1
|
Gkika E, Dejonckheere CS, Sahlmann J, Barth SA, Schimek-Jasch T, Adebahr S, Hecht M, Miederer M, Brose A, Binder H, König J, Grosu AL, Nestle U, Rimner A. Impact of mediastinal tumor burden and lymphatic spread in locally advanced non-small-cell lung cancer: A secondary analysis of the multicenter randomized PET-Plan trial. Radiother Oncol 2024; 200:110521. [PMID: 39236984 DOI: 10.1016/j.radonc.2024.110521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE The aim of this secondary analysis of the prospective randomized phase 2 PET-Plan trial (ARO-2009-09; NCT00697333) was to evaluate the impact of mediastinal tumor burden and lymphatic spread in patients with locally advanced non-small-cell lung cancer (NSCLC). METHODS All patients treated per protocol (n = 172) were included. Patients received isotoxically dose-escalated chemoradiotherapy up to a total dose of 60-74 Gy in 30-37 fractions, aiming as high as possible while adhering to normal tissue constraints. Radiation treatment (RT) planning was based on an 18F-FDG PET/CT targeting all lymph node (LN) stations containing CT positive LNs (i.e. short axis diameter > 10 mm), even if PET-negative (arm A) or targeting only LN stations containing PET-positive nodes (arm B). LN stations were classified into echelon 1 (ipsilateral hilum), 2 (ipsilateral station 4 and 7), and 3 (rest of the mediastinum, contralateral hilum). The endpoints were overall survival (OS), progression-free survival (PFS), and freedom from local progression (FFLP). RESULTS The median follow-up time (95 % confidence interval [CI]) was 41.1 (33.8 - 50.4) months. Patients with a high absolute number of PET-positive LN stations had worse OS (hazard ratio [HR] = 1.09; 95 % CI 0.99 - 1.18; p = 0.05) and PFS (HR = 1.12; 95 % CI 1.04 - 1.20; p = 0.003), irrespective of treatment arm allocation. The prescribed RT dose to the LNs did not correlate with any of the endpoints when considering all patients. However, in patients in arm B (i.e., PET-based selective nodal irradiation), prescribed RT dose to each LN station correlated significantly with FFLP (HR=0.45; 95 % CI 0.24-0.85; p = 0.01). Furthermore, patients with involvement of echelon 3 LN stations had worse PFS (HR = 2.22; 95 % CI 1.16-4.28; p = 0.02), also irrespective of allocation. CONCLUSION Mediastinal tumor burden and lymphatic involvement patterns influence outcome in patients treated with definitive chemoradiotherapy for locally advanced NSCLC. Higher dose to LNs did not improve OS, but did improve FFLP in patients treated with PET-based dose-escalated RT.
Collapse
Affiliation(s)
- Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany; Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | | - Jörg Sahlmann
- Institute of Medical Biometry and Statistics (IMBI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simeon Ari Barth
- Department of Pediatrics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sonja Adebahr
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Hecht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg, Germany
| | - Matthias Miederer
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden: Faculty of Medicine and University Hospital Carl Gustav Carus, University of Technology Dresden (TUD), Dresden, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Alexander Brose
- Department of Diagnostic and Interventional Radiology, University Hospital Giessen, Giessen, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics (IMBI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jochem König
- Institute of Medical Biostatistics, Epidemiology, and Informatics, University Hospital Mainz, Mainz, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Andreas Rimner
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Hernando-Requejo O, Olombrada MVT, Bravo IA, Moreno LA, López-Campos F, Gonzalez ML, Martín MM, Macías VM, De la Pinta C. Current landscape of gastrointestinal radiation oncology in Spain: a multicenter real-life survey and comparison with key clinical guidelines. Rep Pract Oncol Radiother 2024; 29:340-347. [PMID: 39144273 PMCID: PMC11321793 DOI: 10.5603/rpor.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/31/2024] [Indexed: 08/16/2024] Open
Abstract
Background The GI Tumors Workgroup, a division of the Spanish Society of Radiation Therapy, conducted a survey in December 2020 to assess the adherence of radiation oncologists in Spain to international guidelines for gastrointestinal tumors. Materials and methods Using Google Forms, we designed a survey covering treatments for esophageal, gastric, pancreatic, and rectal cancers. Results In esophageal cancer treatment, neoadjuvant chemoradiation was the standard in 76.7% of institutions. Radiation doses range from 41.1 to 50.4 Gy in conventional fractionation. Planning positron emission tomography-computed tomography (PET-CT) was performed in 83.3% of centers, and intensity-modulated radiation therapy/volumetric-arc radiation therapy (IMRT/VMAT) was the preferred technique in 86.7% of institutions. For gastric cancer, 71.4% followed perioperative chemotherapy guidelines. In the case of adjuvant radiotherapy, the majority prescribed 45-50.4 Gy, and 82.1% used IMRT/VMAT for treatment. For pancreas cancer, neoadjuvant chemotherapy followed by surgery in borderline resectable tumors and induction chemotherapy followed by radical radiotherapy for non-resectable tumors were the most frequent approaches. IMRT/VMAT was the primary technique. Locally advanced rectal cancer treatment is mainly based on neoadjuvant radiotherapy in all institutions. The preferred radiation doses typically range from 45 to 50 Gy in conventional fractionation. IMRT/VMAT was standard in most Institutions. Conclusions Spain's radiotherapy practices among respondents generally align with international guidelines for GI tumors highlighting Spain's commitment to evidence-based medical practice.
Collapse
Affiliation(s)
| | | | - Irene Alda Bravo
- Radiation Oncology Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Leire Arbea Moreno
- Radiation Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
3
|
Thorwarth D. Clinical use of positron emission tomography for radiotherapy planning - Medical physics considerations. Z Med Phys 2023; 33:13-21. [PMID: 36272949 PMCID: PMC10068574 DOI: 10.1016/j.zemedi.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
PET/CT imaging plays an increasing role in radiotherapy treatment planning. The aim of this article was to identify the major use cases and technical as well as medical physics challenges during integration of these data into treatment planning. Dedicated aspects, such as (i) PET/CT-based radiotherapy simulation, (ii) PET-based target volume delineation, (iii) functional avoidance to optimized organ-at-risk sparing and (iv) functionally adapted individualized radiotherapy are discussed in this article. Furthermore, medical physics aspects to be taken into account are summarized and presented in form of check-lists.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Klein R, Oliver M, La Russa D, Agapito J, Gaede S, Bissonnette J, Rahmim A, Uribe C. COMP Report: CPQR technical quality control guidelines for use of positron emission tomography/computed tomography in radiation treatment planning. J Appl Clin Med Phys 2022; 23:e13785. [PMID: 36208131 PMCID: PMC9797167 DOI: 10.1002/acm2.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/15/2022] [Accepted: 08/16/2022] [Indexed: 01/01/2023] Open
Abstract
Positron emission tomography with x-ray computed tomography (PET/CT) is increasingly being utilized for radiation treatment planning (RTP). Accurate delivery of RT therefore depends on quality PET/CT data. This study covers quality control (QC) procedures required for PET/CT for diagnostic imaging and incremental QC required for RTP. Based on a review of the literature, it compiles a list of recommended tests, performance frequencies, and tolerances, as well as references to documents detailing how to perform each test. The report was commissioned by the Canadian Organization of Medical Physicists as part of the Canadian Partnership for Quality Radiotherapy initiative.
