disordered protein domains, which suggests a surface-driven mechanism for the chaperone activity.
Collapse
Affiliation(s)
- Christin Voigt
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Mateusz Dobrychlop
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Elisabeth Kruse
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Anna Czerwoniec
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna M Kasprzak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Patrycja Bytner
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Cristian Del Campo
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - W-Matthias Leeder
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Janusz M Bujnicki
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - H Ulrich Göringer
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
22
|
Travis B, Shaw PLR, Liu B, Ravindra K, Iliff H, Al-Hashimi H, Schumacher MA. The RRM of the kRNA-editing protein TbRGG2 uses multiple surfaces to bind and remodel RNA. Nucleic Acids Res 2019; 47:2130-2142. [PMID: 30544166 PMCID: PMC6393287 DOI: 10.1093/nar/gky1259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Kinetoplastid RNA (kRNA) editing takes place in the mitochondria of kinetoplastid protists and creates translatable mRNAs by uridine insertion/deletion. Extensively edited (pan-edited) transcripts contain quadruplex forming guanine stretches, which must be remodeled to promote uridine insertion/deletion. Here we show that the RRM domain of the essential kRNA-editing factor TbRGG2 binds poly(G) and poly(U) RNA and can unfold both. A region C-terminal to the RRM mediates TbRGG2 dimerization, enhancing RNA binding. A RRM-U4 RNA structure reveals a unique RNA-binding mechanism in which the two RRMs of the dimer employ aromatic residues outside the canonical RRM RNA-binding motifs to encase and wrench open the RNA, while backbone atoms specify the uridine bases. Notably, poly(G) RNA is bound via a different binding surface. Thus, these data indicate that TbRGG2 RRM can bind and remodel several RNA substrates suggesting how it might play multiple roles in the kRNA editing process.
Collapse
Affiliation(s)
- Brady Travis
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Porsha L R Shaw
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Krishna Ravindra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hadley Iliff
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
23
|
Mesitov MV, Yu T, Suematsu T, Sement FM, Zhang L, Yu C, Huang L, Aphasizheva I. Pentatricopeptide repeat poly(A) binding protein KPAF4 stabilizes mitochondrial mRNAs in Trypanosoma brucei. Nat Commun 2019; 10:146. [PMID: 30635574 PMCID: PMC6329795 DOI: 10.1038/s41467-018-08137-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In Trypanosoma brucei, most mitochondrial mRNAs undergo editing, and 3′ adenylation and uridylation. The internal sequence changes and terminal extensions are coordinated: pre-editing addition of the short (A) tail protects the edited transcript against 3′-5′ degradation, while post-editing A/U-tailing renders mRNA competent for translation. Participation of a poly(A) binding protein (PABP) in coupling of editing and 3′ modification processes has been inferred, but its identity and mechanism of action remained elusive. We report identification of KPAF4, a pentatricopeptide repeat-containing PABP which sequesters the A-tail and impedes mRNA degradation. Conversely, KPAF4 inhibits uridylation of A-tailed transcripts and, therefore, premature A/U-tailing of partially-edited mRNAs. This quality check point likely prevents translation of incompletely edited mRNAs. We also find that RNA editing substrate binding complex (RESC) mediates the interaction between the 5′ end-bound pyrophosphohydrolase MERS1 and 3′ end-associated KPAF4 to enable mRNA circularization. This event appears to be critical for edited mRNA stability. Polyadenylation stabilizes edited mitochondrial mRNAs in Trypanosoma brucei, but the involved poly(A) binding protein is unknown. Here, Mesitov et al. show that a pentatricopeptide repeat factor KPAF4 binds to A-tail and prevents exonucleolytic degradation as well as translation of incompletely edited mRNAs.
Collapse
Affiliation(s)
- Mikhail V Mesitov
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Tian Yu
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, 02118, USA.,Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Francois M Sement
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTechUniversity, 201210, Shanghai, China
| | - Clinton Yu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, 02118, USA.
| |
Collapse
|
24
|
Kamba PF, Dickson DA, White NA, Ekstrom JL, Koslowsky DJ, Hoogstraten CG. The 27 kDa Trypanosoma brucei Pentatricopeptide Repeat Protein is a G-tract Specific RNA Binding Protein. Sci Rep 2018; 8:16989. [PMID: 30451852 PMCID: PMC6242908 DOI: 10.1038/s41598-018-34377-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/15/2018] [Indexed: 01/30/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins, a helical repeat family of organellar RNA binding proteins, play essential roles in post-transcriptional RNA processing. In Trypanosoma brucei, an expanded family of PPR proteins localize to the parasite’s single mitochondrion, where they are believed to perform important roles in both RNA processing and translation. We studied the RNA binding specificity of the simplest T. brucei PPR protein (KRIPP11) using electrophoretic mobility shift assays, fluorescence anisotropy, circular dichroism spectroscopy, and in vitro selection. We found KRIPP11 to be an RNA binding protein with specificity for sequences of four or more consecutive guanosine residues (G-tracts). Such G-tracts are dramatically enriched in T. brucei mitochondrial transcripts that are destined for extensive uridine insertion/deletion editing but are not present in mRNAs following editing. We further found that the quadruplex oligoguanosine RNA conformation is preferentially recognized by KRIPP11 over other conformational forms, and is bound without disruption of the quadruplex structure. In combination with prior data demonstrating association of KRIPP11 with the small ribosomal subunit, these results suggest possible roles for KRIPP11 in bridging mRNA maturation and translation or in facilitating translation of unusual dual-coded open reading frames.
