1
|
Karpov AA, Vaulina DD, Smirnov SS, Moiseeva OM, Galagudza MM. Rodent models of pulmonary embolism and chronic thromboembolic pulmonary hypertension. Heliyon 2022; 8:e09014. [PMID: 35295664 PMCID: PMC8919224 DOI: 10.1016/j.heliyon.2022.e09014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/06/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
Pulmonary embolism (PE) is the third most prevalent cardiovascular disease. It is associated with high in-hospital mortality and the development of acute and chronic complications. New approaches aimed at improving the prognosis of patients with PE are largely dependent on reliable animal models. Mice, rats, hamsters, and rabbits, are currently most commonly used for PE modeling because of their ethical acceptability and economic feasibility. This article provides an overview of the main approaches to PE modeling, and the advantages and disadvantages of each method. Special attention is paid to experimental endpoints, including morphological, functional, and molecular endpoints. All approaches to PE modeling can be broadly divided into three main groups: 1) induction of thromboembolism, either by thrombus formation in vivo or by injection of in vitro prepared blood clots; 2) introduction of particles of non-thrombotic origin; and 3) surgical procedures. The choice of a specific model and animal species is determined based on the objectives of the study. Rodent models of chronic thromboembolic pulmonary hypertension (CTEPH), which is the most devastating complication of PE, are also described. CTEPH models are especially challenging because of insufficient knowledge about the pathogenesis and high fibrinolytic activity of rodent plasma. The CTEPH model should demonstrate a persistent increase in pulmonary artery pressure and stable reduction of the vascular bed due to recurrent embolism. Based on the analysis of available evidence, one might conclude that currently, there is no single optimal method for modeling PE and CTEPH.
Collapse
|
2
|
Tang L, Chen P, Yang L, Liu J, Zheng Y, Lin J, Chen S, Luo Y, Chen Y, Ma X, Zhang L. Transgenerational inheritance of promoter methylation changes in extrauterine growth restriction-induced pulmonary arterial pressure disorders. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1551. [PMID: 34790757 PMCID: PMC8576681 DOI: 10.21037/atm-21-4715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/02/2021] [Indexed: 11/06/2022]
Abstract
Background This study aimed to investigate the influence of extrauterine growth restriction (EUGR) on pulmonary arterial pressure (PAP) and the transgenerational inheritance of promoter methylation changes in pulmonary vascular endothelial cells (PVECs) of 2 consecutive generations under EUGR stress. Methods After modeling, PAP values of F1 and F2 pups were investigated at 9-week-old. The methyl-DNA immune precipitation chip was used to analyze DNA methylation profiling. Differential enrichment peaks (DEPs) and regions of interest (ROIs) were identified, based on which Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and reactome pathway enrichments were analyzed. Results The F1 male rats in the EUGR group had significantly increased PAP levels compared to the control group; however, this increase was not observed in female rats. Interestingly, in F2 female rats, the EUGR group had decreased PAP. In the X chromosome of the F1 males, there were 16 differential ROI genes in the F1 generation, while in F2 females, there were 86 differential ROI genes. Similarly, there were 105 DEPs in the F1 generation and 38 DEPs in the F2 generation. In combination with the 5 common ROIs and 14 common DEPs, 18 genes were regarded as the key candidate genes associated with hereditable PAP variation in the EUGR model. Enrichment analysis showed that synaptic and neurotransmitter relative pathways might be involved in the process of EUGR-induced PAH development. Among common DEPs, Smad1 and Serpine1 were also found in 102 PAH-associated genes in the MalaCards database. Conclusions Together, there is a transgenerational inheritance of promoter methylation changes in the X chromosome in EUGR-induced PAP disorders, which involves the participation of synaptic and neurotransmitter relative pathways. Also, attenuated methylation of Smad1 and Serpine1 in the promoter region may be a partial driver of PAH in later life.