Collapse
Affiliation(s)
- Ran Klein
- Department of Nuclear MedicineThe Ottawa HospitalOttawaCanada
| | | | - Dan La Russa
- Radiation Medicine ProgramThe Ottawa HospitalCanada
| | - John Agapito
- Department of Medical PhysicsWindsor Regional HospitalWindsorCanada
| | - Stewart Gaede
- London Regional Cancer ProgramLondon Health Sciences CentreLondonCanada
| | | | - Arman Rahmim
- Functional ImagingBC Cancer AgencyVancouverCanada
| | - Carlos Uribe
- Functional ImagingBC Cancer AgencyVancouverCanada
| |
Collapse
|
5
|
Manapov F, Eze C, Holzgreve A, Käsmann L, Nieto A, Taugner J, Unterrainer M. PET/CT for Target Delineation of Lung Cancer Before Radiation Therapy. Semin Nucl Med 2022; 52:673-680. [PMID: 35781392 DOI: 10.1053/j.semnuclmed.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022]
Abstract
In clinical routine of patients suffering from lung cancer, radiotherapy/radiation oncology represents one of the therapeutic hallmarks in the multimodal treatment besides or in combination with other local treatments such as surgery, but also systemic treatments such as chemotherapy, tyrosine kinase, and immune check-point inhibitors. Conventional morphological imagings such as CT or MR are commonly used for staging, response assessment, but also for radiotherapy planning. However, advanced imaging techniques such as PET do continuously get increasing access to clinical routine overcoming limitations of standard imaging techniques by visualizing and quantifying molecular processes such as glucose metabolism, which is also of relevance for radiotherapy planning. This review article summarizes the current place of radiotherapy within the treatment regimens of patients with lung cancer and elucidates current concepts of standard morphological imaging for staging and radiotherapy planning. Moreover, the place of PET-based radiotherapy planning in a clinical context is presented and current methodological/technical advances that do comprise a potential role for radiotherapy planning in lung cancer patients are discussed.
Collapse
Affiliation(s)
- Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Nieto
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Julian Taugner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
6
|
Dmytriw AA, Ortega C, Anconina R, Metser U, Liu ZA, Liu Z, Li X, Sananmuang T, Yu E, Joshi S, Waldron J, Huang SH, Bratman S, Hope A, Veit-Haibach P. Nasopharyngeal Carcinoma Radiomic Evaluation with Serial PET/CT: Exploring Features Predictive of Survival in Patients with Long-Term Follow-Up. Cancers (Basel) 2022; 14:3105. [PMID: 35804877 PMCID: PMC9264840 DOI: 10.3390/cancers14133105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE We aim determine the value of PET and CT radiomic parameters on survival with serial follow-up PET/CT in patients with nasopharyngeal carcinoma (NPC) for which curative intent therapy is undertaken. METHODS Patients with NPC and available pre-treatment as well as follow up PET/CT were included from 2005 to 2006 and were followed to 2021. Baseline demographic, radiological and outcome data were collected. Univariable Cox proportional hazard models were used to evaluate features from baseline and follow-up time points, and landmark analyses were performed for each time point. RESULTS Sixty patients were enrolled, and two-hundred and seventy-eight (278) PET/CT were at baseline and during follow-up. Thirty-eight percent (38%) were female, and sixty-two patients were male. All patients underwent curative radiation or chemoradiation therapy. The median follow-up was 11.72 years (1.26-14.86). Five-year and ten-year overall survivals (OSs) were 80.0% and 66.2%, and progression-free survival (PFS) was 90.0% and 74.4%. Time-dependent modelling suggested that, among others, PET gray-level zone length matrix (GLZLM) gray-level non-uniformity (GLNU) (HR 2.74 95% CI 1.06, 7.05) was significantly associated with OS. Landmark analyses suggested that CT parameters were most predictive at 15 month, whereas PET parameters were most predictive at time points 3, 6, 9 and 15 month. CONCLUSIONS This study with long-term follow up data on NPC suggests that mainly PET-derived radiomic features are predictive for OS but not PFS in a time-dependent evaluation. Furthermore, CT radiomic measures may predict OS and PFS best at initial and long-term follow-up time points and PET measures may be more predictive in the interval. These modalities are commonly used in NPC surveillance, and prospective validation should be considered.
Collapse
Affiliation(s)
- Adam A. Dmytriw
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada; (A.A.D.); (R.A.)
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| | - Claudia Ortega
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| | - Reut Anconina
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada; (A.A.D.); (R.A.)
| | - Ur Metser
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| | - Zhihui A. Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (Z.A.L.); (Z.L.); (X.L.)
| | - Zijin Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (Z.A.L.); (Z.L.); (X.L.)
| | - Xuan Li
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (Z.A.L.); (Z.L.); (X.L.)
| | - Thiparom Sananmuang
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University,270 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Eugene Yu
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| | - Sayali Joshi
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| | - John Waldron
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (J.W.); (S.H.H.); (S.B.); (A.H.)
| | - Shao Hui Huang
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (J.W.); (S.H.H.); (S.B.); (A.H.)
| | - Scott Bratman
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (J.W.); (S.H.H.); (S.B.); (A.H.)
| | - Andrew Hope
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (J.W.); (S.H.H.); (S.B.); (A.H.)
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| |
Collapse
|
7
|
Hapdey S, Dubray B, Chastan M, Thureau S, Gouel P, Edet-Sanson A, Becker S, Vera P, Bouyeure-Petit AC. Respiratory gated multistatic PET reconstructions to delineate radiotherapy target volume in patients with mobile lung tumors. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:171-178. [PMID: 31922369 DOI: 10.23736/s1824-4785.19.03183-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND PET-CT with 18F-FDG or other radiopharmaceuticals is a recommended tool to help the delineation of lung cancers candidate to radiotherapy. The motion artifacts caused by respiratory movements are reduced by 4D acquisitions. We introduced an extended reconstruction algorithm (multiple reconstruct register and average [multi-RRA]) which requires much shorter acquisition times than standard 4D PET-CT. Our aim was to evaluate the interest on multi-RRA images as an alternative of 3D and 4D PET-CT for the delineation of lung lesion. METHODS PET acquisitions synchronized to the respiratory signal were obtained in 18 patients with mobile lung tumors. We compared the tumor volumes delineated on Multi-RRA images to 3D and 4D PET-CT, considering the 4D CT as a reference. The tumor volumes were delineated and compared with topologic similarity indexes (Dice, Jaccard and overlap). RESULTS Twenty tumors were delineated. The volumes delineated with multi-RRA and 4D PET were not significantly different (mean difference of 0.2±0.7 mL). Comparison by pairs (Tukey-Kramer test) showed that 3D-PET volumes were significantly smaller than 4D-PET and multi-RRA volumes (P<0.001). Topologic similarity indexes with 4D-PET were slightly statistically higher with multi-RRA than with 3D-PET (Dice and Jaccard) or 4D-CT (Dice, Jaccard and Overlap). CONCLUSIONS The tumor volumes delineated on multi-RRA are similar to the volumes obtained with 4D PET, with shorter acquisition time.
Collapse
Affiliation(s)
- Sebastien Hapdey
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France -
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France -
| | - Bernard Dubray
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
- Department of Radiotherapy, Henri Becquerel Cancer Center, Rouen, France
| | - Mathieu Chastan
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Sebastien Thureau
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
- Department of Radiotherapy, Henri Becquerel Cancer Center, Rouen, France
| | - Pierrick Gouel
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Agathe Edet-Sanson
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - Stéphanie Becker
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - Pierre Vera
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | |
Collapse
|
8
|
Hinault P, Gardin I, Gouel P, Decazes P, Thureau S, Veresezan O, Souchay H, Vera P, Gensanne D. Characterization of positioning uncertainties in PET-CT-MR trimodality solutions for radiotherapy. J Appl Clin Med Phys 2022; 23:e13617. [PMID: 35481611 PMCID: PMC9278679 DOI: 10.1002/acm2.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to evaluate the positioning uncertainties of two PET/CT‐MR imaging setups, C1 and C2. Because the PET/CT data were acquired on the same hybrid device with automatic image registration, experiments were conducted using CT‐MRI data. In C1, a transfer table was used, which allowed the patient to move from one imager to another while maintaining the same position. In C2, the patient stood up and was positioned in the same radiotherapy treatment position on each imager. The two setups provided a set of PET/CT and MR images. The accuracy of the registration software was evaluated on the CT‐MRI data of one patient using known translations and rotations of MRI data. The uncertainties on the two setups were estimated using a phantom and a cohort of 30 patients. The accuracy of the positioning uncertainties was evaluated using descriptive statistics and a t‐test to determine whether the mean shift significantly deviated from zero (p < 0.05) for each setup. The maximum registration errors were less than 0.97 mm and 0.6° for CT‐MRI registration. On the phantom, the mean total uncertainties were less than 2.74 mm and 1.68° for C1 and 1.53 mm and 0.33° for C2. For C1, the t‐test showed that the displacements along the z‐axis did not significantly deviate from zero (p = 0.093). For C2, significant deviations from zero were present for anterior‐posterior and superior‐inferior displacements. The mean total uncertainties were less than 4 mm and 0.42° for C1 and less than 1.39 mm and 0.27° for C2 in the patients. Furthermore, the t‐test showed significant deviations from zero for C1 on the anterior‐posterior and roll sides. For C2, there was a significant deviation from zero for the left‐right displacements.This study shows that transfer tables require careful evaluation before use in radiotherapy.