Collapse
Affiliation(s)
- Pakoyo F Kamba
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824-1319, USA.,Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824-1319, USA.,Makerere University, Kampala, Uganda
| | - David A Dickson
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824-1319, USA.,Sackler School of Graduate Biomedical Sciences, Tufts University, Medford, Massachusetts, USA
| | - Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824-1319, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Jennifer L Ekstrom
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824-1319, USA.,Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Donna J Koslowsky
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824-1319, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824-1319, USA
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824-1319, USA.
| |
Collapse
|
25
|
Reis-Cunha JL, Baptista RP, Rodrigues-Luiz GF, Coqueiro-Dos-Santos A, Valdivia HO, de Almeida LV, Cardoso MS, D'Ávila DA, Dias FHC, Fujiwara RT, Galvão LMC, Chiari E, Cerqueira GC, Bartholomeu DC. Whole genome sequencing of Trypanosoma cruzi field isolates reveals extensive genomic variability and complex aneuploidy patterns within TcII DTU. BMC Genomics 2018; 19:816. [PMID: 30424726 PMCID: PMC6234542 DOI: 10.1186/s12864-018-5198-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 10/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. TcII is among the major DTUs enrolled in human infections in South America southern cone, where it is associated with severe cardiac and digestive symptoms. Despite the importance of TcII in Chagas disease epidemiology and pathology, so far, no genome-wide comparisons of the mitochondrial and nuclear genomes of TcII field isolates have been performed to track the variability and evolution of this DTU in endemic regions. RESULTS In the present work, we have sequenced and compared the whole nuclear and mitochondrial genomes of seven TcII strains isolated from chagasic patients from the central and northeastern regions of Minas Gerais, Brazil, revealing an extensive genetic variability within this DTU. A comparison of the phylogeny based on the nuclear or mitochondrial genomes revealed that the majority of branches were shared by both sequences. The subtle divergences in the branches are probably consequence of mitochondrial introgression events between TcII strains. Two T. cruzi strains isolated from patients living in the central region of Minas Gerais, S15 and S162a, were clustered in the nuclear and mitochondrial phylogeny analysis. These two strains were isolated from the other five by the Espinhaço Mountains, a geographic barrier that could have restricted the traffic of insect vectors during T. cruzi evolution in the Minas Gerais state. Finally, the presence of aneuploidies was evaluated, revealing that all seven TcII strains have a different pattern of chromosomal duplication/loss. CONCLUSIONS Analysis of genomic variability and aneuploidies suggests that there is significant genomic variability within Minas Gerais TcII strains, which could be exploited by the parasite to allow rapid selection of favorable phenotypes. Also, the aneuploidy patterns vary among T. cruzi strains and does not correlate with the nuclear phylogeny, suggesting that chromosomal duplication/loss are recent and frequent events in the parasite evolution.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo P Baptista
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,The University of Georgia, Athens, USA
| | - Gabriela F Rodrigues-Luiz
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Hugo O Valdivia
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,U.S. Naval Medical Research, Lima, Peru
| | - Laila Viana de Almeida
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Santos Cardoso
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Lúcia M C Galvão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniella C Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
26
|
Zigáčková D, Vaňáčová Š. The role of 3' end uridylation in RNA metabolism and cellular physiology. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0171. [PMID: 30397107 DOI: 10.1098/rstb.2018.0171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Most eukaryotic RNAs are posttranscriptionally modified. The majority of modifications promote RNA maturation, others may regulate function and stability. The 3' terminal non-templated oligouridylation is a widespread modification affecting many cellular RNAs at some stage of their life cycle. It has diverse roles in RNA metabolism. The most prevalent is the regulation of stability and quality control. On the cellular and organismal level, it plays a critical role in a number of pathways, such as cell cycle regulation, cell death, development or viral infection. Defects in uridylation have been linked to several diseases. This review summarizes the current knowledge about the role of the 3' terminal oligo(U)-tailing in biology of various RNAs in eukaryotes and describes key factors involved in these pathways.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Dagmar Zigáčková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| |
Collapse
|
27
|
Dixit S, Lukeš J. Combinatorial interplay of RNA-binding proteins tunes levels of mitochondrial mRNA in trypanosomes. RNA (NEW YORK, N.Y.) 2018; 24:1594-1606. [PMID: 30120147 PMCID: PMC6191715 DOI: 10.1261/rna.066233.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/10/2018] [Indexed: 05/11/2023]
Abstract
MRP1/2 is a heteromeric protein complex that functions in the trypanosomatid mitochondrion as part of the RNA editing machinery, which facilitates multiple targeted insertions and deletions of uridines. MRP1/2 was shown to interact with MRB8170, which initiates RNA editing by marking pre-edited mRNAs, while TbRGG2 is required for its efficient progression on pan-edited mRNAs. Both MRP1/2 and TbRGG2 are capable of modulating RNA-RNA interactions in vitro. As determined by using iCLIP and RIP-qPCR, RNAs bound to MRP1/2 are characterized and compared with those associated with MRB8170 and TbRGG2. We provide evidence that MRP1 and MRB8170 have correlated binding and similar RNA crosslinking peak profiles over minimally and never-edited mRNAs. Our results suggest that MRP1 assists MRB8170 in RNA editing on minimally edited mRNAs.
Collapse
Affiliation(s)
- Sameer Dixit
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| |
Collapse
|
28
|
Alcolea PJ, Alonso A, Larraga V. Guide RNA genes up-regulated in Leishmania infantum metacyclic promastigotes. Acta Trop 2018; 187:72-77. [PMID: 30055178 DOI: 10.1016/j.actatropica.2018.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 02/01/2023]
Abstract
The kinetoplastid parasite Leishmania infantum is responsible for zoonotic visceral leishmaniasis in the mediterranean basin, where dogs are the reservoir. Differential gene expression analysis of metacyclic promastigotes in axenic culture by whole genome DNA microarray hybridization revealed up-regulation of two unidentified genes that are absent in the parasite's genome databases. Sequence analysis has revealed that these genes encode for guide RNAs (gRNAs), which are located in the kinetoplast and participate in the kinetoplastid-specific uridine insertion/deletion RNA editing process. Northern blot assays have confirmed that both gRNA genes are up-regulated in metacyclic promastigotes, thus suggesting that uridine insertion/deletion RNA editing contributes to metabolic shifts at this stage. A screening strategy described herein has revealed an uncharacterized 16S-like rRNA transcript as a target of one of the aforementioned gRNAs.
