1
|
Rogliani P, Manzetti GM, Gholamalishahi S, Cazzola M, Calzetta L. Impact of N-Acetylcysteine on Mucus Hypersecretion in the Airways: A Systematic Review. Int J Chron Obstruct Pulmon Dis 2024; 19:2347-2360. [PMID: 39493366 PMCID: PMC11531296 DOI: 10.2147/copd.s474512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Mucus clearance is crucial for airway protection, and its dysfunction leads to chronic obstructive pulmonary disease (COPD) characterized by mucus hypersecretion (MHS) and impaired clearance. MUC5AC and MUC5B mucin proteins are key components of airway mucus, with MUC5AC being particularly responsive to environmental stimuli, making it a potential COPD biomarker. N-acetylcysteine (NAC) is a mucolytic agent with known effects on mucus viscosity and clearance, but its precise mechanisms in COPD remain unclear. This systematic review evaluated the impact of NAC on MHS in the airways, reporting significant inhibitory effects on MUC5AC and MUC5B gene and protein expression, as well as a reduction in the number of goblet cells. NAC has demonstrated efficacy in vitro and in animal models of MHS, including COPD models, but data on human bronchial tissue are lacking. This systematic review suggests that NAC acts as a mucolytic and a mucoregulator, directly inhibiting mucus secretion and goblet cell hyperplasia. Given the critical role of MHS in COPD progression, exacerbations, and mortality, these findings highlight the potential of NAC as a targeted therapy for hypersecretion COPD phenotypes. However, further studies are needed to confirm the results of this systematic review, even in human bronchial tissue, to provide translatable evidence in clinical settings. Understanding the intimate mechanism of NAC versus MHS regulation may pave the way for more effective treatments targeting airway mucus dysfunction in COPD, ultimately improving patient outcomes and reducing morbidity and mortality associated with chronic mucus hypersecretion.
Collapse
Affiliation(s)
- Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Gian Marco Manzetti
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Shima Gholamalishahi
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Kim KI, Hossain R, Ryu J, Lee HJ, Lee CJ. Regulation of the Gene Expression of Airway MUC5AC Mucin through NF-κB Signaling Pathway by Artesunate, an Antimalarial Agent. Biomol Ther (Seoul) 2023; 31:544-549. [PMID: 37254459 PMCID: PMC10468416 DOI: 10.4062/biomolther.2023.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
In this study, artesunate, an antimalarial agent, was investigated for its potential effect on the gene expression of airway MUC5AC mucin. The human pulmonary epithelial NCI-H292 cells were pretreated with artesunate for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of artesunate on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also examined. Artesunate inhibited the glycoprotein production and mRNA expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest artesunate suppresses the gene expression of mucin through regulation of NF-kB signaling pathway, in human pulmonary epithelial cells.
Collapse
Affiliation(s)
- Kyung-il Kim
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Rajib Hossain
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jiho Ryu
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
3
|
Li X, Jin F, Lee HJ, Lee CJ. Kaempferol Regulates the Expression of Airway MUC5AC Mucin Gene via IκBα-NF-κB p65 and p38-p44/42-Sp1 Signaling Pathways. Biomol Ther (Seoul) 2021; 29:303-310. [PMID: 33281120 PMCID: PMC8094069 DOI: 10.4062/biomolther.2020.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/21/2023] Open
Abstract
In the present study, kaempferol, a flavonoidal natural compound found in Polygonati Rhizoma, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. A human respiratory epithelial NCI-H292 cells was pretreated with kaempferol for 30 min and stimulated with epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway or EGF-induced mitogen-activated protein kinase (MAPK) signaling pathway was investigated. Kaempferol suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IκBα), and NF-κB p65 nuclear translocation. Also, kaempferol inhibited EGF-induced gene expression and production of MUC5AC mucin through regulating the phosphorylation of EGFR, phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2 (p44/42), and the nuclear expression of specificity protein-1 (Sp1). These results suggest kaempferol regulates the gene expression and production of mucin through regulation of NF-κB and MAPK signaling pathways, in human airway epithelial cells.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Fengri Jin
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
4
|
Jin F, Li X, Lee HJ, Lee CJ. Diclofenac Inhibits Phorbol Ester-Induced Gene Expression and Production of MUC5AC Mucin via Affecting Degradation of IkBα and Translocation of NF-kB p65 in NCI-H292 Cells. Biomol Ther (Seoul) 2020; 28:431-436. [PMID: 32753566 PMCID: PMC7457166 DOI: 10.4062/biomolther.2020.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, diclofenac, a non-steroidal anti-inflammatory drug, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. The human respiratory epithelial NCI-H292 cells were pretreated with diclofenac for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of diclofenac on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated. Diclofenac suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest diclofenac regulates the gene expression and production of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.