Collapse
Affiliation(s)
- Pauline Hinault
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,GE Healthcare, Buc, France
| | - Isabelle Gardin
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
| | - Pierrick Gouel
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
| | - Pierre Decazes
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
| | - Sebastien Thureau
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| | - Ovidiu Veresezan
- Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| | | | - Pierre Vera
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
| | - David Gensanne
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| |
Collapse
|
9
|
Vaz SC, Adam JA, Delgado Bolton RC, Vera P, van Elmpt W, Herrmann K, Hicks RJ, Lievens Y, Santos A, Schöder H, Dubray B, Visvikis D, Troost EGC, de Geus-Oei LF. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[ 18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. Eur J Nucl Med Mol Imaging 2022; 49:1386-1406. [PMID: 35022844 PMCID: PMC8921015 DOI: 10.1007/s00259-021-05624-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE 2-[18F]FDG PET/CT is of utmost importance for radiation treatment (RT) planning and response monitoring in lung cancer patients, in both non-small and small cell lung cancer (NSCLC and SCLC). This topic has been addressed in guidelines composed by experts within the field of radiation oncology. However, up to present, there is no procedural guideline on this subject, with involvement of the nuclear medicine societies. METHODS A literature review was performed, followed by a discussion between a multidisciplinary team of experts in the different fields involved in the RT planning of lung cancer, in order to guide clinical management. The project was led by experts of the two nuclear medicine societies (EANM and SNMMI) and radiation oncology (ESTRO). RESULTS AND CONCLUSION This guideline results from a joint and dynamic collaboration between the relevant disciplines for this topic. It provides a worldwide, state of the art, and multidisciplinary guide to 2-[18F]FDG PET/CT RT planning in NSCLC and SCLC. These practical recommendations describe applicable updates for existing clinical practices, highlight potential flaws, and provide solutions to overcome these as well. Finally, the recent developments considered for future application are also reviewed.
Collapse
Affiliation(s)
- Sofia C. Vaz
- Nuclear Medicine Radiopharmacology, Champalimaud Centre for the Unkown, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit A. Adam
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Pierre Vera
- Henri Becquerel Cancer Center, QuantIF-LITIS EA 4108, Université de Rouen, Rouen, France
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Rodney J. Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Yolande Lievens
- Radiation Oncology Department, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bernard Dubray
- Department of Radiotherapy and Medical Physics, Centre Henri Becquerel, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Esther G. C. Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Laskar SG, Kakoti S. Modern Radiation Oncology: From IMRT to Particle Therapy—Present Status and the Days to Come. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1742446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractThere has been tremendous technological development in the field of radiation oncology, mainly during the last few decades. Parallel advancements in imaging and accelerator technologies have contributed significantly to the same. Present-day radiation therapy is aimed at precision, in terms of physical accuracy of both its planning and delivery. This has been made possible by improvements in defining the target (use of various radiological and functional imaging modalities), advanced radiotherapy planning methods (intensity-modulated radiation therapy and recent emergence of particle therapy), and robust verification techniques (image-guided radiation therapy). These developments have enabled delivery of adequate tumoricidal doses conforming to the target, thereby improving disease control with reduced normal tissue toxicity in a wide range of malignancies. Elucidation of molecular pathways determining radioresistance or systemic effects of radiotherapy and strategies for therapeutic manipulation of the same are also being explored. Overall, we look forward to ensuring basic radiotherapy access to all patients, and precision radiation therapy to appropriate candidates (triaged by disease anatomy or biology and associated cost-effectiveness).
Collapse
Affiliation(s)
- Sarbani Ghosh Laskar
- Department of Radiation Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sangeeta Kakoti
- Department of Radiation Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
McKay MJ, Taubman KL, Lee S, Scott AM. Radiotherapy planning of lymphomas: role of metabolic imaging with PET/CT. Ann Nucl Med 2022; 36:162-171. [PMID: 35028879 DOI: 10.1007/s12149-021-01703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
Accurate target delineation is an absolute requirement for modern radiotherapy planning. Historically, structural imaging modalities have been used for this purpose, but there is a considerable role for functional imaging with PET/CT to contribute in this area. PET/CT's role in radiotherapy planning is well established and its use is indispensable in the clinical management of the lymphomas, particularly Hodgkin Lymphoma. A crucial use of PET/CT is as a baseline scan for delineation of the initial lymphomatous involvement, since this will determine the contouring of the gross-, clinical- and planning-target volumes (GTV, CTV, PTV). This article reviews the principles of contemporary radiotherapy, examines the evidence for the contribution of PET/CT to radiotherapy planning in lymphoma and the practicalities and challenges of applying this powerful technology to this situation.
Collapse
Affiliation(s)
- Michael J McKay
- Northern Cancer Service, North West Cancer Centre, Burnie, TAS, 7320, Australia. .,Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia. .,Rural Clinical School, Northwest Regional Hospital, University of Tasmania, Burnie, TAS, 7320, Australia.
| | - Kim L Taubman
- Department of Medical Imaging, St Vincents Hospital, Fitzroy, VIC, 3065, Australia
| | - Szeting Lee
- Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia.,Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,Faculty of Medicine, University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|
12
|
Dejanovic D, Specht L, Munk OL, Christensen CB, Berthelsen AK, Law I, Loft A. PET for radiotherapy planning. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Meng J, Deshayes E, Zhang L, Shi W, Zhang X, Chen X, Mei X, Ma J, Jiang Y, Wu J, Shao Z, Yu X, Yang Z, Guo X. Prognostic value of metabolic signature on 18F-FDG uptake in breast cancer patients after radiotherapy. Mol Ther Oncolytics 2021; 23:412-419. [PMID: 34853812 PMCID: PMC8605077 DOI: 10.1016/j.omto.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022] Open
Abstract
Radiotherapy (RT) is a major modality of postoperative treatment in breast cancer. The maximal standardized value (SUVmax) is 18FDG-PET/CT derived parameter that reported to be a valuable prognostic factor in cancer patients. Herein, we aimed to identify a prognostic gene signature associated with glucose uptake for breast cancer patients after RT by leveraging the mRNA expression profiling on public datasets. The glucose uptake signature was constructed using the single sample gene set enrichment analysis (ssGSEA) algorithm and evaluated in GSE21217 where SUVmax value was measured by PET-CT directly. The prognostic value was validated in three post-RT breast cancer cohorts (GSE103744, NKI, and FUSCC databases). The patients were stratified into glucose uptake signature score-high and low groups. Patients with a higher score had worse survival than those with a lower score. Mechanistically, the glucose uptake signature was calculated in each cell type of a single-cell RNA-seq database from five breast cancer patients. Glucose uptake signature score was significantly elevated in the malignant epithelial cells compared with normal ones. The immunosuppression markers including PDCD1, TIGIT, LAG3, and HAVCR2 were significantly upregulated in the T cells bearing a high glucose uptake signature score. Collectively, our results demonstrated the potential prognostic value of a glucose uptake signature in the post-RT breast cancer patients.
Collapse
Affiliation(s)
- Jin Meng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Emmanuel Deshayes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier Cedex 5, France
- Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier Cedex 5, France
| | - Li Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Wei Shi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaomeng Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xin Mei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Jinli Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yizhou Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jiong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhimin Shao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Zhaozhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
- Corresponding author: Zhaozhi Yang, MD, PhD, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China.