Collapse
Affiliation(s)
- Lili Tang
- Department of Neonatology, Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Liu Yang
- Unimed Scientific Inc., Wuxi, China
| | - Jiyuan Liu
- Fujian Medical University, Fuzhou, China
| | - Yuanfang Zheng
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Jincai Lin
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Senhua Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Yinzhu Luo
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Yanyan Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoying Ma
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Liyan Zhang
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Karpov AA, Anikin NA, Mihailova AM, Smirnov SS, Vaulina DD, Shilenko LA, Ivkin DY, Bagrov AY, Moiseeva OM, Galagudza MM. Model of Chronic Thromboembolic Pulmonary Hypertension in Rats Caused by Repeated Intravenous Administration of Partially Biodegradable Sodium Alginate Microspheres. Int J Mol Sci 2021; 22:ijms22031149. [PMID: 33498971 PMCID: PMC7865986 DOI: 10.3390/ijms22031149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare and life-threatening complication of pulmonary embolism. As existing animal models of CTEPH do not fully recapitulate complex disease pathophysiology, we report a new rat model for CTEPH evoked by repetitive embolization of the distal pulmonary artery branches with partially biodegradable alginate microspheres (MSs). MSs (180 ± 28 μm) were intravenously administered eight times at 4-day intervals; control animals received saline. The validity of the model was confirmed using transthoracic echocardiography, exercise testing, catheterization of the right ventricle, and histological examination of the lung and heart. The animals in the CTEPH group demonstrated a stable increase in right ventricular systolic pressure (RVSP) and decreased exercise tolerance. Histopathological examination revealed advanced medial hypertrophy in the small pulmonary arteries associated with fibrosis. The diameter of the main pulmonary artery was significantly larger in the CTEPH group than in the control group. Marinobufagenin and endothelin-1 serum levels were significantly elevated in rats with CTEPH. In conclusion, repetitive administration of alginate MSs in rats resulted in CTEPH development characterized by specific lung vasculature remodeling, reduced exercise tolerance, and a persistent rise in RVSP. The developed model can be used for pre-clinical testing of promising drug candidates.
Collapse
Affiliation(s)
- Andrei A. Karpov
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (N.A.A.); (A.M.M.); (S.S.S.); (D.D.V.); (L.A.S.); (O.M.M.)
- Correspondence: (A.A.K.); (M.M.G.); Tel.: +7-951-678-7006 (A.A.K.)
| | - Nikita A. Anikin
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (N.A.A.); (A.M.M.); (S.S.S.); (D.D.V.); (L.A.S.); (O.M.M.)
| | - Aleksandra M. Mihailova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (N.A.A.); (A.M.M.); (S.S.S.); (D.D.V.); (L.A.S.); (O.M.M.)
| | - Sergey S. Smirnov
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (N.A.A.); (A.M.M.); (S.S.S.); (D.D.V.); (L.A.S.); (O.M.M.)
- First Pavlov State Medical University of Saint Petersburg, 197022 St. Petersburg, Russia
| | - Dariya D. Vaulina
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (N.A.A.); (A.M.M.); (S.S.S.); (D.D.V.); (L.A.S.); (O.M.M.)
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, 197376 St. Petersburg, Russia
| | - Leonid A. Shilenko
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (N.A.A.); (A.M.M.); (S.S.S.); (D.D.V.); (L.A.S.); (O.M.M.)
- First Pavlov State Medical University of Saint Petersburg, 197022 St. Petersburg, Russia
| | - Dmitry Yu. Ivkin
- Saint Petersburg State Chemical Pharmaceutical University, 197376 St. Petersburg, Russia;
| | - Alexei Y. Bagrov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 St. Petersburg, Russia;
| | - Olga M. Moiseeva
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (N.A.A.); (A.M.M.); (S.S.S.); (D.D.V.); (L.A.S.); (O.M.M.)
| | - Michael M. Galagudza
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (N.A.A.); (A.M.M.); (S.S.S.); (D.D.V.); (L.A.S.); (O.M.M.)
- Correspondence: (A.A.K.); (M.M.G.); Tel.: +7-951-678-7006 (A.A.K.)
