1
|
Barbosa HJ, Quevedo YS, Torres AM, Veloza GAG, Carranza Martínez JC, Urrea-Montes DA, Robello-Porto C, Vallejo GA. Comparative proteomic analysis of the hemolymph and salivary glands of Rhodnius prolixus and R. colombiensis reveals candidates associated with differential lytic activity against Trypanosoma cruzi Dm28c and T. cruzi Y. PLoS Negl Trop Dis 2024; 18:e0011452. [PMID: 38568999 PMCID: PMC10990223 DOI: 10.1371/journal.pntd.0011452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Immune response of triatomines plays an important role in the success or failure of transmission of T. cruzi. Studies on parasite-vector interaction have shown the presence of trypanolytic factors and have been observed to be differentially expressed among triatomines, which affects the transmission of some T. cruzi strains or DTUs (Discrete Typing Units). METHODOLOGY/PRINCIPAL FINDINGS Trypanolytic factors were detected in the hemolymph and saliva of R. prolixus against epimastigotes and trypomastigotes of the Y strain (T. cruzi II). To identify the components of the immune response that could be involved in this lytic activity, a comparative proteomic analysis was carried out, detecting 120 proteins in the hemolymph of R. prolixus and 107 in R. colombiensis. In salivary glands, 1103 proteins were detected in R. prolixus and 853 in R. colombiensis. A higher relative abundance of lysozyme, prolixin, nitrophorins, and serpin as immune response proteins was detected in the hemolymph of R. prolixus. Among the R. prolixus salivary proteins, a higher relative abundance of nitrophorins, lipocalins, and triabins was detected. The higher relative abundance of these immune factors in R. prolixus supports their participation in the lytic activity on Y strain (T. cruzi II), but not on Dm28c (T. cruzi I), which is resistant to lysis by hemolymph and salivary proteins of R. prolixus due to mechanisms of evading oxidative stress caused by immune factors. CONCLUSIONS/SIGNIFICANCE The lysis resistance observed in the Dm28c strain would be occurring at the DTU I level. T. cruzi I is the DTU with the greatest geographic distribution, from the south of the United States to central Chile and Argentina, a distribution that could be related to resistance to oxidative stress from vectors. Likewise, we can say that lysis against strain Y could occur at the level of DTU II and could be a determinant of the vector inability of these species to transmit T. cruzi II. Future proteomic and transcriptomic studies on vectors and the interactions of the intestinal microbiota with parasites will help to confirm the determinants of successful or failed vector transmission of T. cruzi DTUs in different parts of the Western Hemisphere.
Collapse
Affiliation(s)
- Hamilton J. Barbosa
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Yazmin Suárez Quevedo
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Arlid Meneses Torres
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Gustavo A. Gaitán Veloza
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Julio C. Carranza Martínez
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Daniel A. Urrea-Montes
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Carlos Robello-Porto
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gustavo A. Vallejo
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| |
Collapse
|
2
|
Da Lage JL, Fontenelle A, Filée J, Merle M, Béranger JM, Almeida CE, Folly Ramos E, Harry M. Evidence that hematophagous triatomine bugs may eat plants in the wild. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104059. [PMID: 38101706 DOI: 10.1016/j.ibmb.2023.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Blood feeding is a secondary adaptation in hematophagous bugs. Many proteins are secreted in the saliva that are devoted to coping with the host's defense and to process the blood meal. Digestive enzymes that are no longer required for a blood meal would be expected to be eventually lost. Yet, in many strictly hematophagous arthropods, α-amylase genes, which encode the enzymes that digest starch from plants, are still present and transcribed, including in the kissing bug Rhodnius prolixus (Hemiptera, Reduviidae) and its related species, which transmit the Chagas disease. We hypothesized that retaining α-amylase could be advantageous if the bugs occasionally consume plant tissues. We first checked that the α-amylase protein of Rhodnius robustus retains normal amylolytic activity. Then we surveyed hundreds of gut DNA extracts from the sylvatic R. robustus to detect traces of plants. We found plant DNA in 8% of the samples, mainly identified as Attalea palm trees, where R. robustus are usually found. We suggest that although of secondary importance in the blood-sucking bugs, α-amylase may be needed during occasional plant feeding and thus has been retained.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.
