1
|
Drake LY, Wicher SA, Roos BB, Khalfaoui L, Nesbitt L, Fang YH, Pabelick CM, Prakash YS. Functional role of glial-derived neurotrophic factor in a mixed allergen murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 326:L19-L28. [PMID: 37987758 PMCID: PMC11279745 DOI: 10.1152/ajplung.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
2
|
Stolz D, Matera MG, Rogliani P, van den Berge M, Papakonstantinou E, Gosens R, Singh D, Hanania N, Cazzola M, Maitland-van der Zee AH, Fregonese L, Mathioudakis AG, Vestbo J, Rukhadze M, Page CP. Current and future developments in the pharmacology of asthma and COPD: ERS seminar, Naples 2022. Breathe (Sheff) 2023; 19:220267. [PMID: 37377851 PMCID: PMC10292790 DOI: 10.1183/20734735.0267-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/29/2023] Open
Abstract
Pharmacological management of airway obstructive diseases is a fast-evolving field. Several advances in unravelling disease mechanisms as well as intracellular and molecular pathways of drug action have been accomplished. While the clinical translation and implementation of in vitro results to the bedside remains challenging, advances in comprehending the mechanisms of respiratory medication are expected to assist clinicians and scientists in identifying meaningful read-outs and designing clinical studies. This European Respiratory Society Research Seminar, held in Naples, Italy, 5-6 May 2022, focused on current and future developments of the drugs used to treat asthma and COPD; on mechanisms of drug action, steroid resistance, comorbidities and drug interactions; on prognostic and therapeutic biomarkers; on developing novel drug targets based on tissue remodelling and regeneration; and on pharmacogenomics and emerging biosimilars. Related European Medicines Agency regulations are also discussed, as well as the seminar's position on the above aspects.
Collapse
Affiliation(s)
- Daiana Stolz
- Clinic of Pulmonary Medicine, Department of Internal Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, and Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eleni Papakonstantinou
- Clinic of Pulmonary Medicine, Department of Internal Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, and Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dave Singh
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Nicola Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Alexander G. Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Maia Rukhadze
- Center of Allergy and Immunology, Teaching University Geomedi LLC, Tbilisi, Georgia
| | - Clive P. Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
3
|
Chetty A, Nielsen HC. Targeting Airway Smooth Muscle Hypertrophy in Asthma: An Approach Whose Time Has Come. J Asthma Allergy 2021; 14:539-556. [PMID: 34079293 PMCID: PMC8164696 DOI: 10.2147/jaa.s280247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/20/2021] [Indexed: 01/13/2023] Open
Abstract
Airway smooth muscle (ASM) cell dysfunction is an important component of several obstructive pulmonary diseases, particularly asthma. External stimuli such as allergens, dust, air pollutants, and change in environmental temperatures provoke ASM cell hypertrophy, proliferation, and migration without adequate mechanistic controls. ASM cells can switch between quiescent, migratory, and proliferative phenotypes in response to extracellular matrix proteins, growth factors, and other soluble mediators. While some aspects of airway hypertrophy and remodeling could have beneficial effects, in many cases these contribute to a clinical phenotype of difficult to control asthma. In this review, we discuss the factors responsible for ASM hypertrophy and proliferation in asthma, focusing on cytokines, growth factors, and ion transporters, and discuss existing and potential approaches that specifically target ASM hypertrophy to reduce the ASM mass and improve asthma symptoms. The goal of this review is to highlight strategies that appear ready for translational investigations to improve asthma therapy.
Collapse
Affiliation(s)
- Anne Chetty
- Tufts Medical Center, Tufts University, Boston, MA, USA
| | | |
Collapse
|
4
|
Ha EK, Kim JH, Lee E, Sung M, Jee HM, Baek HS, Shin YH, Lee NH, Han MY. Abnormal iron status is independently associated with reduced oscillometric lung function in schoolchildren. CLINICAL RESPIRATORY JOURNAL 2021; 15:870-877. [PMID: 33848060 DOI: 10.1111/crj.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Associations between anemia and allergic diseases have been reported, but the relationship of iron deficiency with airway dysfunction in children remains unclear. We aimed to investigate the relationship between abnormal iron parameters and lung function in schoolchildren. METHODS Four hundred and forty-five children (10-12 years-old) from 11 elementary schools in were enrolled. The relationships of different iron parameters (hemoglobin, serum iron, transferrin saturation, and serum ferritin) with lung function evaluated by impulse oscillometry (airways resistance at 5 Hz [Rrs5], 10 Hz [Rrs10], and the difference of Rrs5 and Rrs20 Hz [Rrs5-20]), and with exhaled nitric oxide (FeNO) were evaluated after adjustment for confounders including height, sex, and body mass index z-score, and for additional covariates that could affect airway function. RESULTS Total airway dysfunction represented by Rrs5 was reduced in participants with low serum iron level (aβ: -0.13, 95% CI: -0.23 to -0.03, p = 0.040) after adjustment for key confounders, but did not correlate with other iron profiles. Reduced oscillometric lung function recorded as Rrs5-20 was related with low serum iron and high serum ferritin, but the results were inconsistent after multiple comparisons. Associations were not observed with serum hemoglobin. CONCLUSIONS Decreased serum iron level was related with airway dysfunction represented as oscillomteric Rrs5. Our results suggest a relationship of reduced lung function with abnormal iron status in children.
