1
|
Gutknecht MF, Holodick NE, Rothstein TL. B cell extracellular vesicles contain monomeric IgM that binds antigen and enters target cells. iScience 2023; 26:107526. [PMID: 37636058 PMCID: PMC10448175 DOI: 10.1016/j.isci.2023.107526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/18/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
The production and release of small phospholipid membrane vesicles, or extracellular vesicles (EVs), is a trait of most prokaryotic and eukaryotic cells. EVs display heterogeneity in content, size, biogenesis, activity, and function. B cells uniquely express immunoglobulin and produce EVs; however, the relationship between these entities has not been clarified. Here, we used several methodologies to isolate large (11,000 × g) and small (110,000 × g) EVs and evaluate their IgM content, characteristics and activity. We found that B cells from multiple cell lines and primary B cells produce EVs that display monomeric IgM on the surface and contain encapsulated monomeric IgM, which is independent of secreted pentameric IgM. Our data indicate EV IgM can bind antigen specifically, and EV IgM can be incorporated intracellularly into secondary cells. These results suggest immunological activities different from secreted pentameric IgM that may constitute a separate and distinct antibody distribution system.
Collapse
Affiliation(s)
- Michael F. Gutknecht
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Nichol E. Holodick
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Thomas L. Rothstein
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
2
|
Piazzesi A, Putignani L. Impact of helminth-microbiome interactions on childhood health and development-A clinical perspective. Parasite Immunol 2023; 45:e12949. [PMID: 36063358 DOI: 10.1111/pim.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Humans have co-existed with parasites for virtually the entirety of our existence as a species. Today, nearly one third of the human population is infected with at least one helminthic species, most of which reside in the intestinal tract, where they have co-evolved alongside the human gut microbiota (GM). Appreciation for the interconnected relationship between helminths and GM has increased in recent years. Here, we review the evidence of how helminths and GM can influence various aspects of childhood development and the onset of paediatric diseases. We discuss the emerging evidence of how many of the changes that parasitic worms inflict on their host is enacted through gut microbes. In this light, we argue that helminth-induced microbiota modifications are of great importance in both facing the global challenge of overcoming parasitic infections, and in replicating helminthic protective effects against inflammatory diseases. We propose that deepening our knowledge of helminth-microbiota interactions will uncover novel, safer and more effective therapeutic strategies in combatting an array of childhood disorders.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Feng T, Zhang W, Li Z. Potential Mechanisms of Gut-Derived Extracellular Vesicle Participation in Glucose and Lipid Homeostasis. Genes (Basel) 2022; 13:genes13111964. [PMID: 36360201 PMCID: PMC9689624 DOI: 10.3390/genes13111964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2023] Open
Abstract
The intestine participates in the regulation of glucose and lipid metabolism in multiple facets. It is the major site of nutrient digestion and absorption, provides the interface as well as docking locus for gut microbiota, and harbors hormone-producing cells scattered throughout the gut epithelium. Intestinal extracellular vesicles are known to influence the local immune response, whereas their roles in glucose and lipid homeostasis have barely been explored. Hence, this current review summarizes the latest knowledge of cargo substances detected in intestinal extracellular vesicles, and connects these molecules with the fine-tuning regulation of glucose and lipid metabolism in liver, muscle, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Tiange Feng
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Correspondence: (W.Z.); (Z.L.); Tel.: +1-734-615-0360 (W.Z.); +1-207-396-8050 (Z.L.)
| | - Ziru Li
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME 04074, USA
- Correspondence: (W.Z.); (Z.L.); Tel.: +1-734-615-0360 (W.Z.); +1-207-396-8050 (Z.L.)
| |
Collapse
|
4
|
Vidal-Veuthey B, González D, Cárdenas JP. Role of microbial secreted proteins in gut microbiota-host interactions. Front Cell Infect Microbiol 2022; 12:964710. [PMID: 35967863 PMCID: PMC9373040 DOI: 10.3389/fcimb.2022.964710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
The mammalian gut microbiota comprises a variety of commensals including potential probiotics and pathobionts, influencing the host itself. Members of the microbiota can intervene with host physiology by several mechanisms, including the secretion of a relatively well-reported set of metabolic products. Another microbiota influence mechanism is the use of secreted proteins (i.e., the secretome), impacting both the host and other community members. While widely reported and studied in pathogens, this mechanism remains understood to a lesser extent in commensals, and this knowledge is increasing in recent years. In the following minireview, we assess the current literature covering different studies, concerning the functions of secretable proteins from members of the gut microbiota (including commensals, pathobionts, and probiotics). Their effect on host physiology and health, and how these effects can be harnessed by postbiotic products, are also discussed.
Collapse
Affiliation(s)
- Boris Vidal-Veuthey
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Huechuraba, Chile
| | - Dámariz González
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Huechuraba, Chile
| | - Juan P. Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Huechuraba, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- *Correspondence: Juan P. Cárdenas,
| |
Collapse
|
5
|
Tong L, Zhang X, Hao H, Liu Q, Zhou Z, Liang X, Liu T, Gong P, Zhang L, Zhai Z, Hao Y, Yi H. Lactobacillus rhamnosus GG Derived Extracellular Vesicles Modulate Gut Microbiota and Attenuate Inflammatory in DSS-Induced Colitis Mice. Nutrients 2021; 13:3319. [PMID: 34684320 PMCID: PMC8541209 DOI: 10.3390/nu13103319] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a relapsing and remitting inflammatory disease. Probiotics have a potential beneficial effect on the prevention of UC onset and relapse in clinical trials. Lactobacillus rhamnosus GG (L. rhamnosus GG) have shown clinical benefits on UC patients, however, the precise mechanisms are unknown. The aim of this study is to explore the effect of extracellular vesicles released from L. rhamnosus GG (LGG-EVs) on dextran sulfate sodium (DSS)-induced colitis and propose the underlying mechanism of LGG-EVs for protecting against colitis. The results showed that LGG-EVs could prevent colonic tissue damage and shortening of the colon (p < 0.01), and ameliorate intestinal inflammation by inhibiting TLR4-NF-κB-NLRP3 axis activation. Consistently, the pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-2) were suppressed effectively upon LGG-EVs treatment (p < 0.05). The 16S rRNA sequencing showed that LGG-EVs administration could reshape the gut microbiota in DSS-induced colitis mice, which further alters the metabolism pathways of gut microbiota. These findings propose a novel perspective of L. rhamnosus GG in attenuating inflammation mediated by extracellular vesicles and offer consideration for developing oral gavage of LGG-EVs for colitis therapies.
Collapse
Affiliation(s)
- Lingjun Tong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Xinyi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Haining Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Qiqi Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Zihan Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.H.)
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.H.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| |
Collapse
|