Collapse
Affiliation(s)
- Pedro J Alcolea
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas (CSIC), calle Ramiro de Maeztu 9, 28034 Madrid, Spain.
| | - Ana Alonso
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas (CSIC), calle Ramiro de Maeztu 9, 28034 Madrid, Spain
| | - Vicente Larraga
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas (CSIC), calle Ramiro de Maeztu 9, 28034 Madrid, Spain
| |
Collapse
|
29
|
Abstract
Mitochondrial genomes are often transcribed into polycistronic RNAs punctuated by tRNAs whose excision defines mature RNA boundaries. Although kinetoplast DNA lacks tRNA genes, it is commonly held that in Trypanosoma brucei the monophosphorylated 5' ends of functional molecules typify precursor partitioning by an unknown endonuclease. On the contrary, we demonstrate that individual mRNAs and rRNAs are independently synthesized as 3'-extended precursors. The transcription-defined 5' terminus is converted into a monophosphorylated state by the pyrophosphohydrolase complex, termed the "PPsome." Composed of the MERS1 NUDIX enzyme, the MERS2 pentatricopeptide repeat RNA-binding subunit, and MERS3 polypeptide, the PPsome binds to specific sequences near mRNA 5' termini. Most guide RNAs lack PPsome-recognition sites and remain triphosphorylated. The RNA-editing substrate-binding complex stimulates MERS1 pyrophosphohydrolase activity and enables an interaction between the PPsome and the polyadenylation machinery. We provide evidence that both 5' pyrophosphate removal and 3' adenylation are essential for mRNA stabilization. Furthermore, we uncover a mechanism by which antisense RNA-controlled 3'-5' exonucleolytic trimming defines the mRNA 3' end before adenylation. We conclude that mitochondrial mRNAs and rRNAs are transcribed and processed as insulated units irrespective of their genomic location.
Collapse
|
30
|
Pharmacological Inhibition of the Vacuolar ATPase in Bloodstream-Form Trypanosoma brucei Rescues Genetic Knockdown of Mitochondrial Gene Expression. Antimicrob Agents Chemother 2018; 62:AAC.02268-17. [PMID: 29914945 PMCID: PMC6125517 DOI: 10.1128/aac.02268-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/08/2018] [Indexed: 11/20/2022] Open
Abstract
Trypanosomatid parasites cause diseases in humans and livestock. It was reported that partial inhibition of the vacuolar ATPase (V-ATPase) affects the dependence of Trypanosoma brucei on its mitochondrial genome (kinetoplast DNA [kDNA]), a target of the antitrypanosomatid drug isometamidium. Here, we report that V-ATPase inhibition with bafilomycin A1 (BafA) provides partial resistance to genetic knockdown of mitochondrial gene expression. BafA does not promote long-term survival after kDNA loss, but in its presence, isometamidium causes less damage to kDNA.
Collapse
|
31
|
Cruz-Reyes J, Mooers BHM, Doharey PK, Meehan J, Gulati S. Dynamic RNA holo-editosomes with subcomplex variants: Insights into the control of trypanosome editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1502. [PMID: 30101566 DOI: 10.1002/wrna.1502] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
RNA editing causes massive remodeling of the mitochondrial mRNA transcriptome in trypanosomes and related kinetoplastid protozoa. This type of editing involves the specific insertion or deletion of uridylates (U) directed by small noncoding guide RNAs (gRNAs). Because U-insertion exceeds U-deletion by a factor of 10, editing increases the nascent mRNA size by up to 55%. In Trypanosoma brucei, the editing apparatus uses ~40 proteins and >1,200 gRNAs to create the functional open reading frame in 12 mRNAs. Thousands of sites are specifically recognized in the pre-edited mRNAs and a myriad of partially edited transcript intermediates accumulates in mitochondria. The control of editing is poorly understood, but past work suggests that it occurs during substrate recognition, the initiation and progression of editing, and during the life-cycle in different hosts. The growing understanding of the editing proteins offers clues about editing control. Most editing proteins reside in the "RNA-free" RNA editing core complex (RECC) and in the accessory RNA editing substrate complex (RESC) that contains gRNA. Two accessory RNA helicases are known, including one in the RNA editing helicase 2 complex (REH2C). Both the RESC and the REH2C associate with mRNA, providing a rationale for the assembly of mRNA or its mRNPs, RESC, and the RECC enzyme. Identified variants of the canonical editing complexes further complicate the model of RNA editing. We examine specific examples of complex variants, differential effects of editing proteins on the mRNAs within and between T. brucei life stages, and possible control points in RNA holo-editosomes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Blaine H M Mooers
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Pawan K Doharey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Joshua Meehan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Shelly Gulati
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
32
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
33
|
Zimmer SL, Simpson RM, Read LK. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1487. [PMID: 29888550 DOI: 10.1002/wrna.1487] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023]
Abstract
Among Euglenozoans, mitochondrial RNA editing occurs in the diplonemids and in the kinetoplastids that include parasitic trypanosomes. Yet U-indel editing, in which open reading frames (ORFs) on mRNAs are generated by insertion and deletion of uridylates in locations dictated by guide RNAs, appears confined to kinetoplastids. The nature of guide RNA and edited mRNA populations has been cursorily explored in a surprisingly extensive number of species over the years, although complete sets of fully edited mRNAs for most kinetoplast genomes are largely missing. Now, however, high throughput sequencing technologies have had an enormous impact on what we know and will learn about the mechanisms, benefits, and final edited products of U-indel editing. Tools including PARERS, TREAT, and T-Aligner function to organize and make sense of U-indel mRNA transcriptomes, which are comprised of mRNAs harboring uridylate indels both consistent and inconsistent with translatable products. From high throughput sequencing data come arguments that partially edited mRNAs containing "junction regions" of noncanonical editing are editing intermediates, and conversely, arguments that they are dead-end products. These data have also revealed that the percent of a given transcript population that is fully or partially edited varies dramatically between transcripts and organisms. Outstanding questions that are being addressed include the prevalence of sequences that apparently encode alternative ORFs, diversity of editing events in ORF termini and 5' and 3' untranslated regions, and the differences that exist in this byzantine process between species. High throughput sequencing technologies will also undoubtedly be harnessed to probe U-indel editing's evolutionary origins. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Evolution and Genomics > Computational Analyses of RNA.
