1
|
Sąsiadek-Andrzejczak E, Maras P, Kozicki M. Flexible and Ecological Cotton-Based Dosimeter for 2D UV Surface Dose Distribution Measurements. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4339. [PMID: 39274728 PMCID: PMC11396357 DOI: 10.3390/ma17174339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024]
Abstract
This work presents a 2D radiochromic dosimeter for ultraviolet (UV) radiation measurements, based on cotton fabric volume-modified with nitroblue tetrazolium chloride (NBT) as a radiation-sensitive compound. The developed dosimeter is flexible, which allows it to adapt to various shapes and show a color change from yellowish to purple-brown during irradiation. The intensity of the color change depends on the type of UV radiation and is the highest for UVC (253.7 nm). It has been shown that the developed dosimeters (i) can be used for UVC radiation dose measurements in the range of up to 10 J/cm2; (ii) can be measured in 2D using a flatbed scanner; and (iii) can have the obtained images after scanning be filtered with a medium filter to improve their quality by reducing noise from the fabric structure. The developed cotton-NBT dosimeters can measure UVC-absorbed radiation doses on objects of various shapes, and when combined with a dedicated computer software package and a data processing method, they form a comprehensive system for measuring dose distributions for objects with complex shapes. The developed system can also serve as a comprehensive method for assessing the quality and control of UV radiation sources used in various industrial processes.
Collapse
Affiliation(s)
- Elżbieta Sąsiadek-Andrzejczak
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Materials Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-543 Lodz, Poland
| | - Piotr Maras
- Department of Radiotherapy Planning, Copernicus Hospital, Pabianicka 62, 93-513 Lodz, Poland
| | - Marek Kozicki
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Materials Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-543 Lodz, Poland
| |
Collapse
|
2
|
Kozicki M, Maras P. An Optical Reusable 2D Radiochromic Gel-Based System for Ionising Radiation Measurements in Radiotherapy. Molecules 2024; 29:2558. [PMID: 38893435 PMCID: PMC11173542 DOI: 10.3390/molecules29112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This work describes the development of a reusable 2D detector based on radiochromic reaction for radiotherapy dosimetric measurements. It consists of a radiochromic gel dosimeter in a cuboidal plastic container, scanning with a flatbed scanner, and data processing using a dedicated software package. This tool is assessed using the example of the application of the coincidence test of radiation and mechanical isocenters for a medical accelerator. The following were examined: scanning repeatability and image homogeneity, the impact of image processing on data processing in coincidence tests, and irradiation conditions-monitor units per radiation beam and irradiation field are selected. Optimal conditions for carrying out the test are chosen: (i) the multi-leaf collimator gap should preferably be 5 mm for 2D star shot irradiation, (ii) it is recommended to apply ≥2500-≤5000 MU per beam to obtain a strong signal enabling easy data processing, (iii) Mean filter can be applied to the images to improve calculations. An approach to dosimeter reuse with the goal of reducing costs is presented; the number of reuses is related to the MUs per beam, which, in this study, is about 5-57 for 30,000-2500 MU per beam (four fields). The proposed reusable system was successfully applied to the coincidence tests, confirming its suitability as a new potential quality assurance tool in radiotherapy.
Collapse
Affiliation(s)
- Marek Kozicki
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Materials Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-543 Lodz, Poland
- GeVero Co., 90-980 Lodz, Poland
| | - Piotr Maras
- Department of Radiotherapy Planning, Copernicus Hospital, Pabianicka 62, 93-513 Lodz, Poland;
| |
Collapse
|
3
|
Kozicki M, Sąsiadek-Andrzejczak E, Wach R, Maras P. Flexible Cotton Fabric-Based Ionizing Radiation Dosimeter for 2D Dose Distribution Measurements over a Wide Dose Range at High Dose Rates. Int J Mol Sci 2024; 25:2916. [PMID: 38474163 DOI: 10.3390/ijms25052916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This work presents an ecological, flexible 2D radiochromic dosimeter for measuring ionizing radiation in the kilogray dose range. Cotton woven fabric made of cellulose was volume-modified with nitrotetrazolium blue chloride as a radiation-sensitive compound. Its features include a color change during exposure from yellowish to purple-brown and flexibility that allows it to adapt to various shapes. It was found that (i) the dose response is up to ~80 kGy, (ii) it is independent of the dose rate for 1.1-73.1 kGy/min, (iii) it can be measured in 2D using a flatbed scanner, (iv) the acquired images can be filtered using a mean filter, which improves its dose resolution, (v) the dose resolution is -0.07 to -0.4 kGy for ~0.6 to ~75.7 kGy for filtered images, and (vi) two linear dose subranges can be distinguished: ~0.6 to ~7.6 kGy and ~9.9 to ~62.0 kGy. The dosimeter combined with flatbed scanner reading and data processing using dedicated software packages constitutes a comprehensive system for measuring dose distributions for objects with complex shapes.
Collapse
Affiliation(s)
- Marek Kozicki
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Materials Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-543 Lodz, Poland
| | - Elżbieta Sąsiadek-Andrzejczak
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Materials Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-543 Lodz, Poland
| | - Radosław Wach
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Piotr Maras
- Department of Radiotherapy Planning, Copernicus Hospital, Pabianicka 62, 93-513 Lodz, Poland
| |
Collapse
|
4
|
Kozicki M, Pawlaczyk A, Adamska A, Szynkowska-Jóźwik MI, Sąsiadek-Andrzejczak E. Golden and Silver-Golden Chitosan Hydrogels and Fabrics Modified with Golden Chitosan Hydrogels. Int J Mol Sci 2022; 23:5406. [PMID: 35628215 PMCID: PMC9141307 DOI: 10.3390/ijms23105406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Golden and silver-golden chitosan hydrogels and hydrogel-modified textiles of potential biomedical applications are investigated in this work. The hydrogels are formed by reactions of chitosan with HAuCl4·xH2O. For above the critical concentration of chitosan (c*), chitosan-Au hydrogels were prepared. For chitosan concentrations lower than c*, chitosan-Au nano- and microgels were formed. To characterise chitosan-Au structures, sol-gel analysis, UV-Vis spectrophotometry and dynamic light scattering were performed. Au concentration in the hydrogels was determined by the flame atomic absorption spectrophotometry. Colloidal chitosan-Au solutions were used for the modification of fabrics. The Au content in the modified fabrics was quantified by inductively coupled plasma mass spectrometry technique. Scanning electron microscopy with energy dispersion X-ray spectrometer was used to analyse the samples. Reflectance spectrophotometry was applied to examine the colour of the fabrics. The formation of chitosan-Au-Ag hydrogels by the competitive reaction of Au and Ag ions with the chitosan macromolecules is reported.
Collapse
Affiliation(s)
- Marek Kozicki
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-543 Lodz, Poland;
| | - Aleksandra Pawlaczyk
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland; (A.P.); (A.A.); (M.I.S.-J.)
| | - Aleksandra Adamska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland; (A.P.); (A.A.); (M.I.S.-J.)
| | - Małgorzata Iwona Szynkowska-Jóźwik
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland; (A.P.); (A.A.); (M.I.S.-J.)
| | - Elżbieta Sąsiadek-Andrzejczak
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-543 Lodz, Poland;
| |
Collapse
|
5
|
Jaszczak M, Sąsiadek-Andrzejczak E, Kozicki M. Discolouring 3D Gel Dosimeter for UV Dose Distribution Measurements. MATERIALS 2022; 15:ma15072546. [PMID: 35407878 PMCID: PMC8999840 DOI: 10.3390/ma15072546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
This work reports on a new TBO–Pluronic F–127 three-dimensional (3D) gel dosimeter for UV light dose distribution measurements. The optimal gel composition was found to be 60 µM Toluidine Blue O (TBO), which acts as a UV-sensitive compound; 5% w/w hydrogen peroxide (H2O2), which is necessary for initiation of TBO photodegradation and 25% w/w poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F–127), which forms a physical gel matrix. The dosimeter becomes discoloured when exposed to UV radiation and a discolouration is the more intense, the higher the absorbed dose is. The samples after irradiation with UVA, UVB and UVC radiation were measured using UV-Vis spectrophotometry to obtain the basic dose–response characteristic of the dosimeter, including dose sensitivity, linear and dynamic dose range, threshold dose, stability over time and dose–response for fractioned and non-fractioned doses. Additionally, the TBO–Pluronic F–127 gel dosimeter was investigated for spatial stability and the ability to measure the dose distribution of UV radiation. The results obtained indicate that the TBO–Pluronic F–127 dosimeter is a promising UV sensor and 2D/3D UV dosimeter.
Collapse
|
6
|
Study of NBT-Pluronic F-127 Gels as 1D UV Radiation Dosimeters for Measurement of Artificial Light Sources. MATERIALS 2022; 15:ma15072370. [PMID: 35407702 PMCID: PMC8999834 DOI: 10.3390/ma15072370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022]
Abstract
This work reports on radiochromic dosimeters for 1D UV light measurements. The dosimeter is composed of a 25% Pluronic F–127 that forms a physical gel matrix and nitro blue tetrazolium chloride (NBT) as a radiation-sensitive compound. This dosimeter was exposed to UVA, UVB and UVC radiation, and the radiochromic reactions were followed with reflectance spectrophotometry including changes in light reflectance and color coordinates in the CIELAB color system. The exposition of dosimeters to all UV radiation caused color changes from pale yellow to dark violet, and its intensity increased with increasing absorbed dose. The effects of NBT concentration and UV radiation type on the dose–response of the dosimeters were also examined. The results obtained reveal that the dosimeters are the least sensitive to irradiation with UVC and the most sensitive to irradiation with UVB (e.g., dosimeter with 2 g/dm3 of NBT was characterized by the following parameters: the threshold dose 0.1 J/cm2; the dose sensitivity −5.97 ± 0.69 cm2/J; the linear dose range 0.1–2.5 J/cm2; the dynamic dose range was equal to 0.1–3 J/cm2). The results obtained reveal that the NBT–Pluronic F–127 dosimeters can be potentially useful as 1D sensors for artificial UV radiation sources measurements.
Collapse
|
7
|
Sąsiadek E, Jaszczak M, Skwarek J, Kozicki M. NBT-Pluronic F-127 Hydrogels Printed on Flat Textiles as UV Radiation Sensors. MATERIALS 2021; 14:ma14123435. [PMID: 34205722 PMCID: PMC8235756 DOI: 10.3390/ma14123435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
This work reports on the surface-modified woven fabrics for use as UV radiation sensors. The cotton and polyamide fabrics were printed with radiochromic hydrogels using a screen-printing method. The hydrogels used as a printing paste were composed of water, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127) as a gel matrix and nitro blue tetrazolium chloride as a radiation-sensitive compound. The development of the hydrogels' colour occurs after exposure to UV radiation and its intensity increases with increasing absorbed dose. The features of the NBT-Pluronic F-127 radiochromic hydrogels and the fabrics printed with the hydrogels were examined using UV-Vis and reflectance spectrophotometry as well as scanning electron microscopy (SEM). The effects of NBT concentration and UV radiation type (UVA, UVB, UVC) on dose responses of the hydrogels and printed fabrics were also examined. The results obtained reveal that the fabrics printed with NBT-Pluronic F-127 hydrogels can be potentially useful as UV radiation sensors.
Collapse
Affiliation(s)
- Elżbieta Sąsiadek
- Correspondence: (E.S.); (M.J.); Tel.: +48-42-631-33-83 (E.S.); +48-42-631-33-76 (M.J.)
| | - Malwina Jaszczak
- Correspondence: (E.S.); (M.J.); Tel.: +48-42-631-33-83 (E.S.); +48-42-631-33-76 (M.J.)
| | | | | |
Collapse
|
8
|
Kozicki M, Bartosiak M, Dudek M, Kadlubowski S. LCV-Pluronic F-127 dosimeter for UV light dose distribution measurements. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Kozicki M, Sąsiadek E, Kadlubowski S, Dudek M, Karbownik I. Radiation sensitive polyacrylonitrile microfibres doped with PDA nano-particles. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2018.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Kozicki M, Kwiatos K, Dudek M, Stempien' Z. Radiochromic gels for UV radiation measurements in 3D. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Kozicki M, Sąsiadek E, Kadłubowski S, Dudek M, Maras P, Nosal A, Gazicki-Lipman M. Flat foils as UV and ionising radiation dosimeters. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Kozicki M, Kwiatos K, Kadlubowski S, Dudek M. TTC-Pluronic 3D radiochromic gel dosimetry of ionizing radiation. ACTA ACUST UNITED AC 2017; 62:5668-5690. [DOI: 10.1088/1361-6560/aa77eb] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Kozicki M, Sąsiadek E. Scanning of flat textile-based radiation dosimeters: Influence of parameters on the quality of results. RADIAT MEAS 2013. [DOI: 10.1016/j.radmeas.2013.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Sąsiadek E, Andrzejczak R, Kozicki M. The importance of fabric structure in the construction of 2D textile radiation dosimeters. RADIAT MEAS 2012. [DOI: 10.1016/j.radmeas.2012.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Kozicki M, Sąsiadek E. Polyamide woven fabrics with 2,3,5-triphenyltetrazolium chloride or nitro blue tetrazolium chloride as 2D ionizing radiation dosimeters. RADIAT MEAS 2012. [DOI: 10.1016/j.radmeas.2012.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Kozicki M, Sąsiadek E. UV dosimeter based on polyamide woven fabric and nitro blue tetrazolium chloride as an active compound. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.06.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|