Collapse
Affiliation(s)
- Fengri Jin
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Xin Li
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Koreance, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
5
|
Choi BS, Kim YJ, Choi JS, Lee HJ, Lee CJ. Obtusifolin isolated from the seeds of Cassia obtusifolia regulates the gene expression and production of MUC5AC mucin in airway epithelial cells via affecting NF-κB pathway. Phytother Res 2019; 33:919-928. [PMID: 30632219 DOI: 10.1002/ptr.6284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
We investigated whether obtusin, obtusifolin, and cassiaside isolated from the seeds of Cassia obtusifolia inhibit the gene expression and production of airway mucin 5AC (MUC5AC). Confluent NCI-H292 cells were pretreated with obtusin, obtusifolin, or cassiaside for 30 min and then stimulated with epidermal growth factor (EGF), phorbol 12-myristate 13-acetate (PMA), or tumor necrosis factor-α (TNF-α) for 24 hr. The MUC5AC mucin gene expression was measured by reverse transcription-polymerase chain reaction. Production of MUC5AC mucin protein was measured by enzyme-linked immunosorbent assay. To elucidate the action mechanism of obtusifolin, effect of obtusifolin on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was investigated by western blot analysis. Obtusin, obtusifolin, or cassiaside inhibited the expression of MUC5AC mucin gene and the production of MUC5AC mucin protein, induced by EGF, PMA, or TNF-α. Obtusifolin inhibited PMA-induced activation (phosphorylation) of inhibitory kappa B kinase, and thus phosphorylation and degradation of inhibitory kappa B alpha. Obtusifolin inhibited PMA-induced nuclear translocation of NF-κB p65. These results suggest that obtusifolin can regulate the production and gene expression of mucin by acting on airway epithelial cells through regulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Byung-Soo Choi
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Yu-Jin Kim
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul, Korea
| | - Choong Jae Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| |
Collapse
|
6
|
Amini A, Masoumi-Moghaddam S, Ehteda A, Liauw W, Morris DL. Depletion of mucin in mucin-producing human gastrointestinal carcinoma: Results from in vitro and in vivo studies with bromelain and N-acetylcysteine. Oncotarget 2016; 6:33329-44. [PMID: 26436698 PMCID: PMC4741769 DOI: 10.18632/oncotarget.5259] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/18/2015] [Indexed: 01/02/2023] Open
Abstract
Aberrant expression of membrane-associated and secreted mucins, as evident in epithelial tumors, is known to facilitate tumor growth, progression and metastasis, and to provide protection against adverse growth conditions, chemotherapy and immune surveillance. Emerging evidence provides support for the oncogenic role of MUC1 in gastrointestinal carcinomas and relates its expression to an invasive phenotype. Similarly, mucinous differentiation of gastrointestinal tumors, in particular increased or de novo expression of MUC2 and/or MUC5AC, is widely believed to imply an adverse clinicopathological feature. Through formation of viscous gels, too, MUC2 and MUC5AC significantly contribute to the biology and pathogenesis of mucin-secreting gastrointestinal tumors. Here, we investigated the mucin-depleting effects of bromelain (BR) and N-acetylcysteine (NAC), in nine different regimens as single or combination therapy, in in vitro (MKN45, KATOIII and LS174T cell lines) and in vivo (female nude mice bearing intraperitoneal MKN45 and LS174T) settings. The inhibitory effects of the treatment on cancer cell growth and proliferation were also evaluated in vivo. Our results suggest that a combination of BR and NAC with dual effects on growth and mucin products of mucin-expressing tumor cells is a promising candidate towards the development of novel approaches to gastrointestinal malignancies with the involvement of mucin pathology. This capability supports the use of this combination formulation in locoregional approaches for reducing the adverse effects of the aberrantly secreted gel-forming mucins, as in pseudomyxoma peritonei and similar pathologies with ectopic production of mucin.