Collapse
Affiliation(s)
- Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Pediatrics, Hallym University Kandong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Myongsoon Sung
- Department of Pediatrics, Soon Chun Hyang University Gumi Hospital, Soon Chun Hyang University College of Medicine, Gumi, Republic of Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Hey Sung Baek
- Department of Pediatrics, Hallym University Kandong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Na Hee Lee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
5
|
Dalouchi F, Falak R, Bakhshesh M, Sharifiaghdam Z, Azizi Y, Aboutaleb N. Human amniotic membrane mesenchymal stem cell-conditioned medium reduces inflammatory factors and fibrosis in ovalbumin-induced asthma in mice. Exp Physiol 2021; 106:544-554. [PMID: 33258520 DOI: 10.1113/ep088911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/24/2020] [Indexed: 01/16/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is mesenchymal stem cell-conditioned medium capable of improving the pathological alterations of ovalbumin-induced asthma in mice? What is the main finding and its importance? Our study indicated that human amniotic membrane mesenchymal stem cell-conditioned medium is capable of modulating inflammation, fibrosis, oxidative stress and the pathological consequences of ovalbumin-induced allergic asthma in mice. ABSTRACT Paracrine factors secreted by mesenchymal stem cells (MSCs) have immunomodulatory, anti-inflammatory and antifibrotic properties, and the conditioned medium (CM) of these cells might have functional capabilities. We examined the effects of human amniotic membrane MSC-CM (hAM-MSC-CM) on ovalbumin (OVA)-induced asthma. Forty male Balb/c mice were randomly divided into the following four groups: control; OVA (sensitized and challenged with OVA); OVA+CM (sensitized and challenged with OVA and treated with hAM-MSC-CM); and OVA+Placebo (sensitized and challenged with OVA and treated with placebo). Forty-eight hours after the last challenge, serum and bronchoalveolar lavage fluid samples were collected and used for evaluation of inflammatory factors and cells, respectively. Lung tissue sections were stained with Haematoxylin and Eosin or Masson's Trichrome to evaluate pathological changes, and oxidative stress was assessed in fresh lung tissues. Treatment with hAM-MSC-CM significantly hindered histopathological changes and fibrosis and reduced the total cell count and the percentage of eosinophils and neutrophils in bronchoalveolar lavage fluid. Furthermore, it reduced serum levels of immunoglobulin E, interleukin-4, transforming growth factor-β and lung malondialdehyde. It also increased serum levels of interferon-γ and interleukin-10, in addition to the enzymatic activity of glutathione peroxidase, catalase and superoxide dismutase in lung tissue in comparison to the OVA and OVA+Placebo groups. This study showed that administration of hAM-MSC-CM can improve pathological conditions, such as inflammation, fibrosis and oxidative stress, in OVA-induced allergic asthma.
Collapse
Affiliation(s)
- Fereshteh Dalouchi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Physiology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Raza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Bakhshesh
- Department of Physiology, Khomein University of Medical Sciences, Khomein, Iran
| | | | - Yaser Azizi
- Physiology Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Teragawa H. Spasm Provocation Test Using Acetylcholine in Patients with Bronchial Asthma: An Important Step Forward. Intern Med 2020; 59:3115-3116. [PMID: 32788528 PMCID: PMC7807111 DOI: 10.2169/internalmedicine.5568-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hiroki Teragawa
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Japan
| |
Collapse
|
7
|
Matera MG, Page CP, Calzetta L, Rogliani P, Cazzola M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol Rev 2020; 72:218-252. [PMID: 31848208 DOI: 10.1124/pr.119.018150] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bronchodilators remain the cornerstone of the treatment of airway disorders such as asthma and chronic obstructive pulmonary disease (COPD). There is therefore considerable interest in understanding how to optimize the use of our existing classes of bronchodilator and in identifying novel classes of bronchodilator drugs. However, new classes of bronchodilator have proved challenging to develop because many of these have no better efficacy than existing classes of bronchodilator and often have unacceptable safety profiles. Recent research has shown that optimization of bronchodilation occurs when both arms of the autonomic nervous system are affected through antagonism of muscarinic receptors to reduce the influence of parasympathetic innervation of the lung and through stimulation of β 2-adrenoceptors (β 2-ARs) on airway smooth muscle with β 2-AR-selective agonists to mimic the sympathetic influence on the lung. This is currently achieved by use of fixed-dose combinations of inhaled long-acting β 2-adrenoceptor agonists (LABAs) and long-acting muscarinic acetylcholine receptor antagonists (LAMAs). Due to the distinct mechanisms of action of LAMAs and LABAs, the additive/synergistic effects of using these drug classes together has been extensively investigated. More recently, so-called "triple inhalers" containing fixed-dose combinations of both classes of bronchodilator (dual bronchodilation) and an inhaled corticosteroid in the same inhaler have been developed. Furthermore, a number of so-called "bifunctional drugs" having two different primary pharmacological actions in the same molecule are under development. This review discusses recent advancements in knowledge on bronchodilators and bifunctional drugs for the treatment of asthma and COPD. SIGNIFICANCE STATEMENT: Since our last review in 2012, there has been considerable research to identify novel classes of bronchodilator drugs, to further understand how to optimize the use of the existing classes of bronchodilator, and to better understand the role of bifunctional drugs in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- M G Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - C P Page