| |
Collapse
|
4
|
Momma TY, Ottaviani JI. Arginase inhibitor, N ω-hydroxy-L-norarginine, spontaneously releases biologically active NO-like molecule: Limitations for research applications. Free Radic Biol Med 2020; 152:74-82. [PMID: 32131024 DOI: 10.1016/j.freeradbiomed.2020.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
There has been a renewed interest in the enzyme arginase for its role in various physiological and pathological processes that go beyond the urea cycle. One such role ascribed to arginase has been that of regulating nitric oxide (NO) production by a substrate (l-arginine) competition between arginase and nitric oxide synthase (NOS). Several arginase inhibitors have been developed to investigate the biological roles of arginase, of which Nω-hydroxy-l-norarginine (nor-NOHA) is commercially available and is used widely from cell culture models to clinical investigations in humans. Despite the prevalence of nor-NOHA to investigate the substrate competition between arginase and NOS, little is known regarding interferences that nor-NOHA could have on common methods to assess NO production. Therefore, we investigated if nor-NOHA has unintended consequences on common NO assessment methods. We show that nor-NOHA spontaneously releases biologically active NO-like molecule in cell culture media by reacting with riboflavin. This NO-like molecule is indistinguishable from an NO donor (NOR-3) using common methods to assess NO. Besides riboflavin, nor-NOHA spontaneously reacts with H2O2 to diminish H2O2 content and produce NO-like molecule in the process. Our investigation provides detailed evidence on unintended artefacts related to nor-NOHA that can limit its use in cell culture, as well as some ex vivo and in vivo models. Future studies on arginase should take into consideration the limitations presented here when using nor-NOHA as a research tool, not only in investigations related to arginase and NOS competition, but also for investigating other biological roles of arginase.
Collapse
Affiliation(s)
- Tony Y Momma
- Department of Nutrition, University of California, Davis, CA, 95616, USA.
| | - Javier I Ottaviani
- Department of Nutrition, University of California, Davis, CA, 95616, USA; Mars, Inc., McLean, VA, 22101, USA
| |
Collapse
|
5
|
Zhang R, Wang Y, Pan L, Tian H. N-Acetylcysteine potentiates the haemodynamic-improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway. Clin Exp Pharmacol Physiol 2018; 46:163-172. [PMID: 30289994 DOI: 10.1111/1440-1681.13039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 02/05/2023]
Abstract
The current study aimed to investigate the effects of sildenafil and N-acetylcysteine (NAC) on the haemodynamics in a rabbit model of acute pulmonary thromboembolism (APT). We developed an APT model using healthy male China big-ear rabbits (2.7 ± 0.4 kg). The rabbits were divided into five groups subjected to various interventions. We recorded the haemodynamic parameters and assessed the oxidative stress and lipid peroxidation response in the groups. Additionally, we detected apoptosis-associated molecules, FoxO1, Bad and Bcl-2, in the lung tissue. Gelatine zymography was used to detect matrix metalloproteinase (MMP) activity in bronchoalveolar lavage (BLA). Pulmonary artery endothelial cells were isolated, and their apoptosis rates and MMP activity were assayed. N-acetylcysteine potentiated the haemodynamic-improving effect of sildenafil and significantly inhibited the oxidative stress response. N-acetylcysteine combined with sildenafil decreased MMP-2 and MMP-9 activity and NO consumption and inhibited apoptosis of pulmonary arterial endothelial cells. Moreover, NAC combined with sildenafil inhibited the expression of MCP-1 and p-p38 MAPK. Thus, NAC potentiates the haemodynamic-improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the MCP-1 and p38 MAPK signalling pathway. This study may provide a promising treatment method for APT.
Collapse
Affiliation(s)
- Ruipeng Zhang
- Department of Peripheral Angiopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Vascular Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Xian Yang Central Hospital, Xian Yang, Shaanxi, China
| | - Longfei Pan
- Department of Peripheral Angiopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongyan Tian
- Department of Peripheral Angiopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Tang Z, Wang X, Huang J, Zhou X, Xie H, Zhu Q, Huang M, Ni S. Gene Expression Profiling of Pulmonary Artery in a Rabbit Model of Pulmonary Thromboembolism. PLoS One 2016; 11:e0164530. [PMID: 27798647 PMCID: PMC5087918 DOI: 10.1371/journal.pone.0164530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Acute pulmonary thromboembolism (PTE) refers to the obstruction of thrombus in pulmonary artery or its branches. Recent studies have suggested that PTE-induced endothelium injury is the major physiological consequence of PTE. And it is reasonal to use PTE-induced endothelium injury to stratify disease severity. According to the massive morphologic and histologic findings, rabbit models could be applied to closely mimic the human PE. Genomewide gene expression profiling has not been attempted in PTE. In this study, we determined the accuracy of rabbit autologous thrombus PTE model for human PTE disease, then we applied gene expression array to identify gene expression changes in pulmonary arteries under PTE to identify potential molecular biomarkers and signaling pathways for PTE. We detected 1343 genes were upregulated and 923 genes were downregulated in PTE rabbits. The expression of several genes (IL-8, TNF-α, and CXCL5) with functional importance were further confirmed in transcript and protein levels. The most significantly differentially regulated genes were related to inflammation, immune disease, pulmonary disease, and cardiovascular diseases. Totally 87 genes were up-regulated in the inflammatory genes. We conclude that gene expression profiling in rabbit PTE model could extend the understanding of PTE pathogenesis at the molecular level. Our study provides the fundamental framework for future clinical research on human PTE, including identification of potential biomarkers for prognosis or therapeutic targets for PTE.