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
- Corresponding author: Xiaomao Guo, MD, PhD, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China.
| |
Collapse
|
14
|
Martin SS, van Assen M, Burchett P, Monti CB, Schoepf UJ, Ravenel J, Rieter WJ, Vogl TJ, Costello P, Gordon L, De Cecco CN. Prospective Evaluation of the First Integrated Positron Emission Tomography/Dual-Energy Computed Tomography System in Patients With Lung Cancer. J Thorac Imaging 2021; 36:382-388. [PMID: 34029282 DOI: 10.1097/rti.0000000000000597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this pilot study was to prospectively evaluate the first integrated positron emission tomography (PET)/dual-energy computed tomography (DECT) system performance in patients with non-small cell lung cancer (NSCLC). MATERIALS AND METHODS In this single-center, prospective trial, consecutive patients with NSCLC referred for a PET study between May 2017 and June 2018 were enrolled. All patients received contrast-enhanced imaging on a clinical PET/DECT system. Data analysis included PET-based standard uptake values (SUVmax) and DECT-based iodine densities of tumor masses, lymph nodes, and distant metastases. Results were analyzed using correlation tests and receiver operating characteristics curves. RESULTS The study population was composed of 21 patients (median age 62 y, 14 male patients). A moderate positive correlation was found between iodine density values (2.2 mg/mL) and SUVmax (10.5) in tumor masses (ρ=0.53, P<0.01). Iodine density values (2.3 mg/mL) and SUVmax (5.4) of lymph node metastases showed a weak positive correlation (ρ=0.23, P=0.14). In addition, iodine quantification analysis provided no added value in differentiating between pathologic and nonpathologic lymph nodes with an area under the curve (AUC) of 0.55 using PET-based SUVmax as the reference standard. A weak positive correlation was observed between iodine density (2.2 mg/mL) and SUVmax in distant metastases (14.9, ρ=0.23, P=0.52). CONCLUSIONS The application of an integrated PET/DECT system in lung cancer might provide additional insights in the assessment of tumor masses. However, the added value of iodine density quantification for the evaluation of lymph nodes and distant metastases seems limited.
Collapse
Affiliation(s)
- Simon S Martin
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Marly van Assen
- Department of Radiology and Imaging Sciences, Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Emory University, Atlanta, GA
| | - Philip Burchett
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Caterina B Monti
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milano, Italy
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - James Ravenel
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - William J Rieter
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Philip Costello
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Leonie Gordon
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Carlo N De Cecco
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
- Department of Radiology and Imaging Sciences, Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Emory University, Atlanta, GA
| |
Collapse
|
15
|
Thind K, Roumeliotis M, Mann T, Van Dyke L, Martell K, Smith W, Barbera L, Quirk S. Increasing Demand on Human Capital and Resource Utilization in Radiation Therapy: The Past Decade. Int J Radiat Oncol Biol Phys 2021; 112:457-462. [PMID: 34543682 DOI: 10.1016/j.ijrobp.2021.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To quantify the change resource utilization in radiation therapy in the context of advancing technologies and techniques over the last decade. METHODS AND MATERIALS Prospectively, the time to complete radiation therapy workflow tasks was captured between January 1, 2020, and December 31, 2020. The institutional task workflows are specific to each technique and broadly organized into 4 categories: 3-dimenstional conformal radiation therapy, intensity modulated radiation therapy, volumetric modulated arc therapy simple, and volumetric modulated arc therapy complex. These discipline-specific task times were used to quantify a resource utilization factor, which is the median time taken to complete all tasks for each category divided by the median time for 3-dimensional conformal radiation therapy treatments. Retrospectively, all plans treated between January 1, 2012, and December 31, 2019, were quantified and categorized. The resource factor was applied to determine resource utilization. For context, institutional staffing levels were captured across the same decade for medical dosimetrists, medical physicists, and radiation oncologists. RESULTS This analysis includes 30,229 patient plans in the retrospective data set and 4747 patient plans in the prospective data set. This analysis demonstrates that over this period, patient numbers increased by approximately 45%, whereas time-based human resources increased by almost 150%. The resource allocation factors for 3-dimenstional conformal radiation therapy, intensity modulated radiation therapy, volumetric modulated arc therapy simple, and volumetric arc therapy complex were 1.0, 2.4, 2.9, and 4.3, respectively. Across the 3 disciplines, staffing levels increased from 15 to 17 (13%) for medical dosimetrists, from 10 to 13 (30%) for medical physicists, and from 16 to 23 (44%) for radiation oncologists. CONCLUSIONS This work demonstrates the increase in resource utilization due to the introduction of advanced technologies and changes in radiation therapy techniques over the past decade. Human resource utilization is the predominant factor and should be considered with increasing patient volume for operational planning.
Collapse
Affiliation(s)
- Kundan Thind
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Physics & Astronomy, University of Calgary, Calgary, Alberta; Tom Baker Cancer Centre, Calgary Alberta, Canada.
| | - Michael Roumeliotis
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Physics & Astronomy, University of Calgary, Calgary, Alberta; Tom Baker Cancer Centre, Calgary Alberta, Canada
| | - Thomas Mann
- Department of Physics & Astronomy, University of Calgary, Calgary, Alberta; Tom Baker Cancer Centre, Calgary Alberta, Canada
| | | | - Kevin Martell
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Tom Baker Cancer Centre, Calgary Alberta, Canada
| | - Wendy Smith
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Physics & Astronomy, University of Calgary, Calgary, Alberta; Tom Baker Cancer Centre, Calgary Alberta, Canada
| | - Lisa Barbera
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Tom Baker Cancer Centre, Calgary Alberta, Canada
| | - Sarah Quirk
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Physics & Astronomy, University of Calgary, Calgary, Alberta; Tom Baker Cancer Centre, Calgary Alberta, Canada
| |
Collapse
|
16
|
FDG-PET/CT and MR imaging for target volume delineation in rectal cancer radiotherapy treatment planning: a systematic review. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Aim:
The aim of this systematic review was to synthesise and summarise evidence surrounding the clinical use of fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT) and magnetic resonance imaging (MRI) for target volume delineation (TVD) in rectal cancer radiotherapy planning.
Methods:
PubMed, EMBASE, Cochrane library, CINAHL, Web of Science and Scopus databases and other sources were systematically queried using keywords and relevant synonyms. Eligible full-text studies were assessed for methodological quality using the QUADAS-2 tool.
Results:
Eight of the 1448 studies identified met the inclusion criteria. Findings showed that MRI significantly delineate larger tumour volumes (TVs) than FDG-PET/CT while diffusion-weighted magnetic resonance imaging (DW-MRI) defined smaller gross tumour volumes (GTVs) compared to T2 weighted-Magnetic Resonance Image. CT-based GTVs were found to be larger compared to FDG-PET/CT. FDG-PET/CT also identified new lesions in 15–17% patients and TVs extending outside the routinely used clinical standard CT TV in 29–83% patients. Between observers, delineated volumes were similar and consistent between MRI sequences, whereas interobserver agreement was significantly improved with FDG-PET/CT than CT.
Conclusion:
FDG-PET/CT and DW-MRI appear to delineate smaller rectal TVs and show improved interobserver variability. Overall, this study provides valuable insights into the amount of attention in the research literature that has been paid to imaging for TVD in rectal cancer.