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - L Calzetta
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - P Rogliani
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - M Cazzola
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| |
Collapse
|
8
|
Carvalho KIM, Coutinho DDS, Joca HC, Miranda AS, Cruz JDS, Silva ET, Souza MVN, Faria RX, Silva PMRE, Costa JCS, Martins MA. Anti-Bronchospasmodic Effect of JME-173, a Novel Mexiletine Analog Endowed With Highly Attenuated Anesthetic Activity. Front Pharmacol 2020; 11:1159. [PMID: 32903732 PMCID: PMC7438868 DOI: 10.3389/fphar.2020.01159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/16/2020] [Indexed: 01/16/2023] Open
Abstract
Local anesthetics (LAs), such as lidocaine and mexiletine, inhibit bronchoconstriction in asthmatics, but adverse effects limit their use for this specific clinical application. In this study, we describe the anti-spasmodic properties of the mexiletine analog 2-(2-aminopropoxy)-3,5-dimethyl, 4-Br-benzene (JME-173), which was synthesized and screened for inducing reduced activity on Na+ channels. The effectiveness of JME-173 was assessed using rat tracheal rings, a GH3 cell line and mouse cardiomyocytes to access changes in smooth muscle contraction, and Na+, and Ca++ionic currents, respectively. Bronchospasm and airway hyper-reactivity (AHR) were studied using whole-body barometric plethysmography in A/J mice. We observed that the potency of JME-173 was 653-fold lower than mexiletine in inhibiting Na+ currents, but 12-fold higher in inhibiting L-type Ca++ currents. JME-173 was also more potent than mexiletine in inhibiting tracheal contraction by carbachol, allergen, extracellular Ca++, or sodium orthovanadate provocations. The effect of JME-173 on carbachol-induced tracheal contraction remained unaltered under conditions of de-epithelized rings, β2-receptor blockade or adenylate cyclase inhibition. When orally administered, JME-173 and theophylline inhibited methacholine-induced bronchospasm at time points of 1 and 3 h post-treatment, while only JME-173 remained active for at least 6 h. In addition, JME-173 also inhibited AHR in a mouse model of lipopolysaccharide (LPS)-induced lung inflammation. Thus, the mexiletine analog JME-173 shows highly attenuated activity on Na+ channels and optimized anti-spasmodic properties, in a mechanism that is at least in part mediated by regulation of Ca++ inflow toward the cytosol. Thus, JME-173 is a promising alternative for the treatment of clinical conditions marked by life-threatening bronchoconstriction.
Collapse
Affiliation(s)
| | | | - Humberto Cavalcante Joca
- Laboratory of Excitable Membranes and Cardiovascular Biology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Artur Santos Miranda
- Laboratory of Excitable Membranes and Cardiovascular Biology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jader Dos Santos Cruz
- Laboratory of Excitable Membranes and Cardiovascular Biology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Robson Xavier Faria
- Laboratory of Toxoplasmosis and Other Protozoans, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
9
|
Gu Y, Yu X, Li X, Wang X, Gao X, Wang M, Wang S, Li X, Zhang Y. Inhibitory effect of mabuterol on proliferation of rat ASMCs induced by PDGF-BB via regulating [Ca2+]i and mitochondrial fission/fusion. Chem Biol Interact 2019; 307:63-72. [DOI: 10.1016/j.cbi.2019.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/19/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023]
|
10
|
Britt RD, Thompson MA, Wicher SA, Manlove LJ, Roesler A, Fang YH, Roos C, Smith L, Miller JD, Pabelick CM, Prakash YS. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma. FASEB J 2019; 33:3024-3034. [PMID: 30351991 PMCID: PMC6338659 DOI: 10.1096/fj.201801002r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/01/2018] [Indexed: 01/14/2023]
Abstract
Recent studies have demonstrated an effect of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), on airway contractility [ via increased airway smooth muscle (ASM) intracellular calcium [Ca2+]i] and remodeling (ASM proliferation and extracellular matrix formation) in the context of airway disease. In the present study, we examined the role of BDNF in allergen-induced airway inflammation using 2 transgenic models: 1) tropomyosin-related kinase B (TrkB) conditional knockin (TrkBKI) mice allowing for inducible, reversible disruption of BDNF receptor kinase activity by administration of 1NMPP1, a PP1 derivative, and 2) smooth muscle-specific BDNF knockout (BDNFfl/fl/SMMHC11Cre/0) mice. Adult mice were intranasally challenged with PBS or mixed allergen ( Alternaria alternata, Aspergillus fumigatus, house dust mite, and ovalbumin) for 4 wk. Our data show that administration of 1NMPP1 in TrkBKI mice during the 4-wk allergen challenge blunted airway hyperresponsiveness (AHR) and reduced fibronectin mRNA expression in ASM layers but did not reduce inflammation per se. Smooth muscle-specific deletion of BDNF reduced AHR and blunted airway fibrosis but did not significantly alter airway inflammation. Together, our novel data indicate that TrkB signaling is a key modulator of AHR and that smooth muscle-derived BDNF mediates these effects during allergic airway inflammation.-Britt, R. D., Jr., Thompson, M. A., Wicher, S. A., Manlove, L. J., Roesler, A., Fang, Y.-H., Roos, C., Smith, L., Miller, J. D., Pabelick, C. M., Prakash, Y. S. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma.