Collapse
Affiliation(s)
- Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota
| | - Rachel M Simpson
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Laurie K Read
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
34
|
Karadeema RJ, Stancescu M, Steidl TP, Bertot SC, Kolpashchikov DM. The owl sensor: a 'fragile' DNA nanostructure for the analysis of single nucleotide variations. NANOSCALE 2018; 10:10116-10122. [PMID: 29781024 DOI: 10.1039/c8nr01107a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Analysis of single nucleotide variations (SNVs) in DNA and RNA sequences is instrumental in healthcare for the detection of genetic and infectious diseases and drug-resistant pathogens. Here we took advantage of the developments in DNA nanotechnology to design a hybridization sensor, named the 'owl sensor', which produces a fluorescence signal only when it complexes with fully complementary DNA or RNA analytes. The novelty of the owl sensor operation is that the selectivity of analyte recognition is, at least in part, determined by the structural rigidity and stability of the entire DNA nanostructure rather than exclusively by the stability of the analyte-probe duplex, as is the case for conventional hybridization probes. Using two DNA and two RNA analytes we demonstrated that owl sensors differentiate SNVs in a wide temperature range of 5 °C-32 °C, a performance unachievable by conventional hybridization probes including the molecular beacon probe. The owl sensor reliably detects cognate analytes even in the presence of 100 times excess of single base mismatched sequences. The approach, therefore, promises to add to the toolbox for the diagnosis of SNVs at ambient temperatures.
Collapse
Affiliation(s)
- Rebekah J Karadeema
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA.
| | | | | | | | | |
Collapse
|
35
|
Kalem MC, Gerasimov ES, Vu PK, Zimmer SL. Gene expression to mitochondrial metabolism: Variability among cultured Trypanosoma cruzi strains. PLoS One 2018; 13:e0197983. [PMID: 29847594 PMCID: PMC5976161 DOI: 10.1371/journal.pone.0197983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
The insect-transmitted protozoan parasite Trypanosoma cruzi experiences changes in nutrient availability and rate of flux through different metabolic pathways across its life cycle. The species encompasses much genetic diversity of both the nuclear and mitochondrial genomes among isolated strains. The genetic or expression variation of both genomes are likely to impact metabolic responses to environmental stimuli, and even steady state metabolic function, among strains. To begin formal characterization these differences, we compared aspects of metabolism between genetically similar strains CL Brener and Tulahuen with less similar Esmeraldo and Sylvio X10 strains in a culture environment. Epimastigotes of all strains took up glucose at similar rates. However, the degree of medium acidification that could be observed when glucose was absent from the medium varied by strain, indicating potential differences in excreted metabolic byproducts. Our main focus was differences related to electron transport chain function. We observed differences in ATP-coupled respiration and maximal respiratory capacity, mitochondrial membrane potential, and mitochondrial morphology between strains, despite the fact that abundances of two nuclear-encoded proteins of the electron transport chain are similar between strains. RNA sequencing reveals strain-specific differences in abundances of mRNAs encoding proteins of the respiratory chain but also other metabolic processes. From these differences in metabolism and mitochondrial phenotypes we have generated tentative models for the differential metabolic fluxes or differences in gene expression that may underlie these results.
Collapse
Affiliation(s)
- Murat C. Kalem
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| | | | - Pamela K. Vu
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| |
Collapse
|
36
|
Kelly S, Ivens A, Mott GA, O'Neill E, Emms D, Macleod O, Voorheis P, Tyler K, Clark M, Matthews J, Matthews K, Carrington M. An Alternative Strategy for Trypanosome Survival in the Mammalian Bloodstream Revealed through Genome and Transcriptome Analysis of the Ubiquitous Bovine Parasite Trypanosoma (Megatrypanum) theileri. Genome Biol Evol 2018; 9:2093-2109. [PMID: 28903536 PMCID: PMC5737535 DOI: 10.1093/gbe/evx152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2017] [Indexed: 12/19/2022] Open
Abstract
There are hundreds of Trypanosoma species that live in the blood and tissue spaces of their vertebrate hosts. The vast majority of these do not have the ornate system of antigenic variation that has evolved in the small number of African trypanosome species, but can still maintain long-term infections in the face of the vertebrate adaptive immune system. Trypanosoma theileri is a typical example, has a restricted host range of cattle and other Bovinae, and is only occasionally reported to cause patent disease although no systematic survey of the effect of infection on agricultural productivity has been performed. Here, a detailed genome sequence and a transcriptome analysis of gene expression in bloodstream form T. theileri have been performed. Analysis of the genome sequence and expression showed that T. theileri has a typical kinetoplastid genome structure and allowed a prediction that it is capable of meiotic exchange, gene silencing via RNA interference and, potentially, density-dependent growth control. In particular, the transcriptome analysis has allowed a comparison of two distinct trypanosome cell surfaces, T. brucei and T. theileri, that have each evolved to enable the maintenance of a long-term extracellular infection in cattle. The T. theileri cell surface can be modeled to contain a mixture of proteins encoded by four novel large and divergent gene families and by members of a major surface protease gene family. This surface composition is distinct from the uniform variant surface glycoprotein coat on African trypanosomes providing an insight into a second mechanism used by trypanosome species that proliferate in an extracellular milieu in vertebrate hosts to avoid the adaptive immune response.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - G Adam Mott
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Ellis O'Neill
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - David Emms
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Olivia Macleod
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - Paul Voorheis
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Kevin Tyler
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Matthew Clark
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Jacqueline Matthews
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - Keith Matthews
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, United Kingdom
| |
Collapse
|
37
|
Amodeo S, Jakob M, Ochsenreiter T. Characterization of the novel mitochondrial genome replication factor MiRF172 in Trypanosoma brucei. J Cell Sci 2018; 131:jcs211730. [PMID: 29626111 PMCID: PMC5963845 DOI: 10.1242/jcs.211730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
The unicellular parasite Trypanosoma brucei harbors one mitochondrial organelle with a singular genome called the kinetoplast DNA (kDNA). The kDNA consists of a network of concatenated minicircles and a few maxicircles that form the kDNA disc. More than 30 proteins involved in kDNA replication have been described. However, several mechanistic questions are only poorly understood. Here, we describe and characterize minicircle replication factor 172 (MiRF172), a novel mitochondrial genome replication factor that is essential for cell growth and kDNA maintenance. By performing super-resolution microscopy, we show that MiRF172 is localized to the kDNA disc, facing the region between the genome and the mitochondrial membranes. We demonstrate that depletion of MiRF172 leads to a loss of minicircles and maxicircles. Detailed analysis suggests that MiRF172 is involved in the reattachment of replicated minicircles to the kDNA disc. Furthermore, we provide evidence that the localization of the replication factor MiRF172 not only depends on the kDNA itself, but also on the mitochondrial genome segregation machinery, suggesting an interaction between the two essential entities.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern CH-3012, Switzerland