Collapse
Affiliation(s)
- Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jianfei Huang
- Department of Pathology, Affiliated Hospital of Nantong University. Nantong, 226001, Jiangsu, China
- Department of Clinical Bio-bank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaoyu Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Hao Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Qilin Zhu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Minjie Huang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- * E-mail:
| |
Collapse
|
7
|
Rafikova O, Meadows ML, Kinchen JM, Mohney RP, Maltepe E, Desai AA, Yuan JXJ, Garcia JGN, Fineman JR, Rafikov R, Black SM. Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung. PLoS One 2016; 11:e0150480. [PMID: 26937637 PMCID: PMC4777490 DOI: 10.1371/journal.pone.0150480] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/14/2016] [Indexed: 12/13/2022] Open
Abstract
There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Mary L. Meadows
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | | | | | - Emin Maltepe
- Division of Neonatology, University of California San Francisco, San Francisco, California, United States of America
| | - Ankit A. Desai
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Jason X.-J. Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Joe G. N. Garcia
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Ruslan Rafikov
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Stephen M. Black
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
8
|
Henno P, Maurey C, Le Pimpec-Barthes F, Devillier P, Delclaux C, Israël-Biet D. Is arginase a potential drug target in tobacco-induced pulmonary endothelial dysfunction? Respir Res 2015; 16:46. [PMID: 25889611 PMCID: PMC4391310 DOI: 10.1186/s12931-015-0196-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/25/2015] [Indexed: 11/29/2022] Open
Abstract
Background Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The bioavailability of the potent vasodilator nitric oxide (NO) depends on competition between NO synthase-3 (NOS3) and arginases for their common substrate (L-arginine). We tested the hypothesis whereby tobacco smoking impairs pulmonary endothelial function via upregulation of the arginase pathway. Methods Endothelium-dependent vasodilation in response to acetylcholine (Ach) was compared ex vivo for pulmonary vascular rings from 29 smokers and 10 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of L-arginine supplementation, arginase inhibition (by N(omega)-hydroxy-nor-l-arginine, NorNOHA) and NOS3 induction (by genistein) on vasodilation. Protein levels of NOS3 and arginases I and II in the pulmonary arteries were quantified by Western blotting. Results Overall, vasodilation was impaired in smokers (relative to controls; p < 0.01). Eleven of the 29 smokers (the ED+ subgroup) displayed endothelial dysfunction (defined as the absence of a relaxant response to Ach), whereas 18 (the ED− subgroup) had normal vasodilation. The mean responses to 10−4 M Ach were −23 ± 10% and 31 ± 4% in the ED+ and ED− subgroups, respectively (p < 0.01). Supplementation with L- arginine improved endothelial function in the ED+ subgroup (−4 ± 10% vs. -32 ± 10% in the presence and absence of L- arginine, respectively; p = 0.006), as did arginase inhibition (18 ± 9% vs. -1 ± 9%, respectively; p = 0.0002). Arginase I protein was overexpressed in ED+ samples, whereas ED+ and ED− samples did not differ significantly in terms of NOS3 expression. Treatment with genistein did not significantly improve endothelial function in ED+ samples. Conclusion Overexpression and elevated activity of arginase I are involved in tobacco-induced pulmonary endothelial dysfunction.
Collapse
Affiliation(s)
- Priscilla Henno
- Sorbonne Universités, UPMC Université Paris 06, Paris, France. .,Département Physiologie-Algologie-Somnologie, Unité Fonctionnelle de Somnologie et Fonction Respiratoire, AP-HP, Hôpital Saint Antoine, 75012, Paris, France. .,Laboratoire de Pharmacologie Respiratoire UPRES EA 220, Hôpital Foch, 92150, Suresnes, France.
| | - Christelle Maurey
- Ecole Nationale Vétérinaire d'Alfort, Unité de Médecine, Université Paris-Est, 94700, Maisons-Alfort, France.
| | - Françoise Le Pimpec-Barthes
- Sorbonne Paris Cité, Université Paris-Descartes, Paris, France. .,Service de Chirurgie Thoracique, AP-HP, Hôpital Européen Georges Pompidou, 75015, Paris, France.