Collapse
|
17
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Strahlenther Onkol 2021; 197:1-23. [PMID: 34259912 DOI: 10.1007/s00066-021-01812-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Christoph Henkenberens
- Department of Radiotherapy and Special Oncology, Medical School Hannover, Hannover, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany.
| |
Collapse
|
18
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Nuklearmedizin 2021; 60:326-343. [PMID: 34261141 DOI: 10.1055/a-1525-7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.,Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | | | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | | |
Collapse
|
19
|
Zhang YN, Lu X, Lu ZG, Fu LP, Zhao J, Xiang ZL. Evaluation of Hybrid PET/MRI for Gross Tumor Volume (GTV) Delineation in Colorectal Cancer Liver Metastases Radiotherapy. Cancer Manag Res 2021; 13:5383-5389. [PMID: 34262346 PMCID: PMC8275048 DOI: 10.2147/cmar.s316969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Hybrid PET/MRI has been increasingly incorporated into the practice of radiation oncologists since it contains both anatomical and biological data and may bring about personalized radiation plans for each patient. The objective of this study was to evaluate the feasibility of GTV delineation from hybrid PET/MRI compared with that from current-practice MRI during radiotherapy planning in patients with colorectal liver metastases. Patients and Methods Twenty-four patients (thirty lesions) with colorectal liver metastases were prospectively enrolled in this study. Three physicians delineated the target volume with the most popular delineating methods-the visual method. First of all, differences among the three observers were assessed. The difference and correlation of GTV values obtained by MRI, PET, and hybrid PET/MRI were subjected to statistical analysis afterwards. Finally, the dice similarity coefficient (DSC) was calculated to assess the spatial overlap. Based on the value of DSC, we also evaluate the correlation between DSC and tumor size. GTV-MRI was set as a reference. Results There was no significant difference among observers in GTV-MRI (F=0.118, p=0.889), GTV-PET (F=0.070, p=0.933) and GTV-PET/MRI (F=0.40, p=0.961). 83.33% of GTV-PET/MRI and 63.33% of GTV-PET were larger than the reference GTV-MRI. Statistical analysis revealed that GTV-PET/MRI (p<0.001) and GTV-PET (p<0.05) diverged statistically significantly from GTV-MRI. GTV-PET (r=0.992, p<0.001) and GTV-PET/MRI (r=0.997, p<0.001) were significantly related to GTV-MRI. The average DSC value between GTV-MRI and GTV-PET was 0.51 (range 0-0.90) and that between GTV-MRI and GTV-PET/MRI was 0.72 (range 0.42-0.90). There was a positive correlation between the DSC and GTV-MRI (r=0.851, p<0.05). Conclusion With the database used, there is good agreement among observers. Hybrid PET/MRI in colorectal liver metastases radiotherapy may affect the GTV delineation. Moreover, the overlap degree between GTV-MRI and GTV-PET/MRI is higher and increases with volume.
Collapse
Affiliation(s)
- Yan-Nan Zhang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xin Lu
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zhen-Guo Lu
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Li-Ping Fu
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Nestle U, Le Pechoux C, De Ruysscher D. Evolving target volume concepts in locally advanced non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:1999-2010. [PMID: 34012809 PMCID: PMC8107754 DOI: 10.21037/tlcr-20-805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy (RT) target volume concepts for locally advanced lung cancer have been under discussion for years. Although they may be as important as treatment doses, many aspects of them are still based on conventions, which, due to the paucity of prospective data, rely on long-term practice or on clinical knowledge and experience (e.g., on patterns of spread or recurrence). However, in recent years, large improvements have been made in medical imaging and molecular imaging methods have been implemented, which are of great interest in RT. For lung cancer, in recent years, 18F-fluoro-desoxy-glucose (FDG)-positron-emission tomography (PET)/computed tomography (CT) has shown a superior diagnostic accuracy as compare to conventional imaging and has become an indispensable standard tool for diagnostic workup, staging and response assessment. This offers the chance to optimize target volume concepts in relation to modern imaging. While actual recommendations as the EORTC or ESTRO-ACROP guidelines already include imaging standards, the recently published PET-Plan trial prospectively investigated conventional versus imaging guided target volumes in relation to patient outcome. The results of this trial may help to further refine standards. The current review gives a practical overview on procedures for pre-treatment imaging and target volume delineation in locally advanced non-small cell lung cancer (NSCLC) in synopsis of the procedures established by the PET-Plan trial with the actual EORTC and ACROP guidelines.
Collapse
Affiliation(s)
- Ursula Nestle
- Department of Radiation Oncology, University of Freiburg, Medical Center Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Cecile Le Pechoux
- Department of Radiation Oncology, Gustave Roussy, Institut d'Oncologie Thoracique (IOT), Villejuif, France
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, The Netherlands
| |
Collapse
|
21
|
Adam JA, Loft A, Chargari C, Delgado Bolton RC, Kidd E, Schöder H, Veit-Haibach P, Vogel WV. EANM/SNMMI practice guideline for [ 18F]FDG PET/CT external beam radiotherapy treatment planning in uterine cervical cancer v1.0. Eur J Nucl Med Mol Imaging 2021; 48:1188-1199. [PMID: 33275178 PMCID: PMC8041686 DOI: 10.1007/s00259-020-05112-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/08/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE The aim of this EANM / SNMMI Practice Guideline with ESTRO endorsement is to provide general information and specific considerations about [18F]FDG PET/CT in advanced uterine cervical cancer for external beam radiotherapy planning with emphasis on staging and target definition, mostly in FIGO stages IB3-IVA and IVB, treated with curative intention. METHODS Guidelines from related fields, relevant literature and leading experts have been consulted during the development of this guideline. As this field is rapidly evolving, this guideline cannot be seen as definitive, nor is it a summary of all existing protocols. Local variations should be taken into consideration when applying this guideline. CONCLUSION The background, common clinical indications, qualifications and responsibilities of personnel, procedure / specifications of the examination, documentation / reporting and equipment specifications, quality control and radiation safety in imaging is discussed with an emphasis on the multidisciplinary approach.
Collapse
Affiliation(s)
- Judit A Adam
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Cyrus Chargari
- Brachytherapy Unit, Gustave Roussy, Villejuif, France
- Institut de Recherche Biomédicale des Armées, Bretigny-sur-Orge, France
- French Military Health Academy, Ecole du Val-de-Grâce, Paris, France
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, San Pedro University Hospital and Centre for Biomedical Research of la Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Elisabeth Kidd
- Department of Radiation Oncology, Stanford Cancer Center, Stanford, CA, USA
| | - Heiko Schöder
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Wouter V Vogel
- Department of Nuclear Medicine and Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| |
Collapse
|
22
|
Kashian E, Ahangari HT, Dehlaghi V, Khoshgard K, Ghafarian P, Ghorbani R. Monte Carlo simulation and performance assessment of GE Discovery 690 VCT positron emission tomography/computed tomography scanner. World J Nucl Med 2021; 19:366-375. [PMID: 33623506 PMCID: PMC7875045 DOI: 10.4103/wjnm.wjnm_4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 11/18/2022] Open
Abstract
The aim of this study is to simulate GE Discovery 690 VCT positron emission tomography/computed tomography (PET/CT) scanner using Geant4 Application for Tomographic Emission (GATE) simulation package (version 8). Then, we assess the performance of scanner by comparing measured and simulated parameter results. Detection system and geometry of PET scanner that consists of 13,824 LYSO crystals designed in 256 blocks and 24 ring detectors were modeled. In order to achieve a precise model, we verified scanner model. Validation was based on a comparison between simulation data and experimental results obtained with this scanner in the same situation. Parameters used for validation were sensitivity, spatial resolution, and contrast. Image quality assessment was done based on comparing the contrast recovery coefficient (CRC) of simulated and measured images. The findings demonstrate that the mean difference between simulated and measured sensitivity is <7%. The simulated spatial resolution agreed to within <5.5% of the measured values. Contrast results had a slight divergence within the range below 4%. The image quality validation study demonstrated an acceptable agreement in CRC for 8:1 and 2:1 source-to-background activity ratio. Validated performance parameters showed good agreement between experimental data and simulated results and demonstrated that GATE is a valid simulation tool for simulating this scanner model. The simulated model of this scanner can be used for future studies regarding optimization of image reconstruction algorithms and emission acquisition protocols.
