Janik M, Hasan MM, Bossew P, Kavasi N. Effects of Storage Time and Pre-Etching Treatment of CR-39 Detectors on Their Response to Alpha Radiation Exposure.
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021;
18:ijerph18168346. [PMID:
34444098 PMCID:
PMC8391802 DOI:
10.3390/ijerph18168346]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022]
Abstract
Radon passive monitors based on solid state nuclear track detectors (SSNTD), especially CR-39, are widely used in radon and thoron studies. They may be subjected to the influence of external factors, like changing of temperature, humidity, and pressure, both before and during the measurement. Evaluation of the exposed detectors involves chemical processing, whose conditions also influence the measurement results. The aim of this study was to check several factors, as to whether they may modify the response of CR-39 detector: concerning the phase before evaluation, storage time, and temperature during storage; and concerning the evaluation procedure, etching time, and pre-etching treatment using hot water and carbon dioxide atmosphere. Two experiments were conducted by irradiation of CR-39 detectors using alpha particles emitted from a mono-energetic 241Am source and exposed in radon atmosphere. Track density dependence of the age of production was found to be statistically not significant. On the other hand, pre-etching treatment using hot water and carbon dioxide with different etching times showed statistically significant effects on track area, track sensitivity, and roundness. It was concluded that there are simple methods to increase performance of nuclear track detectors, and that storage time is not a factor of concern.
Collapse