Collapse
Affiliation(s)
- Rodney D. Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Michael A. Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Logan J. Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Anne Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Yun-Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Carolyn Roos
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Leslie Smith
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Christina M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| |
Collapse
|
11
|
Kalidhindi RSR, Katragadda R, Beauchamp KL, Pabelick CM, Prakash YS, Sathish V. Androgen Receptor-Mediated Regulation of Intracellular Calcium in Human Airway Smooth Muscle Cells. Cell Physiol Biochem 2019; 53:215-228. [PMID: 31299143 PMCID: PMC6896987 DOI: 10.33594/000000131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIMS With the prevalence of asthma being greater in women, detrimental effects of female sex steroids have been explored, but potential protective effects of androgens are not established. Airway smooth muscle (ASM) is a key cell type in contractility and remodelling of asthma. There are no data on expression and functionality of androgen receptor (AR) in human ASM cells. METHODS We used primary human ASM cells from non-asthmatics vs. asthmatics to determine AR expression at baseline and with inflammation measured using Western blotting/qRT-PCR, and the role of AR in regulating intracellular Ca2+ ([Ca2+]i) measured using Fluo-3 loaded real time [Ca2+]i imaging. RESULTS We found that compared to females, baseline AR is greater in male ASM and increases with inflammation/asthma. Androgens, via AR, blunted TNFα or IL-13-induced enhancement of ASM [Ca2+]i in both males and females, with retained efficacy in asthmatics. AR effects involve reduced Ca2+ influx via L-type channels and store-operated Ca2+ entry, the latter by downregulating STIM1 and Orai1 and increasing TMEM66. CONCLUSION Our data show AR expression is increased in female ASM with asthma, but has retained functionality that could be used to reduce [Ca2+]i towards alleviating airway hyperresponsiveness.
Collapse
Affiliation(s)
| | - Rathnavali Katragadda
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Kerri L Beauchamp
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA,
| |
Collapse
|
12
|
The anatomic substrate of irreversible airway obstruction and barotrauma in a case of hurricane-triggered fatal status asthmaticus during puerperium: Lessons from an autopsy. Respir Med Case Rep 2018; 26:136-141. [PMID: 30603604 PMCID: PMC6306954 DOI: 10.1016/j.rmcr.2018.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/27/2023] Open
Abstract
Non-fully reversible airway obstruction in fatal asthma is often seen in association with profound structural changes of the bronchial wall, termed airway remodeling. Evidence suggests that heavy precipitation events can trigger epidemics of severe asthma. We present a case of fatal asthma in a young woman with no prior near-fatal exacerbations and postulate that the patient's extensive airway remodeling and puerperal state (susceptibility factors), in combination with a massive allergen challenge during a hurricane landfall (triggering factor), played a central role in her death. The autopsy revealed diffuse obstruction of proximal and distal bronchi by mucous plugs together with transmural chronic inflammation, tissue eosinophilia, extensive goblet cell hyperplasia with MUC-5 expression and airway smooth muscle (ASM) thickening. The observed distribution of airway remodeling was heterogeneous with sparing of the lingula, which exhibited hyperinflation and expansion of perivascular spaces indicative of dissecting air. The massive stagnation of mucus and significant inter-airway structural heterogeneity created an anatomical substrate for unequal airflow distribution facilitating the development of barotrauma. Although not considered conventional risk factors for fatal asthma, we believe that in this case, the patient's puerperal state in conjunction with an extreme environmental event dispersing aeroallergens were major contributors to the development of a fatal asthma attack. Our autopsy findings suggest that effective strategies to evacuate stagnated mucus and induce relaxation of thickened ASM are crucial in the management of life-threatening asthma exacerbations.