Collapse
Affiliation(s)
- Elham Kashian
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Taleshi Ahangari
- Department of Medical Physics, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Vahab Dehlaghi
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Karim Khoshgard
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raheb Ghorbani
- Department of Social Medicine, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
23
|
Carles M, Fechter T, Radicioni G, Schimek-Jasch T, Adebahr S, Zamboglou C, Nicolay NH, Martí-Bonmatí L, Nestle U, Grosu AL, Baltas D, Mix M, Gkika E. FDG-PET Radiomics for Response Monitoring in Non-Small-Cell Lung Cancer Treated with Radiation Therapy. Cancers (Basel) 2021; 13:cancers13040814. [PMID: 33672052 PMCID: PMC7919471 DOI: 10.3390/cancers13040814] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this study, we strive to identify clinically relevant image feature (IF) changes during chemoradiation in patients with non-small-cell lung cancer (NSCLC) to be able to predict tumor responses in an early stage of treatment. All patients underwent static (3D) and respiratory-gated 4D PET/CT scans before treatment and a 3D scan during or after treatment. Our proposed method rejects IF changes due to intrinsic variability such as noise, resolution and movement through breathing. The IF variability observed across 4D PET is employed as a patient individualized normalization factor to emphasize statistically relevant IF changes during treatment. Abstract The aim of this study is to identify clinically relevant image feature (IF) changes during chemoradiation and evaluate their efficacy in predicting treatment response. Patients with non-small-cell lung cancer (NSCLC) were enrolled in two prospective trials (STRIPE, PET-Plan). We evaluated 48 patients who underwent static (3D) and retrospectively-respiratory-gated 4D PET/CT scans before treatment and a 3D scan during or after treatment. Our proposed method rejects IF changes due to intrinsic variability. The IF variability observed across 4D PET is employed as a patient individualized normalization factor to emphasize statistically relevant IF changes during treatment. Predictions of overall survival (OS), local recurrence (LR) and distant metastasis (DM) were evaluated. From 135 IFs, only 17 satisfied the required criteria of being normally distributed across 4D PET and robust between 3D and 4D images. Changes during treatment in the area-under-the-curve of the cumulative standard-uptake-value histogram (δAUCCSH) within primary tumor discriminated (AUC = 0.87, Specificity = 0.78) patients with and without LR. The resulted prognostic model was validated with a different segmentation method (AUC = 0.83) and in a different patient cohort (AUC = 0.63). The quantification of tumor FDG heterogeneity by δAUCCSH during chemoradiation correlated with the incidence of local recurrence and might be recommended for monitoring treatment response in patients with NSCLC.
Collapse
Affiliation(s)
- Montserrat Carles
- Department of Radiation Oncology, Division of Medical Physics, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (T.F.); (D.B.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg of the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.A.); (C.Z.); (N.H.N.); (U.N.); (A.L.G.); (E.G.)
- La Fe Health Research Institute, Biomedical Imaging Research Group (GIBI230-PREBI) and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), 46026 Valencia, Spain;
- Correspondence:
| | - Tobias Fechter
- Department of Radiation Oncology, Division of Medical Physics, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (T.F.); (D.B.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg of the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.A.); (C.Z.); (N.H.N.); (U.N.); (A.L.G.); (E.G.)
| | - Gianluca Radicioni
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (G.R.); (T.S.-J.)
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (G.R.); (T.S.-J.)
| | - Sonja Adebahr
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg of the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.A.); (C.Z.); (N.H.N.); (U.N.); (A.L.G.); (E.G.)
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (G.R.); (T.S.-J.)
| | - Constantinos Zamboglou
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg of the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.A.); (C.Z.); (N.H.N.); (U.N.); (A.L.G.); (E.G.)
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (G.R.); (T.S.-J.)
| | - Nils H. Nicolay
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg of the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.A.); (C.Z.); (N.H.N.); (U.N.); (A.L.G.); (E.G.)
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (G.R.); (T.S.-J.)
| | - Luis Martí-Bonmatí
- La Fe Health Research Institute, Biomedical Imaging Research Group (GIBI230-PREBI) and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), 46026 Valencia, Spain;
| | - Ursula Nestle
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg of the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.A.); (C.Z.); (N.H.N.); (U.N.); (A.L.G.); (E.G.)
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (G.R.); (T.S.-J.)
- Department of Radiation Oncology, Kliniken Maria Hilf, GmbH Moenchengladbach, 41063 Moechengladbach, Germany
| | - Anca L. Grosu
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg of the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.A.); (C.Z.); (N.H.N.); (U.N.); (A.L.G.); (E.G.)
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (G.R.); (T.S.-J.)
| | - Dimos Baltas
- Department of Radiation Oncology, Division of Medical Physics, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (T.F.); (D.B.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg of the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.A.); (C.Z.); (N.H.N.); (U.N.); (A.L.G.); (E.G.)
| | - Michael Mix
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany;
| | - Eleni Gkika
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg of the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.A.); (C.Z.); (N.H.N.); (U.N.); (A.L.G.); (E.G.)
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (G.R.); (T.S.-J.)
| |
Collapse
|
24
|
Pellegrino S, Fonti R, Pulcrano A, Del Vecchio S. PET-Based Volumetric Biomarkers for Risk Stratification of Non-Small Cell Lung Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11020210. [PMID: 33573333 PMCID: PMC7911597 DOI: 10.3390/diagnostics11020210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Despite the recent advances in lung cancer biology, molecular pathology, and treatment, this malignancy remains the leading cause of cancer-related death worldwide and non-small cell lung cancer (NSCLC) is the most common form found at diagnosis. Accurate staging of the disease is a fundamental prognostic factor that correctly predicts progression-free (PFS) and overall survival (OS) of NSCLC patients. However, outcome of patients within each TNM staging group can change widely highlighting the need to identify additional prognostic biomarkers to better stratify patients on the basis of risk. 18F-FDG PET/CT plays an essential role in staging, evaluation of treatment response, and tumoral target delineation in NSCLC patients. Moreover, a number of studies showed the prognostic role of imaging parameters derived from PET images, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG). These parameters represent three-dimensional PET-based measurements providing information on both tumor volume and metabolic activity and previous studies reported their ability to predict OS and PFS of NSCLC patients. This review will primarily focus on the studies that showed the prognostic and predictive role of MTV and TLG in NSCLC patients, addressing also their potential utility in the new era of immunotherapy of NSCLC.
Collapse
Affiliation(s)
- Sara Pellegrino
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy; (S.P.); (A.P.)
| | - Rosa Fonti
- Institute of Biostructures and Bioimages, National Research Council, 80145 Naples, Italy;
| | - Alessandro Pulcrano
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy; (S.P.); (A.P.)
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy; (S.P.); (A.P.)
- Correspondence: ; Tel.: +39-081-7463307; Fax: +39-081-5457081
| |
Collapse
|
25
|
Subramaniam N, Poptani H, Schache A, Bhat V, Iyer S, Sunil HV, Chandrasekhar N, Pillai V, Chaturvedi P, Krishna S, Krishnamurthy A, Kekatpure V, Kuriakose M, Iyer NG, Thakkar A, Kantharia R, Sonkar A, Shetty V, Rangappa V, Kolur T, Vidhyadharan S, Murthy S, Kudpaje A, Srinivasalu V, Mahajan A. Imaging advances in oral cavity cancer and perspectives from a population in need: Consensus from the UK-India oral cancer imaging group. JOURNAL OF HEAD & NECK PHYSICIANS AND SURGEONS 2021. [DOI: 10.4103/jhnps.jhnps_10_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Zhou Z, Maquilan GM, Thomas K, Wachsmann J, Wang J, Folkert MR, Albuquerque K. Quantitative PET Imaging and Clinical Parameters as Predictive Factors for Patients With Cervical Carcinoma: Implications of a Prediction Model Generated Using Multi-Objective Support Vector Machine Learning. Technol Cancer Res Treat 2020; 19:1533033820983804. [PMID: 33357081 PMCID: PMC7768874 DOI: 10.1177/1533033820983804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purpose: Quantitative features from pre-treatment positron emission tomography (PET) have been used to predict treatment outcomes for patients with cervical carcinoma. The purpose of this study is to use quantitative PET imaging features and clinical parameters to construct a multi-objective machine learning predictive model. Materials/Methods: Seventy-five patients with stage IB2-IVA disease treated at our institution from 2009–2012 were analyzed. Models predicting locoregional and distant failure were generated using clinical parameters (age, race, stage, histology, tumor size, nodal status) and imaging features (12 textural, 9 intensity, 8 geometric features, 2 additional imaging features) from pre-treatment PET. Model features were selected based on a multi-objective evolutionary algorithm to maximize specificity given a fixed moderately high sensitivity using support vector machine learning methods. Model 1 used clinical parameters only (C), Model 2 used imaging features only (I), and Model 3 used clinical and imaging features (C+I). Sensitivity, specificity, area under a receiver-operating characteristic curve (AUC), and p-values were compared to assess ability to predict locoregional and distant failure. Results: C+I had the highest performance for both locoregional failure (AUC 0.84, p < 0.01; specificity: 0.86; sensitivity: 0.79) and distant failure (AUC 0.75, p < 0.01; specificity: 0.75; sensitivity: 0.75). Conclusions: Based on a moderately high fixed sensitivity and optimized for specificity, the model using both clinical parameters and imaging features (C+I) had the best performance in predicting both locoregional failure and distant failure.