| | - Alice Fontenelle
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jonathan Filée
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Marie Merle
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jean-Michel Béranger
- Département Systématique and Evolution, Muséum National d'Histoire Naturelle, Paris, France; IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Carlos Eduardo Almeida
- Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde, Instituto de Biologia, Departamento de Zoologia, Rio de Janeiro, Brazil
| | - Elaine Folly Ramos
- Departamento de Engenharia e Meio Ambiente - DEMA, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Myriam Harry
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Guizzo MG, Mans B, Pienaar R, Ribeiro JMC. A comparison of Illumina and PacBio methods to build tick salivary gland transcriptomes confirms large expression of lipocalins and other salivary protein families that are not represented in available tick genomes. Ticks Tick Borne Dis 2023; 14:102209. [PMID: 37327738 PMCID: PMC10527494 DOI: 10.1016/j.ttbdis.2023.102209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Tick saliva helps blood feeding by its antihemostatic and immunomodulatory activities. Tick salivary gland transcriptomes (sialotranscriptomes) revealed thousands of transcripts coding for putative secreted polypeptides. Hundreds of these transcripts code for groups of similar proteins, constituting protein families, such as the lipocalins and metalloproteases. However, while many of these transcriptome-derived protein sequences matches sequences predicted by tick genome assemblies, the majority are not represented in these proteomes. The diversity of these transcriptome-derived transcripts could derive from artifacts generated during assembly of short Illumina reads or derive from polymorphisms of the genes coding for these proteins. To investigate this discrepancy, we collected salivary glands from blood-feeding ticks and, from the same homogenate, made and sequenced libraries following Illumina and PacBio protocols, with the assumption that the longer PacBio reads would reveal the sequences generated by the assembly of Illumina reads. Using both Rhipicephalus zambeziensis and Ixodes scapularis ticks, we have obtained more lipocalin transcripts from the Illumina library than the PacBio library. To verify whether these unique Illumina transcripts were real, we selected 9 uniquely Illumina-derived lipocalin transcripts from I. scapularis and attempted to obtain PCR products. These were obtained and their sequences confirmed the presence of these transcripts in the I. scapularis salivary homogenate. We further compared the predicted salivary lipocalins and metalloproteases from I. scapularis sialotranscriptomes with those found in the predicted proteomes of 3 publicly available genomes of I. scapularis. Results indicate that the discrepancy between the genome and transcriptome sequences for these salivary protein families is due to a high degree of polymorphism within these genes.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, USA
| | - Ben Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa; The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa; Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Jose M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, USA.
| |
Collapse
|
4
|
Wu C, Li L, Wang Y, Wei S, Zhu J. Morphological, functional, compositional and transcriptional constraints shape the distinct venom profiles of the assassin bug Sycanus croceovittatus. Int J Biol Macromol 2023; 250:126162. [PMID: 37558034 DOI: 10.1016/j.ijbiomac.2023.126162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Predatory bugs employ a salivary venom apparatus to generate complex venoms for capturing and digesting prey. The venom apparatus consists of different glands for the production of distinct venom sets, but the underlying mechanisms behind this process remain poorly understood. Here we present a comprehensive analysis of the morphological, functional, compositional and transcriptional characteristics of venoms derived from posterior main gland (PMG), anterior main gland (AMG), and accessory gland (AG) of the assassin bug Sycanus croceovittatus. Structural observations revealed the intricate constructions of the venom apparatus, enabling the production and storage of three distinct venom sets in anatomically varied glands and allowing them to be modulated in a context-dependent manner upon utilization. There were remarkable differences in the biological activities exhibited by PMG, AMG, and AG venoms. Proteotranscriptomic analysis demonstrated that these venoms displayed compositional heterogeneity at both the quantity and variety levels of proteins. Transcriptional profiles of the identified venom proteins revealed gland-specific or biased expression patterns. These findings indicate that the divergence in venom profiles among different glands arises from morphological, functional, compositional and transcriptional constraints on the venom apparatus, reflecting remarkable morphogenesis and regulatory gene networks responsible for the compartmentalized production of venom proteins in different glands.