Collapse
|
13
|
André-Grégoire G, Dilasser F, Chesné J, Braza F, Magnan A, Loirand G, Sauzeau V. Targeting of Rac1 prevents bronchoconstriction and airway hyperresponsiveness. J Allergy Clin Immunol 2017; 142:824-833.e3. [PMID: 29155102 DOI: 10.1016/j.jaci.2017.09.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND The molecular mechanisms responsible for airway smooth muscle cells' (aSMCs) contraction and proliferation in airway hyperresponsiveness (AHR) associated with asthma are still largely unknown. The small GTPases of the Rho family (RhoA, Rac1, and Cdc42) play a central role in SMC functions including migration, proliferation, and contraction. OBJECTIVE The objective of this study was to identify the role of Rac1 in aSMC contraction and to investigate its involvement in AHR associated with allergic asthma. METHODS To define the role of Rac1 in aSMC, ex and in vitro analyses of bronchial reactivity were performed on bronchi from smooth muscle (SM)-specific Rac1 knockout mice and human individuals. In addition, this murine model was exposed to allergens (ovalbumin or house dust mite extract) to decipher in vivo the implication of Rac1 in AHR. RESULTS The specific SMC deletion or pharmacological inhibition of Rac1 in mice prevented the bronchoconstrictor response to methacholine. In human bronchi, a similar role of Rac1 was observed during bronchoconstriction. We further demonstrated that Rac1 activation is responsible for bronchoconstrictor-induced increase in intracellular Ca2+ concentration and contraction both in murine and in human bronchial aSMCs, through its association with phospholipase C β2 and the stimulation of inositol 1,4,5-trisphosphate production. In vivo, Rac1 deletion in SMCs or pharmacological Rac1 inhibition by nebulization of NSC23766 prevented AHR in murine models of allergic asthma. Moreover, nebulization of NSC23766 decreased eosinophil and neutrophil populations in bronchoalveolar lavages from mice with asthma. CONCLUSIONS Our data reveal an unexpected and essential role of Rac1 in the regulation of intracellular Ca2+ and contraction of aSMCs, and the development of AHR. Rac1 thus appears as an attractive therapeutic target in asthma, with a combined beneficial action on both bronchoconstriction and pulmonary inflammation.
Collapse
Affiliation(s)
| | | | - Julie Chesné
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France
| | - Faouzi Braza
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France
| | - Antoine Magnan
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France; CHU Nantes, Nantes, France
| | - Gervaise Loirand
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France; CHU Nantes, Nantes, France
| | - Vincent Sauzeau
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France; CHU Nantes, Nantes, France.
| |
Collapse
|
14
|
Chen XX, Zhang JH, Pan BH, Ren HL, Feng XL, Wang JL, Xiao JH. Role of canonical transient receptor potential channel-3 in acetylcholine-induced mouse airway smooth muscle cell proliferation. Life Sci 2017; 187:64-73. [PMID: 28802903 DOI: 10.1016/j.lfs.2017.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/22/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022]
Abstract
AIMS Canonical transient receptor potential channel-3 (TRPC3)-encoded Ca2+-permeable nonselective cation channel (NSCC) has been proven to be an important native constitutively active channel in airway smooth muscle cell (ASMC), which plays significant roles in physiological and pathological conditions by controlling Ca2+ homeostasis in ASMC. Acetylcholine (ACh) is generally accepted as a contractile parasympathetic neurotransmitter in the airway. Recently studies have revealed the pathological role of ACh in airway remodeling, however, the mechanisms remain unclear. Here, we investigated the role of TRPC3 in ACh-induced ASMC proliferation. MATERIALS AND METHODS Primary mouse ASMCs were cultured with or without ACh treatment, then cell viability, TRPC3 expression, NSCC currents and [Ca2+]i changes were examined by MTT assay, cell counting, Western blotting, standard whole-cell patch clamp recording and calcium imaging, respectively. Small interfering RNA (siRNA) technology was used to confirm the contribution of TRPC3 to ACh-induced ASMC proliferation. KEY FINDINGS TRPC3 blocker Gd3+, antibody or siRNA largely inhibited ACh-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca2+]i and KCl-induced changes in [Ca2+]i, eventually inhibiting ACh-induced ASMC proliferation. SIGNIFICANCE Our data suggested ACh could induce ASMC proliferation, and TRPC3 may be involved in ACh-induced ASMC proliferation that occurs with airway remodeling.
Collapse
Affiliation(s)
- Xiao-Xu Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia-Hua Zhang
- Center for Stem Cell Research and Application, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin-Hua Pan
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui-Li Ren
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiu-Ling Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia-Ling Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun-Hua Xiao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
15
|
Freeman MR, Sathish V, Manlove L, Wang S, Britt RD, Thompson MA, Pabelick CM, Prakash YS. Brain-derived neurotrophic factor and airway fibrosis in asthma. Am J Physiol Lung Cell Mol Physiol 2017; 313:L360-L370. [PMID: 28522569 DOI: 10.1152/ajplung.00580.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/17/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Airway remodeling in asthma driven by inflammation involves proliferation of epithelial cells and airway smooth muscle (ASM), as well as enhanced extracellular matrix (ECM) generation and deposition, i.e., fibrosis. Accordingly, understanding profibrotic mechanisms is important for developing novel therapeutic strategies in asthma. Recent studies, including our own, have suggested a role for locally produced growth factors such as brain-derived neurotrophic factor (BDNF) in mediating and modulating inflammation effects. In this study, we explored the profibrotic influence of BDNF in the context of asthma by examining expression, activity, and deposition of ECM proteins in primary ASM cells isolated from asthmatic vs. nonasthmatic patients. Basal BDNF expression and secretion, and levels of the high-affinity BDNF receptor TrkB, were higher in asthmatic ASM. Exogenous BDNF significantly increased ECM production and deposition, especially of collagen-1 and collagen-3 (less so fibronectin) and the activity of matrix metalloproteinases (MMP-2, MMP-9). Exposure to the proinflammatory cytokine TNFα significantly increased BDNF secretion, particularly in asthmatic ASM, whereas no significant changes were observed with IL-13. Chelation of BDNF using TrkB-Fc reversed TNFα-induced increase in ECM deposition. Conditioned media from asthmatic ASM enhanced ECM generation in nonasthmatic ASM, which was blunted by BDNF chelation. Inflammation-induced changes in MMP-2, MMP-9, and tissue inhibitor metalloproteinases (TIMP-1, TIMP-2) were reversed in the presence of TrkB-Fc. These novel data suggest ASM as an inflammation-sensitive source of BDNF within human airways, with autocrine effects on fibrosis relevant to asthma.
Collapse
Affiliation(s)
- Michelle R Freeman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Venkatachalem Sathish
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Logan Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Shengyu Wang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Respiratory Medicine, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Rodney D Britt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota; .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
16
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Chen XX, Zhang JH, Pan BH, Ren HL, Feng XL, Wang JL, Xiao JH. TRPC3-mediated Ca2+ entry contributes to mouse airway smooth muscle cell proliferation induced by lipopolysaccharide. Cell Calcium 2016; 60:273-81. [DOI: 10.1016/j.ceca.2016.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 01/03/2023]
|
18
|
Aravamudan B, Thompson M, Sieck GC, Vassallo R, Pabelick CM, Prakash YS. Functional Effects of Cigarette Smoke-Induced Changes in Airway Smooth Muscle Mitochondrial Morphology. J Cell Physiol 2016; 232:1053-1068. [PMID: 27474898 DOI: 10.1002/jcp.25508] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/29/2016] [Indexed: 12/16/2022]
Abstract
Long-term exposure to cigarette smoke (CS) triggers airway hyperreactivity and remodeling, effects that involve airway smooth muscle (ASM). We previously showed that CS destabilizes the networked morphology of mitochondria in human ASM by regulating the expression of mitochondrial fission and fusion proteins via multiple signaling mechanisms. Emerging data link regulation of mitochondrial morphology to cellular structure and function. We hypothesized that CS-induced changes in ASM mitochondrial morphology detrimentally affect mitochondrial function, leading to CS effects on contractility and remodeling. Here, ASM cells were exposed to 1% cigarette smoke extract (CSE) for 48 h to alter mitochondrial fission/fusion, or by inhibiting the fission protein Drp1 or the fusion protein Mfn2. Mitochondrial function was assessed via changes in bioenergetics or altered rates of proliferation and apoptosis. Our results indicate that both exposure to CS and inhibition of mitochondrial fission/fusion proteins affect mitochondrial function (i.e., energy metabolism, proliferation, and apoptosis) in ASM cells. In vivo, the airways in mice chronically exposed to CS are thickened and fibrotic, and the expression of proteins involved in mitochondrial function is dramatically altered in the ASM of these mice. We conclude that CS-induced changes in mitochondrial morphology (fission/fusion balance) correlate with mitochondrial function, and thus may control ASM proliferation, which plays a central role in airway health. J. Cell. Physiol. 232: 1053-1068, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael Thompson
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gary C Sieck
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Robert Vassallo
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
19
|
The Expression of NOX4 in Smooth Muscles of Small Airway Correlates with the Disease Severity of COPD. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2891810. [PMID: 27656649 PMCID: PMC5021463 DOI: 10.1155/2016/2891810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022]
Abstract
Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD), and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) produced reactive oxygen species (ROS) play a crucial role in COPD pathogenesis. In the present study, the expression of NOX4 and its correlation with the ASM hypertrophy/hyperplasia, clinical pulmonary functions, and the expression of transforming growth factor β (TGF-β) in the ASM of COPD small airways were investigated by semiquantitative morphological and/or immunohistochemistry staining methods. The results showed that an elevated expression of NOX4 and TGF-β, along with an increased volume of ASM mass, was found in the ASM of small airways in COPD patients. The abundance of NOX4 protein in the ASM was increased with disease severity and inversely correlated with the pulmonary functions in COPD patients. In addition, the expression of NOX4 and ASM marker α-SMA was colocalized, and the increased NOX4 expression was found to accompany an upregulated expression of TGF-β in the ASM of small airways of COPD lung. These results indicate that NOX4 may be a key regulator in ASM remodeling of small airway, in part through a mechanism interacting with TGF-β signaling in the pathogenesis of COPD, which warrants further investigation.
Collapse
|
20
|
Liao Z, Xiao HT, Zhang Y, Tong RS, Zhang LJ, Bian Y, He X. IL-1β: a key modulator in asthmatic airway smooth muscle hyper-reactivity. Expert Rev Respir Med 2015; 9:429-36. [PMID: 26134749 DOI: 10.1586/17476348.2015.1063422] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asthma is a chronic inflammatory disorder of the airway. It is characterized by airway hyper-reactivity, which can be attributed to the chronically inflamed airway. However, the molecular mechanism is still under investigation. In this article, we have shown that IL-1β is a key molecule that can orchestrate both Toll-like receptor and muscarinic receptor pathways, and that antagonizing the function of IL-1β has a promising future as a potential drug target for asthma treatment. IL-1β can activate NF-κB pathways via Toll-like receptors, and NF-κB will eventually transactivate the genes of cytokines, chemokines, proteins of the complement system, adhesion molecules and immune receptors involved in inflammation. IL-1β can activate eosinophils, which can release major basic protein (MBP) to antagonize the M2 receptors leading to excessive acetylcholine release. Acetylcholine has an effect on M3 receptors, which are related to airway smooth muscle contraction and mucus production. IL-1β is reported to activate COX-2 resulting in heterologous desensitization of adenylate cyclase and impairs relaxation of the ASM. IL-1β is involved in mediation of neutrophilic inflammation. Identification of the prominent role of IL-1β in asthma could lead to successful use of anti-IL1β agents.
Collapse
Affiliation(s)
- Zhi Liao
- Department of Gynecology and Obstetrics, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Yu J, Wilson J, Taylor L, Polgar P. DNA microarray and signal transduction analysis in pulmonary artery smooth muscle cells from heritable and idiopathic pulmonary arterial hypertension subjects. J Cell Biochem 2015; 116:386-97. [PMID: 25290246 PMCID: PMC4391824 DOI: 10.1002/jcb.24987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular smooth muscle contraction and proliferation. Here, we analyze genome-wide mRNA expression in human pulmonary arterial smooth muscle cells (HPASMC) isolated from three control, three hereditary (HPAH), and three idiopathic PAH (IPAH) subjects using the Affymetrix Human Gene ST 1.0 chip. The microarray analysis reveals the expression of 537 genes in HPAH and 1024 genes in IPAH changed compared with control HPASMC. Among those genes, 227 genes show similar directionality of expression in both HPAH and IPAH HPASMC. Ingenuity™ Pathway Analysis (IPA) suggests that many of those genes are involved in cellular growth/proliferation and cell cycle regulation and that signaling pathways such as the mitotic activators, polo-like kinases, ATM signaling are activated under PAH conditions. Furthermore, the analysis demonstrates downregulated mRNA expression of certain vasoactive receptors such as bradykinin receptor B2 (BKB2R). Using real time PCR, we verified the downregulated BKB2R expression in the PAH cells. Bradykinin-stimulated calcium influx is also decreased in PAH PASMC. IPA also identified transcriptional factors such p53 and Rb as downregulated, and FoxM1 and Myc as upregulated in both HPAH and IPAH HPASMC. The decreased level of phospho-p53 in PAH cells was confirmed with a phospho-protein array; and we experimentally show a dysregulated proliferation of both HPAH and IPAH PASMC. Together, the microarray experiments and bioinformatics analysis highlight an aberrant proliferation and cell cycle regulation in HPASMC from PAH subjects. These newly identified pathways may provide new targets for the treatment of both hereditary and idiopathic PAH.
Collapse
MESH Headings
- Antibodies, Phospho-Specific/metabolism
- Case-Control Studies
- Cell Cycle/genetics
- Cell Proliferation
- Cells, Cultured
- Familial Primary Pulmonary Hypertension/genetics
- Familial Primary Pulmonary Hypertension/pathology
- Gene Expression Profiling
- Gene Expression Regulation
- Humans
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oligonucleotide Array Sequence Analysis
- Phenotype
- Phosphorylation
- Principal Component Analysis
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Signal Transduction/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Jun Yu
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jamie Wilson
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Linda Taylor
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Peter Polgar
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
22
|
Das M, Boerma M, Goree JR, Lavoie EG, Fausther M, Gubrij IB, Pangle AK, Johnson LG, Dranoff JA. Pathological changes in pulmonary circulation in carbon tetrachloride (CCl4)-induced cirrhotic mice. PLoS One 2014; 9:e96043. [PMID: 24763616 PMCID: PMC3999097 DOI: 10.1371/journal.pone.0096043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/02/2014] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Lack of an experimental model of portopulmonary hypertension (POPH) has been a major obstacle in understanding of pathophysiological mechanisms underlying the disease. OBJECTIVE We investigated the effects of CCl4-mediated cirrhosis on the pulmonary vasculature, as an initial step towards an improved understanding of POPH. METHODS AND RESULTS Male C57BL/6 mice received intraperitoneal injection of either sterile olive oil or CCl4 3 times/week for 12 weeks. Cirrhosis and portal hypertension were confirmed by evidence of bridging fibrosis and nodule formation in CCl4-treated liver determined by trichrome/picrosirius red staining and an increase in spleen weight/body weight ratio, respectively. Staining for the oxidative stress marker, 4-hydroxynonenal (4-HNE), was strong in the liver but was absent in the lung, suggesting that CCl4 did not directly induce oxidative injury in the lung. Pulmonary acceleration time (PAT) and the ratio of PAT/pulmonary ejection time (PET) measured by echocardiography were significantly decreased in cirrhotic mice. Increase in right ventricle (RV) weight/body weight as well as in the weight ratio of RV/(left ventricle + septum) further demonstrated the presence of pathological changes in the pulmonary circulation in these mice. Histological examination revealed that lungs of cirrhotic mice have excessive accumulation of perivascular collagen and thickening of the media of the pulmonary artery. CONCLUSION Collectively, our data demonstrate that chronic CCl4 treatment induces pathological changes in pulmonary circulation in cirrhotic mice. We propose that this murine cirrhotic model provides an exceptional tool for future studies of the molecular mechanisms mediating pulmonary vascular diseases associated with cirrhosis and for evaluation of novel therapeutic interventions.