Collapse
Affiliation(s)
- Zhiguo Zhou
- School of Computer Science and Mathematics, University of Central Missouri, MO, USA
| | - Genevieve M Maquilan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly Thomas
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Wachsmann
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael R Folkert
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Albuquerque
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Mancosu P, Signori C, Clerici E, Comito T, D'Agostino GR, Franceschini D, Franzese C, Lobefalo F, Navarria P, Paganini L, Reggiori G, Tomatis S, Scorsetti M. Critical Re-Evaluation of a Failure Mode Effect Analysis in a Radiation Therapy Department After 10 Years. Pract Radiat Oncol 2020; 11:e329-e338. [PMID: 33197646 DOI: 10.1016/j.prro.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Failure mode effect analysis (FMEA) is a proactive methodology that allows one to analyze a process, regardless of whether an adverse event occurs. In our radiation therapy (RT) department, a first FMEA was performed in 2009. In this paper we critically re-evaluate the RT process after 10 years and present it in terms of a lesson learned. METHODS AND MATERIALS A working group (WG), led by a qualified clinical risk engineer, which included radiation oncologists, physicists, a radiation therapist, and a nurse, evaluated the possible failure modes (FMs) of the RT process. For each FM, the estimated frequency of occurrence (O, range 1-4), the expected severity of the damage (S, range 1-5), and the detectability lack (D, range 1-4) were scored. A risk priority number (RPN) was obtained as RPN = OxSxD. The data were compared with the 2009 edition. RESULTS In the 2020 analysis, 67 FMs were identified (27 in the 2009 series). The absolute risk values of the previous 3 highest FMs were generally reduced. The patient identification risk (highest value in the 2009 analysis) was reduced from 48.0 to 6.9, becoming the 51st RPN score, thanks to a patient barcode recognition within the bunker. The 2020 highest risk values regarded: (i-2020) the patient's inadequate recollection and reporting of his/her medical history (ie, anamnesis) during the first medical examination and (ii-2020) the incorrect interpretation of tumor and normal tissue in computed tomography images. The WG proposed corrective actions. CONCLUSIONS In this single institution experience, the 10-year FMEA analysis showed a reduction in the previous higher RPN values thanks to the corrective actions taken. The new FMs and subsequent RPNs reveal the need for a continuous iterative improvement process.
Collapse
Affiliation(s)
- Pietro Mancosu
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
| | - Chiara Signori
- Risk Management Unit, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Elena Clerici
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Tiziana Comito
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | | | - Davide Franceschini
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Ciro Franzese
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Francesca Lobefalo
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Piera Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Lucia Paganini
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Giacomo Reggiori
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Stefano Tomatis
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
28
|
Jensen K, Al-Farra G, Dejanovic D, Eriksen JG, Loft A, Hansen CR, Pameijer FA, Zukauskaite R, Grau C. Imaging for Target Delineation in Head and Neck Cancer Radiotherapy. Semin Nucl Med 2020; 51:59-67. [PMID: 33246540 DOI: 10.1053/j.semnuclmed.2020.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The definition of tumor involved volumes in patients with head and neck cancer poses great challenges with the increasing use of highly conformal radiotherapy techniques eg, volumetric modulated arc therapy and intensity modulated proton therapy. The risk of underdosing the tumor might increase unless great care is taken in the process. The information gained from imaging is increasing with both PET and MRI becoming readily available for the definition of targets. The information gained from these techniques is indeed multidimensional as one often acquire data on eg, metabolism, diffusion, and hypoxia together with anatomical and structural information. Nevertheless, much work remains to fully exploit the available information on a patient-specific level. Multimodality target definition in radiotherapy is a chain of processes that must be individually scrutinized, optimized and quality assured. Any uncertainties or errors in image acquisition, reconstruction, interpretation, and delineation are systematic errors and hence will potentially have a detrimental effect on the entire radiotherapy treatment and hence; the chance of cure or the risk of unnecessary side effects. Common guidelines and procedures create a common minimum standard and ground for evaluation and development. In Denmark, the treatment of head and neck cancer is organized within the multidisciplinary Danish Head and Neck Cancer Group (DAHANCA). The radiotherapy quality assurance group of DAHANCA organized a workshop in January 2020 with participants from oncology, radiology, and nuclear medicine from all centers in Denmark, treating patients with head and neck cancer. The participants agreed on a national guideline on imaging for target delineation in head and neck cancer radiotherapy, which has been approved by the DAHANCA group. The guidelines are available in the Supplementary. The use of multimodality imaging is being recommended for the planning of all radical treatments with a macroscopic tumor. 2-[18F]FDG-PET/CT should be available, preferable in the treatment position. The recommended MRI sequences are T1, T2 with and without fat suppression, and T1 with contrast enhancement, preferable in the treatment position. The interpretation of clinical information, including thorough physical examination as well as imaging, should be done in a multidisciplinary setting with an oncologist, radiologist, and nuclear medicine specialist.
Collapse
Affiliation(s)
- Kenneth Jensen
- Danish Center for Particle Therapy. Aarhus University Hospital, Denmark.
| | - Gina Al-Farra
- Department of Radiology, Herlev and Gentofte Hospital, Denmark
| | - Danijela Dejanovic
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Denmark
| | | | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Christian R Hansen
- Laboratory of Radiation Physics, Odense University Hospital, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Danish Center for Particle Therapy. Aarhus University Hospital, Denmark
| | - Frank A Pameijer
- Department of Radiology, University Medical Center Utrecht, the Netherlands
| | - Ruta Zukauskaite
- Department of Oncology, Odense University Hospital, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Cai Grau
- Danish Center for Particle Therapy. Aarhus University Hospital, Denmark
| |
Collapse
|
29
|
Vergalasova I, Cai J. A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy. Med Phys 2020; 47:e988-e1008. [PMID: 32506452 DOI: 10.1002/mp.14312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy has become a critical component for the treatment of all stages and types of lung cancer, often times being the primary gateway to a cure. However, given that radiation can cause harmful side effects depending on how much surrounding healthy tissue is exposed, treatment of the lung can be particularly challenging due to the presence of moving targets. Careful implementation of every step in the radiotherapy process is absolutely integral for attaining optimal clinical outcomes. With the advent and now widespread use of stereotactic body radiation therapy (SBRT), where extremely large doses are delivered, accurate, and precise dose targeting is especially vital to achieve an optimal risk to benefit ratio. This has largely become possible due to the rapid development of image-guided technology. Although imaging is critical to the success of radiotherapy, it can often be plagued with uncertainties due to respiratory-induced target motion. There has and continues to be an immense research effort aimed at acknowledging and addressing these uncertainties to further our abilities to more precisely target radiation treatment. Thus, the goal of this article is to provide a detailed review of the prevailing uncertainties that remain to be investigated across the different imaging modalities, as well as to highlight the more modern solutions to imaging motion and their role in addressing the current challenges.