Collapse
Affiliation(s)
- Chaoyan Wu
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Yuqin Wang
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Shujun Wei
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiaying Zhu
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China.
| |
Collapse
|
5
|
Santiago PB, da Silva Bentes KL, da Silva WMC, Praça YR, Charneau S, Chaouch S, Grellier P, Dos Santos Silva Ferraz MA, Bastos IMD, de Santana JM, de Araújo CN. Insights into the microRNA landscape of Rhodnius prolixus, a vector of Chagas disease. Sci Rep 2023; 13:13120. [PMID: 37573416 PMCID: PMC10423254 DOI: 10.1038/s41598-023-40353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
The growing interest in microRNAs (miRNAs) over recent years has led to their characterization in numerous organisms. However, there is currently a lack of data available on miRNAs from triatomine bugs (Reduviidae: Triatominae), which are the vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. A comprehensive understanding of the molecular biology of vectors provides new insights into insect-host interactions and insect control approaches, which are key methods to prevent disease incidence in endemic areas. In this work, we describe the miRNome profiles from gut, hemolymph, and salivary gland tissues of the Rhodnius prolixus triatomine. Small RNA sequencing data revealed abundant expression of miRNAs, along with tRNA- and rRNA-derived fragments. Fifty-two mature miRNAs, previously reported in Ecdysozoa, were identified, including 39 ubiquitously expressed in the three tissues. Additionally, 112, 73, and 78 novel miRNAs were predicted in the gut, hemolymph, and salivary glands, respectively. In silico prediction showed that the top eight most highly expressed miRNAs from salivary glands potentially target human blood-expressed genes, suggesting that R. prolixus may modulate the host's gene expression at the bite site. This study provides the first characterization of miRNAs in a Triatominae species, shedding light on the role of these crucial regulatory molecules.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Kaio Luís da Silva Bentes
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | | | - Yanna Reis Praça
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Soraya Chaouch
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, 0575231, Paris Cedex, France
| | - Philippe Grellier
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, 0575231, Paris Cedex, France
| | | | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Jaime Martins de Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil.
- Faculty of Ceilândia, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
6
|
Santos DV, Gontijo NF, Pessoa GCD, Sant'Anna MRV, Araujo RN, Pereira MH, Koerich LB. An updated catalog of lipocalins of the chagas disease vector Rhodnius prolixus (Hemiptera, Reduviidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 146:103797. [PMID: 35640811 DOI: 10.1016/j.ibmb.2022.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The haematophagy process by arthropods has been one of the main targets of studies in the parasite-host interaction, and the kissing-bug Rhodnius prolixus, vector of the protozoan Trypanosoma cruzi, has been one of the main models for such studies. Still in the 1980s, it was identified that among the salivary proteins for disrupting vertebrate host homeostasis, lipocalins were among the most relevant proteins for this process. Since then, 30 lipocalins have been identified in the salivary glands of R. prolixus, that promotes vasodilatation, prevents inflammation, act as anticoagulants and inhibits platelet aggregation. The present work aims to identify new lipocalins from R. prolixus, combining transcriptome and genome data. Identified new genes were mapped and had their structure annotated. To infer an evolutionary relationship between lipocalins, and to support the predicted functions for each lipocalin, all amino acid sequences were used to construct phylogenetic trees. We identified a total of 29 new lipocalins, 3 new bioaminogenic-biding proteins (which act to inhibit platelet aggregation and vasodilation), 9 new inhibitors of platelet aggregation, 7 new apolipoproteins and 10 lipocalins with no putative function. In addition, we observed that several of the lipocalins are also expressed in different R. prolxius tissues, including gut, central nervous system, antennae, and reproductive organs. In addition to newly identified lipocalins and a mapping the new and old lipocalins in the genome of R. prolixus, our study also carried out a review on functional status and nomenclature of some of the already identified lipocalins. Our study reinforces that we are far from understanding the role of lipocalins in the physiology of R. prolixus, and that studies of this family are still of great relevance.