Collapse
Affiliation(s)
- Afshin Amini
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - Samar Masoumi-Moghaddam
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - Anahid Ehteda
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - Winston Liauw
- Cancer Care Center, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - David L Morris
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| |
Collapse
|
7
|
Impact of Staphylococcus epidermidis lysates on middle ear epithelial proinflammatory and mucogenic response. J Investig Med 2015; 63:258-66. [PMID: 25503091 DOI: 10.1097/jim.0000000000000127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic otitis media with effusion (COME) develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Staphylococcus epidermidis, typically considered a commensal organism, is very frequently recovered in chronic middle ear fluid and in middle ear biofilms. Although it has been shown to drive inflammation in sinonasal epithelium, the impact of S. epidermidis on COME is markedly understudied. The goal of this study was to examine the in vitro effects of S. epidermidis lysates on murine and human middle ear epithelial cells. METHODS Staphylococcus epidermidis lysates were generated and used to stimulate submerged and differentiated human and murine epithelial cells (MEECs) for 24 to 48 hours. Quantitative real time-polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay, and immunocytochemistry techniques were performed to interrogate the mucin gene MUC5AC and MUC5B expression and protein production, chemokine response, as well as NF-κB activation. Luciferase reporter assays were performed to further evaluate nuclear factor κB (NF-κB) activation and query specific promoter responses after S. epidermidis exposure. RESULTS Staphylococcus epidermidis induced a time- and dose-dependent MUC5AC and MUC5B overexpression along with a parallel overexpression of Cxcl2 in mouse MEEC and IL-8 in human MEEC. Further investigations in mMEEC showed a 1.3 to 1.5 induction of the MUC5AC and MUC5B promoters. As potential mechanisms for these responses, induction of an oxidative stress marker, along with early nuclear translocation and activation of NF-κB, was found. Finally, chronic exposure induced marked epithelial thickening of cells differentiated at the air liquid interface. CONCLUSIONS Staphylococcus epidermidis lysates activate a proinflammatory response in MEEC, including mucin gene expression and protein production. Although typically considered a nonpathogenic commensal organism in the ear, these results suggest that they may play a role in the perpetuation of an inflammatory and mucogenic response in COME.
Collapse
|
8
|
Yonker LM, Cigana C, Hurley BP, Bragonzi A. Host-pathogen interplay in the respiratory environment of cystic fibrosis. J Cyst Fibros 2015; 14:431-439. [PMID: 25800687 DOI: 10.1016/j.jcf.2015.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 01/01/2023]
Abstract
Significant advances have been made in the understanding of disease progression in cystic fibrosis (CF), revealing a complex interplay between host and pathogenic organisms. The diverse CF microbiota within the airway activates an aberrant immune response that is ineffective in clearing infection. An appreciation of how the CF host immune system interacts with these organisms is crucial to understanding the pathogenesis of CF pulmonary disease. Here we discuss the microbial complexity present in the lungs of individuals with CF, review emerging concepts of innate and adaptive immune responses to pathogens that chronically inhabit the CF lung, and discuss therapies that target the aberrant inflammatory response that characterizes CF. A greater understanding of the underlying mechanisms will shed light on pathogenesis and guide more targeted therapies in the future that serve to reduce infection, minimize lung pathology, and improve the quality of life for patients with CF.
Collapse
Affiliation(s)
- Lael M Yonker
- Mucosal Immunology & Biology Research Center, Pediatrics, Harvard Medical School, Massachusetts General Hospital for Children , Charlestown, MA, U.S.A
| | - Cristina Cigana
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Bryan P Hurley
- Mucosal Immunology & Biology Research Center, Pediatrics, Harvard Medical School, Massachusetts General Hospital for Children , Charlestown, MA, U.S.A
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
9
|
Seo HS, Sikder MA, Lee HJ, Ryu J, Lee CJ. Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells. Biomol Ther (Seoul) 2014; 22:525-31. [PMID: 25489420 PMCID: PMC4256032 DOI: 10.4062/biomolther.2014.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 01/19/2023] Open
Abstract
In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-α (TNF-α)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-α for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-α in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-α-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-κB activation induced by TNF-α. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha (IκBα) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-κB signaling pathway in airway epithelial cells.
Collapse
Affiliation(s)
- Hyo-Seok Seo
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Mohamed Asaduzzaman Sikder
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Hyun Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Jiho Ryu
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| |
Collapse
|
10
|
Martin C, Frija-Masson J, Burgel PR. Targeting Mucus Hypersecretion: New Therapeutic Opportunities for COPD? Drugs 2014; 74:1073-89. [DOI: 10.1007/s40265-014-0235-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Jiang D, Li Q, Kolosov VP, Zhou X. The inhibition of aldose reductase on mucus production induced by interleukin-13 in the human bronchial epithelial cells. Int Immunopharmacol 2012; 12:588-93. [DOI: 10.1016/j.intimp.2012.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 12/28/2022]
|