| | - Philippe Devillier
- Laboratoire de Pharmacologie Respiratoire UPRES EA 220, Hôpital Foch, 92150, Suresnes, France. .,Université Versailles Saint-Quentin en Yvelines, UFR Sciences de la Santé Simone Veil, Montigny le Bretonneux, France.
| | - Christophe Delclaux
- Sorbonne Paris Cité, Université Paris-Descartes, Paris, France. .,Service de Physiologie, Explorations Fonctionnelles Respiratoires et du Sommeil, AP-HP, Hôpital Européen Georges Pompidou, 75015, Paris, France.
| | - Dominique Israël-Biet
- Sorbonne Paris Cité, Université Paris-Descartes, Paris, France. .,Service de Pneumologie, AP-HP, Hôpital Européen Georges Pompidou, 75015, Paris, France.
| |
Collapse
|
9
|
The antioxidant tempol decreases acute pulmonary thromboembolism-induced hemolysis and nitric oxide consumption. Thromb Res 2013; 132:578-83. [DOI: 10.1016/j.thromres.2013.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/27/2013] [Accepted: 09/10/2013] [Indexed: 12/31/2022]
|
10
|
Elevated Plasma Hemoglobin Levels Increase Nitric Oxide Consumption in Experimental and Clinical Acute Pulmonary Thromboembolism*. Crit Care Med 2013; 41:e118-24. [DOI: 10.1097/ccm.0b013e31827c0b43] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Pernow J, Jung C. Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovasc Res 2013; 98:334-43. [DOI: 10.1093/cvr/cvt036] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
12
|
Maron BA, Zhang YY, White K, Chan SY, Handy DE, Mahoney CE, Loscalzo J, Leopold JA. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation 2012; 126:963-74. [PMID: 22787113 DOI: 10.1161/circulationaha.112.094722] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized, in part, by decreased endothelial nitric oxide (NO(·)) production and elevated levels of endothelin-1. Endothelin-1 is known to stimulate endothelial nitric oxide synthase (eNOS) via the endothelin-B receptor (ET(B)), suggesting that this signaling pathway is perturbed in PAH. Endothelin-1 also stimulates adrenal aldosterone synthesis; in systemic blood vessels, hyperaldosteronism induces vascular dysfunction by increasing endothelial reactive oxygen species generation and decreasing NO(·) levels. We hypothesized that aldosterone modulates PAH by disrupting ET(B)-eNOS signaling through a mechanism involving increased pulmonary endothelial oxidant stress. METHODS AND RESULTS In rats with PAH, elevated endothelin-1 levels were associated with elevated aldosterone levels in plasma and lung tissue and decreased lung NO(·) metabolites in the absence of left-sided heart failure. In human pulmonary artery endothelial cells, endothelin-1 increased aldosterone levels via peroxisome proliferator-activated receptor gamma coactivator-1α/steroidogenesis factor-1-dependent upregulation of aldosterone synthase. Aldosterone also increased reactive oxygen species production, which oxidatively modified cysteinyl thiols in the eNOS-activating region of ET(B) to decrease endothelin-1-stimulated eNOS activity. Substitution of ET(B)-Cys405 with alanine improved ET(B)-dependent NO(·) synthesis under conditions of oxidant stress, confirming that Cys405 is a redox-sensitive thiol that is necessary for ET(B)-eNOS signaling. In human pulmonary artery endothelial cells, mineralocorticoid receptor antagonism with spironolactone decreased aldosterone-mediated reactive oxygen species generation and restored ET(B)-dependent NO(·) production. Spironolactone or eplerenone prevented or reversed pulmonary vascular remodeling and improved cardiopulmonary hemodynamics in 2 animal models of PAH in vivo. CONCLUSIONS Our findings demonstrate that aldosterone modulates an ET(B) cysteinyl thiol redox switch to decrease pulmonary endothelium-derived NO(·) and promote PAH.
Collapse
Affiliation(s)
- Bradley A Maron
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital & Harvard Medical School, 75 Francis St, PBB-1, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Pulmonary vascular reserve during experimental pulmonary embolism: Effects of a soluble guanylate cyclase stimulator, BAY 41-8543*. Crit Care Med 2011; 39:2700-4. [DOI: 10.1097/ccm.0b013e318226678e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|