| | - Martin Jakob
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
38
|
McAdams NM, Simpson RM, Chen R, Sun Y, Read LK. MRB7260 is essential for productive protein-RNA interactions within the RNA editing substrate binding complex during trypanosome RNA editing. RNA (NEW YORK, N.Y.) 2018; 24:540-556. [PMID: 29330168 PMCID: PMC5855954 DOI: 10.1261/rna.065169.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/08/2018] [Indexed: 05/20/2023]
Abstract
The trypanosome RNA editing substrate binding complex (RESC) acts as the platform for mitochondrial uridine insertion/deletion RNA editing and facilitates the protein-protein and protein-RNA interactions required for the editing process. RESC is broadly comprised of two subcomplexes: GRBC (guide RNA binding complex) and REMC (RNA editing mediator complex). Here, we characterize the function and position in RESC organization of a previously unstudied RESC protein, MRB7260. We show that MRB7260 forms numerous RESC-related complexes, including a novel, small complex with the guide RNA binding protein, GAP1, which is a canonical GRBC component, and REMC components MRB8170 and TbRGG2. RNA immunoprecipitations in MRB7260-depleted cells show that MRB7260 is critical for normal RNA trafficking between REMC and GRBC. Analysis of protein-protein interactions also reveals an important role for MRB7260 in promoting stable association of the two subcomplexes. High-throughput sequencing analysis of RPS12 mRNAs from MRB7260 replete and depleted cells demonstrates that MRB7260 is critical for gRNA exchange and early gRNA utilization, with the exception of the initiating gRNA. Together, these data demonstrate that MRB7260 is essential for productive protein-RNA interactions with RESC during RNA editing.
Collapse
Affiliation(s)
- Natalie M McAdams
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Rachel M Simpson
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| |
Collapse
|
39
|
Tomasini N. Introgression of the Kinetoplast DNA: An Unusual Evolutionary Journey in Trypanosoma cruzi. Curr Genomics 2018; 19:133-139. [PMID: 29491741 PMCID: PMC5814961 DOI: 10.2174/1389202918666170815124832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 04/16/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Phylogenetic relationships between different lineages of Trypanosoma cruzi, the agent of Chagas disease, have been controversial for several years. However, recent phylogenetic and phylogenomic analyses clarified the nuclear relationships among such lineages. However, incongruence between nuclear and kinetoplast DNA phylogenies has emerged as a new challenge. This incongruence implies several events of mitochondrial introgression at evolutionary level. However, the mechanism that gave origin to introgressed lineages is unknown. Here, I will review and discuss how maxicircles of the kinetoplast were horizontally and vertically transferred between different lineages of T. cruzi. CONCLUSION Finally, I will discuss what we know - and what we don't - about the kDNA transference and inheritance in the context of sexual reproduction in this parasite.
Collapse
Affiliation(s)
- Nicolás Tomasini
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta, CONICET, Salta, Argentina
| |
Collapse
|
40
|
Reis-Cunha JL, Valdivia HO, Bartholomeu DC. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. Curr Genomics 2018; 19:87-97. [PMID: 29491737 PMCID: PMC5814966 DOI: 10.2174/1389202918666170911161311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Trypanosomatids are a group of kinetoplastid parasites including some of great public health importance, causing debilitating and life-long lasting diseases that affect more than 24 million people worldwide. Among the trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the Leishmania genus are the most well studied parasites, due to their high prevalence in human infections. These parasites have an extreme genomic and phenotypic variability, with a massive expansion in the copy number of species-specific multigene families enrolled in host-parasite interactions that mediate cellular invasion and immune evasion processes. As most trypanosomatids are heteroxenous, and therefore their lifecycles involve the transition between different hosts, these parasites have developed several strategies to ensure a rapid adaptation to changing environments. Among these strategies, a rapid shift in the repertoire of expressed genes, genetic variability and genome plasticity are key mechanisms. Trypanosomatid genomes are organized into large directional gene clusters that are transcribed polycistronically, where genes derived from the same polycistron may have very distinct mRNA levels. This particular mode of transcription implies that the control of gene expression operates mainly at post-transcriptional level. In this sense, gene duplications/losses were already associated with changes in mRNA levels in these parasites. Gene duplications also allow the generation of sequence variability, as the newly formed copy can diverge without loss of function of the original copy. Recently, aneuploidies have been shown to occur in several Leishmania species and T. cruzi strains. Although aneuploidies are usually associated with debilitating phenotypes in superior eukaryotes, recent data shows that it could also provide increased fitness in stress conditions and generate drug resistance in unicellular eukaryotes. In this review, we will focus on gene and chromosomal copy number variations and their relevance to the evolution of trypanosomatid parasites.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Hugo O. Valdivia
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| | - Daniella Castanheira Bartholomeu
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| |
Collapse
|
41
|
|
42
|
Gazestani VH, Hampton M, Shaw AK, Salavati R, Zimmer SL. Tail characteristics of Trypanosoma brucei mitochondrial transcripts are developmentally altered in a transcript-specific manner. Int J Parasitol 2017; 48:179-189. [PMID: 29100810 DOI: 10.1016/j.ijpara.2017.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 11/29/2022]
Abstract
The intricate life cycle of Trypanosoma brucei requires extensive regulation of gene expression levels of the mtRNAs for adaptation. Post-transcriptional gene regulatory programs, including unencoded mtRNA 3' tail additions, potentially play major roles in this adaptation process. Intriguingly, T. brucei mitochondrial transcripts possess two distinct unencoded 3' tails, each with a differing functional role; i.e., while one type is implicated in RNA stability (in-tails), the other type appears associated with translation (ex-tails). We examined the degree to which tail characteristics differ among cytochrome c oxidase subunits I and III (CO1 and CO3), and NADH dehydrogenase subunit 1 (ND1) transcripts, and to what extent these characteristics differ developmentally. We found that CO1, CO3 and ND1 transcripts possess longer in-tails in the mammalian life stage. By mathematically modelling states of in-tail and ex-tail addition, we determined that the typical length at which an in-tail is extended to become an ex-tail differs by transcript and, in the case of ND1, by life stage. To the best of our knowledge, we provide the first evidence that developmental differences exist in tail length distributions of mtRNAs, underscoring the potential involvement of in-tail and ex-tail populations in mitochondrial post-transcriptional regulation mechanisms.