Collapse
Affiliation(s)
- Irina Vergalasova
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
30
|
Subramanyam P, Palaniswamy SS, Numani SP. Precision Radiotherapy: 18F-FDG PET-based radiotherapy planning in Head and Neck cancers. World J Nucl Med 2020; 19:197-204. [PMID: 33354173 PMCID: PMC7745861 DOI: 10.4103/wjnm.wjnm_91_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/25/2020] [Accepted: 02/09/2020] [Indexed: 11/18/2022] Open
Abstract
Precision medicine is gaining importance in this era of molecular imaging where the molecular features of a disease can be noninvasively assessed and treated with personalized medicine. This is especially suited for head and neck cancers (HNCa). Early stage HNCa are ideally managed with radiotherapy (RT) or surgery. Head and neck (HN) is a complex region and its tumors respond to RT differently due to dissimilar structures and moving organs such as tongue. Radiation oncologists are always in the process of trying and investigating newer RT techniques in order to achieve precise and targetted therapy to tumour/s. One such innovation is Intensity modulated RT (IMRT) using 3 Dimensional conformal RT (3DCRT). This 3DCRT resizes the radiation beams to match the shape of the tumor. Such focused dose escalation may improve local control in HNCa. Image guided RT in conjunction with IMRT is the most advanced form of RT planning being used these days. Simulation computerized tomography (CT) images are usually incorporated into RT planning module. But limitations of CT such as poor soft tissue contrast than magnetic resonance imaging and inability to clearly define solid / cystic / necrotic areas and viable tumour exist. Functional imaging such as Positron Emission Tomography (PET) has established its superiority over CT in delineating the actual site and extent of HN tumors. A combination of IMRT with BTV (Biological Tumour Volume) may be the most ideal technique to deliver a homogeneous radiation boost to tumour. This review shall discuss PET based RT planning, challenges, practical tips, and how to optimize therapy with the least side effects to the normal surrounding tissues.
Collapse
Affiliation(s)
- Padma Subramanyam
- Department of Nuclear Medicine and Molecular Imaging, Amrita Institute of Medical Sciences and Research Center, Cochin, Kerala, India
| | - Shanmuga Sundaram Palaniswamy
- Department of Nuclear Medicine and Molecular Imaging, Amrita Institute of Medical Sciences and Research Center, Cochin, Kerala, India
| | - Shah Pervez Numani
- Department of Nuclear Medicine, Hamad Medical Corporation Hospitals, Doha, Qatar
| |
Collapse
|
31
|
Impact of positron emission tomography with computed tomography for image-guided radiotherapy. Cancer Radiother 2020; 24:362-367. [PMID: 32284178 DOI: 10.1016/j.canrad.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/27/2022]
Abstract
Therapeutic effectiveness in radiotherapy is partly related to correct staging of the disease and then precise therapeutic targeting. Positron emission tomography (PET) allows the stage of many cancers to be determined and therefore is essential before deciding on radiation treatment. The definition of the therapeutic target is essential to obtain correct tumour control and limit side effects. The part of adaptive radiotherapy remains to be defined, but PET by its functional nature makes it possible to define the prognosis of many cancers and to consider radiotherapy adapted to the initial response allowing an increase over the entire metabolic volume, or targeted at a subvolume at risk per dose painting, or with a decrease in the dose in case of good response at interim assessment.
Collapse
|
32
|
Song YQ, Wang N, Qiao Y, He L, Li X, Zhang XF, Yang QK, Wang RZ, He R, Wang CY, Ren YW, Li G, Wang TL. Treatment patterns and survival after 18F-fluorodeoxyglucose positron emission tomography/computed tomography-guided local consolidation therapy for oligometastatic non-small cell lung cancer: a two-center propensity score-matched analysis. J Cancer Res Clin Oncol 2020; 146:1021-1031. [PMID: 31980929 PMCID: PMC7085469 DOI: 10.1007/s00432-020-03134-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/16/2020] [Indexed: 12/28/2022]
Abstract
Purpose In this retrospective study, we evaluated the treatment patterns and survival after positron emission tomography-computed tomography (PET/CT)-guided local consolidation therapy (LCT) for oligometastatic non-small cell lung cancer (NSCLC). Methods We reviewed the medical records of Chinese patients with oligometastatic stage IV non-small cell lung cancer (≤ 5 metastases) who had undergone PET/CT and were eligible for systemic therapy at two centers between May 2005 and August 2019. Propensity score matching (1:1) was used to reduce selection bias and imbalanced distribution of confounding factors. Results We identified 84 eligible patients and used propensity scores to create well-matched groups of 35 patients who did or did not undergo LCT. Among all patients, the 1-year overall survival (OS) rate was 47.6% and the 2-year OS rate was 22.6%. Relative to the group that did not receive LCT, the LCT group had a significantly higher OS rate (13 months vs. 7 months, p = 0.002). The two groups had similar incidences and classifications of LCT-related side effects. In multivariable analysis, LCT was found to be strongly associated with a favorable OS (hazard ratio: 0.508, 95% confidence interval: 0.311–0.828, p = 0.001). Conclusion We concluded that LCT was significantly associated with improved clinical outcomes among the Chinese patients with oligometastatic NSCLC who were eligible for systemic treatment and could undergo PET/CT evaluation.
Collapse
Affiliation(s)
- Ying-Qiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning China
| | - Nan Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning China
| | - Yun Qiao
- Department of Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning China
| | - Lei He
- Physical Laboratory in Charge, Department of Radiotherapy Department, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning China
| | - Xia Li
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning China
| | | | - Qian-Kun Yang
- Department of Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning China
| | - Run-Ze Wang
- Chengdu Medical College, Chengdu, Sichuan China
| | - Rong He
- Department of Cerebral Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning China
| | - Chen-Yu Wang
- Department of Information Management, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning China
| | - Yang-Wu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Guang Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning China
| | - Tian-Lu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning China
| |
Collapse
|
33
|
Filice A, Casali M, Ciammella P, Galaverni M, Fioroni F, Iotti C, Versari A. Radiotherapy Planning and Molecular Imaging in Lung Cancer. Curr Radiopharm 2020; 13:204-217. [PMID: 32186275 PMCID: PMC8206193 DOI: 10.2174/1874471013666200318144154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/11/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In patients suitable for radical chemoradiotherapy for lung cancer, 18F-FDGPET/ CT is a proposed management to improve the accuracy of high dose radiotherapy. However, there is a high rate of locoregional failure in patients with locally advanced non-small cell lung cancer (NSCLC), probably due to the fact that standard dosing may not be effective in all patients. The aim of the present review was to address some criticisms associated with the radiotherapy image-guided in NSCLC. MATERIALS AND METHODS A systematic literature search was conducted. Only published articles that met the following criteria were included: articles, only original papers, radiopharmaceutical ([18F]FDG and any tracer other than [18F]FDG), target, only specific for lung cancer radiotherapy planning, and experimental design (eventually "in vitro" studies were excluded). Peer-reviewed indexed journals, regardless of publication status (published, ahead of print, in press, etc.) were included. Reviews, case reports, abstracts, editorials, poster presentations, and publications in languages other than English were excluded. The decision to include or exclude an article was made by consensus and any disagreement was resolved through discussion. RESULTS Hundred eligible full-text articles were assessed. Diverse information is now available in the literature about the role of FDG and new alternative radiopharmaceuticals for the planning of radiotherapy in NSCLC. In particular, the role of alternative technologies for the segmentation of FDG uptake is essential, although indeterminate for RT planning. The pros and cons of the available techniques have been extensively reported. CONCLUSION PET/CT has a central place in the planning of radiotherapy for lung cancer and, in particular, for NSCLC assuming a substantial role in the delineation of tumor volume. The development of new radiopharmaceuticals can help overcome the problems related to the disadvantage of FDG to accumulate also in activated inflammatory cells, thus improving tumor characterization and providing new prognostic biomarkers.
Collapse
Affiliation(s)
- Angelina Filice
- Address correspondence to this author at the Nuclear Medicine Unit, