1
|
Bobić M, Christensen JB, Lee H, Choulilitsa E, Czerska K, Togno M, Safai S, Yukihara EG, Winey BA, Lomax AJ, Paganetti H, Albertini F, Nesteruk KP. Optically stimulated luminescence dosimeters for simultaneous measurement of point dose and dose-weighted LET in an adaptive proton therapy workflow. Front Oncol 2024; 13:1333039. [PMID: 38510267 PMCID: PMC10951997 DOI: 10.3389/fonc.2023.1333039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 03/22/2024] Open
Abstract
Purpose To demonstrate the suitability of optically stimulated luminescence detectors (OSLDs) for accurate simultaneous measurement of the absolute point dose and dose-weighted linear energy transfer (LETD) in an anthropomorphic phantom for experimental validation of daily adaptive proton therapy. Methods A clinically realistic intensity-modulated proton therapy (IMPT) treatment plan was created based on a CT of an anthropomorphic head-and-neck phantom made of tissue-equivalent material. The IMPT plan was optimized with three fields to deliver a uniform dose to the target volume covering the OSLDs. Different scenarios representing inter-fractional anatomical changes were created by modifying the phantom. An online adaptive proton therapy workflow was used to recover the daily dose distribution and account for the applied geometry changes. To validate the adaptive workflow, measurements were performed by irradiating Al2O3:C OSLDs inside the phantom. In addition to the measurements, retrospective Monte Carlo simulations were performed to compare the absolute dose and dose-averaged LET (LETD) delivered to the OSLDs. Results The online adaptive proton therapy workflow was shown to recover significant degradation in dose conformity resulting from large anatomical and positioning deviations from the reference plan. The Monte Carlo simulations were in close agreement with the OSLD measurements, with an average relative error of 1.4% for doses and 3.2% for LETD. The use of OSLDs for LET determination allowed for a correction for the ionization quenched response. Conclusion The OSLDs appear to be an excellent detector for simultaneously assessing dose and LET distributions in proton irradiation of an anthropomorphic phantom. The OSLDs can be cut to almost any size and shape, making them ideal for in-phantom measurements to probe the radiation quality and dose in a predefined region of interest. Although we have presented the results obtained in the experimental validation of an adaptive proton therapy workflow, the same approach can be generalized and used for a variety of clinical innovations and workflow developments that require accurate assessment of point dose and/or average LET.
Collapse
Affiliation(s)
- Mislav Bobić
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Evangelia Choulilitsa
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | | | | | - Brian A. Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Antony J. Lomax
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Paul Scherrer Institute, Villigen, Switzerland
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Konrad P. Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Bossin L, Plokhikh I, Christensen JB, Gawryluk DJ, Kitagawa Y, Leblans P, Tanabe S, Vandenbroucke D, Yukihara EG. Addressing Current Challenges in OSL Dosimetry Using MgB 4O 7:Ce,Li: State of the Art, Limitations and Avenues of Research. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3051. [PMID: 37109886 PMCID: PMC10142933 DOI: 10.3390/ma16083051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The objective of this work is to review and assess the potential of MgB4O7:Ce,Li to fill in the gaps where the need for a new material for optically stimulated luminescence (OSL) dosimetry has been identified. We offer a critical assessment of the operational properties of MgB4O7:Ce,Li for OSL dosimetry, as reviewed in the literature and complemented by measurements of thermoluminescence spectroscopy, sensitivity, thermal stability, lifetime of the luminescence emission, dose response at high doses (>1000 Gy), fading and bleachability. Overall, compared with Al2O3:C, for example, MgB4O7:Ce,Li shows a comparable OSL signal intensity following exposure to ionizing radiation, a higher saturation limit (ca 7000 Gy) and a shorter luminescence lifetime (31.5 ns). MgB4O7:Ce,Li is, however, not yet an optimum material for OSL dosimetry, as it exhibits anomalous fading and shallow traps. Further optimization is therefore needed, and possible avenues of investigation encompass gaining a better understanding of the roles of the synthesis route and dopants and of the nature of defects.
Collapse
Affiliation(s)
- Lily Bossin
- Department of Radiation Safety and Security, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland (E.G.Y.)
| | - Igor Plokhikh
- Department of Radiation Safety and Security, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland (E.G.Y.)
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Jeppe Brage Christensen
- Department of Radiation Safety and Security, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland (E.G.Y.)
| | - Dariusz Jakub Gawryluk
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Yuuki Kitagawa
- National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
| | - Paul Leblans
- Radiology Division, Agfa NV, 2640 Mortsel, Belgium
| | - Setsuhisa Tanabe
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | | | - Eduardo Gardenali Yukihara
- Department of Radiation Safety and Security, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland (E.G.Y.)
| |
Collapse
|
3
|
Yukihara EG, Bos AJ, Bilski P, McKeever SW. The quest for new thermoluminescence and optically stimulated luminescence materials: Needs, strategies and pitfalls. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Christensen JB, Togno M, Bossin L, Pakari OV, Safai S, Yukihara EG. Improved simultaneous LET and dose measurements in proton therapy. Sci Rep 2022; 12:8262. [PMID: 35585205 PMCID: PMC9117334 DOI: 10.1038/s41598-022-10575-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to improve the precision of linear energy transfer (LET) measurements using \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {Al}_2\text {O}_3\text {:C}$$\end{document}Al2O3:C optically stimulated luminescence detectors (OSLDs) in proton beams, and, with that, improve OSL dosimetry by correcting the readout for the LET-dependent ionization quenching. The OSLDs were irradiated in spot-scanning proton beams at different doses for fluence-averaged LET values in the (0.4–6.5) \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {keV}\, \upmu \hbox {m}^{-1}$$\end{document}keVμm-1 range (in water). A commercial automated OSL reader with a built-in beta source was used for the readouts, which enabled a reference irradiation and readout of each OSLD to establish individual corrections. Pulsed OSL was used to separately measure the blue (F-center) and UV (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F^+$$\end{document}F+-center) emission bands of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {Al}_2\text {O}_3\text {:C}$$\end{document}Al2O3:C and the ratio between them (UV/blue signal) was used for the LET measurements. The average deviation between the simulated and measured LET values along the central beam axis amounts to 5.5% if both the dose and LET are varied, but the average deviation is reduced to 3.5% if the OSLDs are irradiated with the same doses. With the measurement procedure and automated equipment used here, the variation in the signals used for LET estimates and quenching-corrections is reduced from 0.9 to 0.6%. The quenching-corrected OSLD doses are in agreement with ionization chamber measurements within the uncertainties. The automated OSLD corrections are demonstrated to improve the LET estimates and the ionization quenching-corrections in proton dosimetry for a clinically relevant energy range up to 230 MeV. It is also for the first time demonstrated how the LET can be estimated for different doses.
Collapse
Affiliation(s)
- Jeppe Brage Christensen
- Department of Radiation Safety and Security, Paul Scherrer Institute, Villigen PSI, Switzerland.
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Lily Bossin
- Department of Radiation Safety and Security, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Oskari Ville Pakari
- Department of Radiation Safety and Security, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | | |
Collapse
|