Collapse
Affiliation(s)
- Vahid H Gazestani
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada
| | - Marshall Hampton
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Aubie K Shaw
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada.
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|
43
|
De Almeida C, Scheer H, Zuber H, Gagliardi D. RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28984054 DOI: 10.1002/wrna.1440] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022]
Abstract
RNA uridylation is a potent and widespread posttranscriptional regulator of gene expression. RNA uridylation has been detected in a range of eukaryotes including trypanosomes, animals, plants, and fungi, but with the noticeable exception of budding yeast. Virtually all classes of eukaryotic RNAs can be uridylated and uridylation can also tag viral RNAs. The untemplated addition of a few uridines at the 3' end of a transcript can have a decisive impact on RNA's fate. In rare instances, uridylation is an intrinsic step in the maturation of noncoding RNAs like for the U6 spliceosomal RNA or mitochondrial guide RNAs in trypanosomes. Uridylation can also switch specific miRNA precursors from a degradative to a processing mode. This switch depends on the number of uridines added which is regulated by the cellular context. Yet, the typical consequence of uridylation on mature noncoding RNAs or their precursors is to accelerate decay. Importantly, mRNAs are also tagged by uridylation. In fact, the advent of novel high throughput sequencing protocols has recently revealed the pervasiveness of mRNA uridylation, from plants to humans. As for noncoding RNAs, the main function to date for mRNA uridylation is to promote degradation. Yet, additional roles begin to be ascribed to U-tailing such as the control of mRNA deadenylation, translation control and possibly storage. All these new findings illustrate that we are just beginning to appreciate the diversity of roles played by RNA uridylation and its full temporal and spatial implication in regulating gene expression. WIREs RNA 2018, 9:e1440. doi: 10.1002/wrna.1440 This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Caroline De Almeida
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Scheer
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
44
|
Simpson RM, Bruno AE, Chen R, Lott K, Tylec BL, Bard JE, Sun Y, Buck MJ, Read LK. Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization. Nucleic Acids Res 2017; 45:7965-7983. [PMID: 28535252 PMCID: PMC5737529 DOI: 10.1093/nar/gkx458] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
Abstract
Uridine insertion/deletion RNA editing is an essential process in kinetoplastid parasites whereby mitochondrial mRNAs are modified through the specific insertion and deletion of uridines to generate functional open reading frames, many of which encode components of the mitochondrial respiratory chain. The roles of numerous non-enzymatic editing factors have remained opaque given the limitations of conventional methods to interrogate the order and mechanism by which editing progresses and thus roles of individual proteins. Here, we examined whole populations of partially edited sequences using high throughput sequencing and a novel bioinformatic platform, the Trypanosome RNA Editing Alignment Tool (TREAT), to elucidate the roles of three proteins in the RNA Editing Mediator Complex (REMC). We determined that the factors examined function in the progression of editing through a gRNA; however, they have distinct roles and REMC is likely heterogeneous in composition. We provide the first evidence that editing can proceed through numerous paths within a single gRNA and that non-linear modifications are essential, generating commonly observed junction regions. Our data support a model in which RNA editing is executed via multiple paths that necessitate successive re-modification of junction regions facilitated, in part, by the REMC variant containing TbRGG2 and MRB8180.
Collapse
Affiliation(s)
- Rachel M. Simpson
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| | - Andrew E. Bruno
- Center for Computational Research, University at Buffalo, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Kaylen Lott
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| | - Brianna L. Tylec
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| | - Jonathan E. Bard
- Genomics and Bioinformatics Core, University at Buffalo, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
- Center for Computational Research, University at Buffalo, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Michael J. Buck
- Department of Biochemistry, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
45
|
Zhang L, Sement FM, Suematsu T, Yu T, Monti S, Huang L, Aphasizhev R, Aphasizheva I. PPR polyadenylation factor defines mitochondrial mRNA identity and stability in trypanosomes. EMBO J 2017; 36:2435-2454. [PMID: 28684539 DOI: 10.15252/embj.201796808] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 11/09/2022] Open
Abstract
In Trypanosoma brucei, most mitochondrial mRNAs undergo internal changes by RNA editing and 3' end modifications. The temporally separated and functionally distinct modifications are manifested by adenylation prior to editing, and by post-editing extension of a short A-tail into a long A/U-heteropolymer. The A-tail stabilizes partially and fully edited mRNAs, while the A/U-tail enables mRNA binding to the ribosome. Here, we identify an essential pentatricopeptide repeat-containing RNA binding protein, kinetoplast polyadenylation factor 3 (KPAF3), and demonstrate its role in protecting pre-mRNA against degradation by the processome. We show that KPAF3 recruits KPAP1 poly(A) polymerase to the 3' terminus, thus leading to pre-mRNA stabilization, or decay depending on the occurrence and extent of editing. In vitro, KPAF3 stimulates KPAP1 activity and inhibits mRNA uridylation by RET1 TUTase. Our findings indicate that KPAF3 selectively directs pre-mRNA toward adenylation rather than uridylation, which is a default post-trimming modification characteristic of ribosomal and guide RNAs. As a quality control mechanism, KPAF3 binding ensures that mRNAs entering the editing pathway are adenylated and, therefore, competent for post-editing A/U-tailing and translational activation.
Collapse
Affiliation(s)
- Liye Zhang
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA.,Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Francois M Sement
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| | - Tian Yu
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
46
|
Lualdi S, Del Zotto G, Zegarra-Moran O, Pedemonte N, Corsolini F, Bruschi M, Tomati V, Amico G, Candiano G, Dardis A, Cooper DN, Filocamo M. In vitro recapitulation of the site-specific editing (to wild-type) of mutant IDS mRNA transcripts, and the characterization of IDS protein translated from the edited mRNAs. Hum Mutat 2017; 38:849-862. [PMID: 28477385 DOI: 10.1002/humu.23243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/05/2017] [Accepted: 04/22/2017] [Indexed: 11/06/2022]
Abstract
The transfer of genomic information into the primary RNA sequence can be altered by RNA editing. We have previously shown that genomic variants can be RNA-edited to wild-type. The presence of distinct "edited" iduronate 2-sulfatase (IDS) mRNA transcripts ex vivo evidenced the correction of a nonsense and frameshift variant, respectively, in three unrelated Hunter syndrome patients. This phenomenon was confirmed in various patient samples by a variety of techniques, and was quantified by single-nucleotide primer extension. Western blotting also confirmed the presence of IDS protein similar in size to the wild-type. Since preliminary experimental evidence suggested that the "corrected" IDS proteins produced by the patients were similar in molecular weight and net charge to their wild-type counterparts, an in vitro system employing different cell types was established to recapitulate the site-specific editing of IDS RNA (uridine to cytidine conversion and uridine deletion), and to confirm the findings previously observed ex vivo in the three patients. In addition, confocal microscopy and flow cytometry analyses demonstrated the expression and lysosomal localization in HEK293 cells of GFP-labeled proteins translated from edited IDS mRNAs. Confocal high-content analysis of the two patients' cells expressing wild-type or mutated IDS confirmed lysosomal localization and showed no accumulation in the Golgi or early endosomes.
Collapse
Affiliation(s)
- Susanna Lualdi
- UOSD Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | | | | | | | - Fabio Corsolini
- UOSD Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Maurizio Bruschi
- Laboratory on Physiopathology of Uremia, Istituto Giannina Gaslini, Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, Istituto Giannina Gaslini, Genova, Italy
| | - Giulia Amico
- UOSD Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Candiano
- Laboratory on Physiopathology of Uremia, Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Mirella Filocamo
- UOSD Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
47
|
Carnes J, McDermott S, Anupama A, Oliver BG, Sather DN, Stuart K. In vivo cleavage specificity of Trypanosoma brucei editosome endonucleases. Nucleic Acids Res 2017; 45:4667-4686. [PMID: 28334821 PMCID: PMC5416837 DOI: 10.1093/nar/gkx116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
RNA editing is an essential post-transcriptional process that creates functional mitochondrial mRNAs in Kinetoplastids. Multiprotein editosomes catalyze pre-mRNA cleavage, uridine (U) insertion or deletion, and ligation as specified by guide RNAs. Three functionally and compositionally distinct editosomes differ by the mutually exclusive presence of the KREN1, KREN2 or KREN3 endonuclease and their associated partner proteins. Because endonuclease cleavage is a likely point of regulation for RNA editing, we elucidated endonuclease specificity in vivo. We used a mutant gamma ATP synthase allele (MGA) to circumvent the normal essentiality of the editing endonucleases, and created cell lines in which both alleles of one, two or all three of the endonucleases were deleted. Cells lacking multiple endonucleases had altered editosome sedimentation on glycerol gradients and substantial defects in overall editing. Deep sequencing analysis of RNAs from such cells revealed clear discrimination by editosomes between sites of deletion versus insertion editing and preferential but overlapping specificity for sites of insertion editing. Thus, endonuclease specificities in vivo are distinct but with some functional overlap. The overlapping specificities likely accommodate the more numerous sites of insertion versus deletion editing as editosomes collaborate to accurately edit thousands of distinct editing sites in vivo.