Collapse
Affiliation(s)
- Daniela V Santos
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Nelder F Gontijo
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Garsielle C D Pessoa
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Mauricio R V Sant'Anna
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Ricardo N Araujo
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Marcos H Pereira
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Leonardo B Koerich
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
7
|
Rocha FF, Gazzinelli-Guimarães PH, Soares AC, Lourdes RA, Estevão LRM, Rachid MA, Bueno LL, Gontijo NF, Pereira MH, Sant'Anna MRV, Natividade UA, Fujiwara RT, Araujo RN. Effect of Triatoma infestans saliva on mouse immune system cells: The role of the pore-forming salivary protein trialysin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103739. [PMID: 35149206 DOI: 10.1016/j.ibmb.2022.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Triatoma infestans is one of the most important vectors of Trypanosoma cruzi in the Americas. While feeding, they release large amounts of saliva that will counteract the host's responses triggered at the bite site. Despite the various activities described on T. infestans saliva, little is known about its effect on the modulation of the host's immune system. This work aimed to describe the effects of T. infestans saliva on cells of the mouse immune system and access the role in hematophagy. The effect of saliva or salivary gland extract (SGE) was evaluated in vivo and in vitro by direct T. infestans feeding on mice or using different biological assays. Mice that were submitted to four bites by three specimens of T. infestans had their anti-saliva IgG serum levels approximately 2.4 times higher than controls, but no change in serum IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, and TNF-α levels was observed. No macroscopic alterations were seen at the bite site, but an accumulation of mononuclear and polymorphonuclear cells shortly after the bite and 24 h later were observed in histological cuts. At low concentrations (up to ∼5 μg/well), SGE induced TNF-α production by macrophages and spleen cells, IFN-γ and IL-10 by spleen cells and NO by macrophages. However, at higher concentrations (10 and 20 μg/well), viability of macrophages and spleen cells was reduced by SGE, reducing the production of NO and cytokines (except TNF-α). The salivary trialysin was the main inducer of cell death as macrophage viability and NO production was restored in assays carried out with SGE from trialysin knockdown insects. The reduction of the salivary trialysin by RNAi affected the total ingestion rate, the weight gain, and retarded the molt from second to the fifth instar of T. infestans nymphs fed on mice. The results show that T. infestans saliva modulates the activity of cells of the host immune system and trialysin is an important salivary molecule that reduces host cells viability and impacts the feeding performance of T. infestans feeding on live hosts.
Collapse
Affiliation(s)
- Fernanda F Rocha
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H Gazzinelli-Guimarães
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriana C Soares
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo A Lourdes
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lígia R M Estevão
- Laboratory of Cellular and Molecular Pathology, Department of Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milene A Rachid
- Laboratory of Cellular and Molecular Pathology, Department of Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian L Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nelder F Gontijo
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Marcos H Pereira
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mauricio R V Sant'Anna
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ulisses A Natividade
- Laboratory of Hematophagous Arthopods, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo T Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo N Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil; Laboratory of Hematophagous Arthopods, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Praça YR, Santiago PB, Charneau S, Mandacaru SC, Bastos IMD, Bentes KLDS, Silva SMM, da Silva WMC, da Silva IG, de Sousa MV, Soares CMDA, Ribeiro JMC, Santana JM, de Araújo CN. An Integrative Sialomic Analysis Reveals Molecules From Triatoma sordida (Hemiptera: Reduviidae). Front Cell Infect Microbiol 2022; 11:798924. [PMID: 35047420 PMCID: PMC8762107 DOI: 10.3389/fcimb.2021.798924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Triatomines have evolved salivary glands that produce versatile molecules with various biological functions, including those leading their interactions with vertebrate hosts’ hemostatic and immunological systems. Here, using high-throughput transcriptomics and proteomics, we report the first sialome study on the synanthropic triatomine Triatoma sordida. As a result, 57,645,372 reads were assembled into 26,670 coding sequences (CDS). From these, a total of 16,683 were successfully annotated. The sialotranscriptomic profile shows Lipocalin as the most abundant protein family within putative secreted transcripts. Trialysins and Kazal-type protease inhibitors have high transcript levels followed by ubiquitous protein families and enzyme classes. Interestingly, abundant trialysin and Kazal-type members are highlighted in this triatomine sialotranscriptome. Furthermore, we identified 132 proteins in T. sordida salivary gland soluble extract through LC-MS/MS spectrometry. Lipocalins, Hemiptera specific families, CRISP/Antigen-5 and Kazal-type protein inhibitors proteins were identified. Our study provides a comprehensive description of the transcript and protein compositions of the salivary glands of T. sordida. It significantly enhances the information in the Triatominae sialome databanks reported so far, improving the understanding of the vector’s biology, the hematophagous behaviour, and the Triatominae subfamily’s evolution.