Collapse
Affiliation(s)
- Mita Das
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jessica R Goree
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Elise G Lavoie
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Michel Fausther
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Igor B Gubrij
- Research Service, Central Arkansas Veterans Health Service, Little Rock, Arkansas, United States of America
| | - Amanda K Pangle
- Research Service, Central Arkansas Veterans Health Service, Little Rock, Arkansas, United States of America
| | - Larry G Johnson
- Division of Pulmonary and Critical Care University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America; Research Service, Central Arkansas Veterans Health Service, Little Rock, Arkansas, United States of America
| | - Jonathan A Dranoff
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America; Research Service, Central Arkansas Veterans Health Service, Little Rock, Arkansas, United States of America
| |
Collapse
|
23
|
Keglowich L, Baraket M, Tamm M, Borger P. Hypoxia exerts dualistic effects on inflammatory and proliferative responses of healthy and asthmatic primary human bronchial smooth muscle cells. PLoS One 2014; 9:e89875. [PMID: 24587090 PMCID: PMC3933675 DOI: 10.1371/journal.pone.0089875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/26/2014] [Indexed: 12/29/2022] Open
Abstract
Background For oxygen supply, airway wall cells depend on diffusion though the basement membrane, as well as on delivery by micro-vessels. In the asthmatic lung, local hypoxic conditions may occur due to increased thickness and altered composition of the basement membrane, as well as due to edema of the inflamed airway wall. Objective In our study we investigated the effect of hypoxia on proliferation and pro-inflammatory and pro-angiogenic parameter production by human bronchial smooth muscle cells (BSMC). Furthermore, conditioned media of hypoxia-exposed BSMC was tested for its ability to induce sprout outgrowth from endothelial cells spheroids. Methods BSMC were cultured in RPMI1640 (5% FCS) under normoxic (21% O2) and hypoxic (1% and 5% O2) conditions. Proliferation was determined by cell count and Western blot analysis for cyclin E and Proliferating Cell Nuclear Antigen (PCNA). Secretion of IL-6, IL-8, ENA-78 and VEGF-A was analyzed by ELISA. BSMC conditioned medium was tested for its angiogenic capacity by endothelial cell (EC)-spheroid in vitro angiogenesis assay. Results Proliferation of BSMC obtained from asthmatic and non-asthmatic patients was significantly reduced in the presence of 1% O2, whereas 5% O2 reduced proliferation of asthmatic BSMC only. Hypoxia induced HIF-1α expression in asthmatic and non-asthmatic BSMC, which coincided with significantly increased release of IL-6, IL-8 and VEGF-A, but not ENA-78. Finally, endothelial sprout outgrowth from EC spheroids was increased when exposed to hypoxia conditioned BSMC medium. Conclusion Hypoxia had dualistic effects on proliferative and inflammatory responses of asthmatic and non-asthmatic BSMC. First, hypoxia reduced BSMC proliferation. Second, hypoxia induced a pro-inflammatory, pro-angiogenic response. BSMC and EC may thus be promising new targets to counteract and/or alleviate airway wall remodeling.
Collapse
Affiliation(s)
- Laura Keglowich
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Melissa Baraket
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Michael Tamm
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Pneumology, University Hospital Basel, Basel, Switzerland
| | - Peter Borger
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 2013; 305:L912-33. [PMID: 24142517 PMCID: PMC3882535 DOI: 10.1152/ajplung.00259.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca(2+)]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Y S Prakash
- Dept. of Anesthesiology, Mayo Clinic, 4-184 W Jos SMH, 200 First St. SW, Rochester, MN 55905.
| |
Collapse
|
25
|
Beane WS, Morokuma J, Lemire JM, Levin M. Bioelectric signaling regulates head and organ size during planarian regeneration. Development 2013; 140:313-22. [PMID: 23250205 DOI: 10.1242/dev.086900] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A main goal of regenerative medicine is to replace lost or damaged tissues and organs with functional parts of the correct size and shape. But the proliferation of new cells is not sufficient; we will also need to understand how the scale and ultimate form of newly produced tissues are determined. Using the planarian model system, we report that membrane voltage-dependent bioelectric signaling determines both head size and organ scaling during regeneration. RNA interference of the H(+),K(+)-ATPase ion pump results in membrane hyperpolarization, which has no effect on the amount of new tissue (blastema) that is regenerated yet produces regenerates with tiny 'shrunken' heads and proportionally oversized pharynges. Our data show that this disproportionality results from a lack of the apoptosis required to adjust head and organ size and placement, highlighting apoptotic remodeling as the link between bioelectric signaling and the establishment of organ size during regeneration.
Collapse
Affiliation(s)
- Wendy Scott Beane
- Biology Department and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | | | | | | |
Collapse
|
26
|
Matera MG, Calzetta L, Passeri D, Rogliani P, Orlandi A. Epithelial-smooth muscle cooperation is needed for brain natriuretic peptide-dependent bronchorelaxant activity. Pulm Pharmacol Ther 2012; 26:156-7. [PMID: 23006829 DOI: 10.1016/j.pupt.2012.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 12/28/2022]
|