Collapse
Affiliation(s)
- Jason Carnes
- Center for Infectious Disease Research (formerly Seattle BioMed), Seattle, WA 98109, USA
| | - Suzanne McDermott
- Center for Infectious Disease Research (formerly Seattle BioMed), Seattle, WA 98109, USA
| | - Atashi Anupama
- Center for Infectious Disease Research (formerly Seattle BioMed), Seattle, WA 98109, USA
| | - Brian G. Oliver
- Center for Infectious Disease Research (formerly Seattle BioMed), Seattle, WA 98109, USA
| | - D. Noah Sather
- Center for Infectious Disease Research (formerly Seattle BioMed), Seattle, WA 98109, USA
| | - Kenneth Stuart
- Center for Infectious Disease Research (formerly Seattle BioMed), Seattle, WA 98109, USA
| |
Collapse
|
48
|
Aphasizhev R, Suematsu T, Zhang L, Aphasizheva I. Constructive edge of uridylation-induced RNA degradation. RNA Biol 2016; 13:1078-1083. [PMID: 27715485 PMCID: PMC5100348 DOI: 10.1080/15476286.2016.1229736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/06/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
RNA uridylation is a significant transcriptome-shaping factor in protists, fungi, metazoans, and plants. The 3' U-additions are catalyzed by terminal uridyltransferases (TUTases), a diverse group of enzymes that along with non-canonical poly(A) polymerases form a distinct group in the superfamily of DNA polymerase β-like nucleotidyl transferases. Within and across studied organisms and subcellular compartments, TUTases differ in nucleotide triphosphate selectivity, interacting partners, and RNA targets. A general premise linking RNA uridylation to 3'-5' degradation received support from several studies of small RNAs and mRNA turnover. However, recent work on kinetoplastid protists typified by Trypanosoma brucei provides evidence that RNA uridylation may play a more nuanced role in generating functional small RNAs. In this pathogen's mitochondrion, most mRNAs are internally edited by U-insertions and deletions, and subjected to 3' adenylation/uridylation; guide RNAs (gRNAs) required for editing are U-tailed. The prominent role of uridylation in mitochondrial RNA metabolism stimulated identification of the first TUTase, RNA editing TUTase 1 (RET1). Here we discuss functional studies of mitochondrial uridylation in trypanosomes that have revealed an unorthodox pathway of small RNA biogenesis. The current model accentuates physical coupling of RET1 and 3'-5' RNase II/RNB-type exonuclease DSS1 within a stable complex termed the mitochondrial 3' processome (MPsome). In the confines of this complex, RET1 initially uridylates a long precursor to activate its 3'-5' degradation by DSS1, and then uridylates trimmed guide RNA to disengage the processing complex from the mature molecule. We also discuss a potential role of antisense transcription in the MPsome pausing at a fixed distance from gRNA's 5' end. This step likely defines the mature 3' end by enabling kinetic competition between TUTase and exonuclease activities.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| | - Liye Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
49
|
Rajappa-Titu L, Suematsu T, Munoz-Tello P, Long M, Demir Ö, Cheng KJ, Stagno JR, Luecke H, Amaro RE, Aphasizheva I, Aphasizhev R, Thore S. RNA Editing TUTase 1: structural foundation of substrate recognition, complex interactions and drug targeting. Nucleic Acids Res 2016; 44:10862-10878. [PMID: 27744351 PMCID: PMC5159558 DOI: 10.1093/nar/gkw917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Abstract
Terminal uridyltransferases (TUTases) execute 3′ RNA uridylation across protists, fungi, metazoan and plant species. Uridylation plays a particularly prominent role in RNA processing pathways of kinetoplastid protists typified by the causative agent of African sleeping sickness, Trypanosoma brucei. In mitochondria of this pathogen, most mRNAs are internally modified by U-insertion/deletion editing while guide RNAs and rRNAs are U-tailed. The founding member of TUTase family, RNA editing TUTase 1 (RET1), functions as a subunit of the 3′ processome in uridylation of gRNA precursors and mature guide RNAs. Along with KPAP1 poly(A) polymerase, RET1 also participates in mRNA translational activation. RET1 is divergent from human TUTases and is essential for parasite viability in the mammalian host and the insect vector. Given its robust in vitro activity, RET1 represents an attractive target for trypanocide development. Here, we report high-resolution crystal structures of the RET1 catalytic core alone and in complex with UTP analogs. These structures reveal a tight docking of the conserved nucleotidyl transferase bi-domain module with a RET1-specific C2H2 zinc finger and RNA recognition (RRM) domains. Furthermore, we define RET1 region required for incorporation into the 3′ processome, determinants for RNA binding, subunit oligomerization and processive UTP incorporation, and predict druggable pockets.
Collapse
Affiliation(s)
- Lional Rajappa-Titu
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | - Paola Munoz-Tello
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Marius Long
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Özlem Demir
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin J Cheng
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason R Stagno
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Hartmut Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA .,Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Stéphane Thore
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland .,INSERM, U1212, ARNA Laboratory, Bordeaux 33000, France.,CNRS UMR5320, ARNA Laboratory, Bordeaux 33000, France.,University of Bordeaux, ARNA Laboratory, Bordeaux 33000, France
| |
Collapse
|
50
|
Valach M, Moreira S, Faktorová D, Lukeš J, Burger G. Post-transcriptional mending of gene sequences: Looking under the hood of mitochondrial gene expression in diplonemids. RNA Biol 2016; 13:1204-1211. [PMID: 27715490 DOI: 10.1080/15476286.2016.1240143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The instructions to make proteins and structural RNAs are laid down in gene sequences. Yet, in certain instances, these primary instructions need to be modified considerably during gene expression, most often at the transcript level. Here we review a case of massive post-transcriptional revisions via trans-splicing and RNA editing, a phenomenon occurring in mitochondria of a recently recognized protist group, the diplonemids. As of now, the various post-transcriptional steps have been cataloged in detail, but how these processes function is still unknown. Since genetic manipulation techniques such as gene replacement and RNA interference have not yet been established for these organisms, alternative strategies have to be deployed. Here, we discuss the experimental and bioinformatics approaches that promise to unravel the molecular machineries of trans-splicing and RNA editing in Diplonema mitochondria.
Collapse
Affiliation(s)
- Matus Valach
- a Department of Biochemistry and Robert-Cedergren , Center for Bioinformatics and Genomics, Université de Montréal , Montreal , Canada
| | - Sandrine Moreira
- a Department of Biochemistry and Robert-Cedergren , Center for Bioinformatics and Genomics, Université de Montréal , Montreal , Canada
| | - Drahomíra Faktorová
- b Institute of Parasitology, Biology Center and Faculty of Sciences, University of South Bohemia , České Budějovice , Czech Republic
| | - Julius Lukeš
- b Institute of Parasitology, Biology Center and Faculty of Sciences, University of South Bohemia , České Budějovice , Czech Republic.,c Canadian Institute for Advanced Research , Toronto , Canada
| | - Gertraud Burger
- a Department of Biochemistry and Robert-Cedergren , Center for Bioinformatics and Genomics, Université de Montréal , Montreal , Canada
| |
Collapse
|