Collapse
Affiliation(s)
- Yanna Reis Praça
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Paula Beatriz Santiago
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Kaio Luís da Silva Bentes
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | | | | | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil.,Faculty of Ceilândia, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
9
|
Mizushima D, Tabbabi A, Yamamoto DS, Kien LT, Kato H. Salivary gland transcriptome of the Asiatic Triatoma rubrofasciata. Acta Trop 2020; 210:105473. [PMID: 32505596 DOI: 10.1016/j.actatropica.2020.105473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Salivary gland transcriptome analysis of the Asiatic Triatoma rubrofasciata was performed by high-throughput RNA sequencing. This analysis showed that the majority of reads accounting for 85.38% FPKM (fragments per kilobase of exon per million mapped fragments) were mapped with a secreted class. Of these, the most abundant subclass accounting for 89.27% FPKM was the lipocalin family. In the lipocalin family, the most dominant molecules making up 70.49% FPKM were homologues of procalin, a major allergen identified from T. protracta saliva, suggesting an important role in blood-sucking of T. rubrofasciata. Other lipocalins showed similarities to pallidipin and triplatin, inhibitors of collagen-induced platelet aggregation identified from T. pallidipennis and T. infestans, respectively, Td38 from T. dimidiata with unknown function, triatin-like lipocalin with unknown function, and triafestin, an inhibitor of the activation of the kallikrein-kinin system, identified from T. infestans saliva. Other than lipocalin family proteins, homologues of antigen-5 (3.38% FPKM), Kazal-type serine protease inhibitor (1.36% FPKM), inositol polyphosphate 5-phosphatase (1.32% FPKM), and apyrase/5'-nucleotidase (0.64% FPKM) were identified as abundant molecules in T. rubrofasciata saliva. Through this study, de novo assembly of 42,580,822 trimmed reads generated 35,781 trinity transcripts, and a total of 1,272 coding sequences for the secreted class were deposited in GenBank. The results provide further insights into the evolution of salivary components in blood-sucking arthropods.
Collapse
Affiliation(s)
- Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Le Trung Kien
- Department of Experimental Chemistry, National Institute of Malariology, Parasitology and Entomology, Vietnam
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
10
|
Santiago PB, Charneau S, Mandacaru SC, Bentes KLDS, Bastos IMD, de Sousa MV, Ricart CAO, de Araújo CN, Santana JM. Proteomic Mapping of Multifunctional Complexes Within Triatomine Saliva. Front Cell Infect Microbiol 2020; 10:459. [PMID: 32984079 PMCID: PMC7492717 DOI: 10.3389/fcimb.2020.00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022] Open
Abstract
Triatomines are hematophagous insects that transmit Trypanosoma cruzi, the etiological agent of Chagas disease. This neglected tropical disease represents a global health issue as it is spreading worldwide. The saliva of Triatominae contains miscellaneous proteins crucial for blood feeding acquisition, counteracting host's hemostasis while performing vasodilatory, anti-platelet and anti-coagulant activities, besides modulating inflammation and immune responses. Since a set of biological processes are mediated by protein complexes, here, the sialocomplexomes (salivary protein complexes) of five species of Triatominae were studied to explore the protein-protein interaction networks. Salivary multiprotein complexes from Triatoma infestans, Triatoma dimidiata, Dipetalogaster maxima, Rhodnius prolixus, and Rhodnius neglectus were investigated by Blue-Native- polyacrylamide gel electrophoresis coupled with liquid chromatography tandem mass spectrometry. More than 70 protein groups, uncovering the landscape of the Triatominae salivary interactome, were revealed. Triabin, actin, thioredoxin peroxidase and an uncharacterized protein were identified in sialocomplexes of the five species, while hexamerin, heat shock protein and histone were identified in sialocomplexes of four species. Salivary proteins related to triatomine immunity as well as those required during blood feeding process such as apyrases, antigen 5, procalins, and nitrophorins compose different complexes. Furthermore, unique proteins for each triatomine species were revealed. This study represents the first Triatominae sialocomplexome reference to date and shows that the approach used is a reliable tool for the analysis of Triatominae salivary proteins assembled into complexes.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Kaio Luís da Silva Bentes
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | | | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Carlos André O Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| |
Collapse
|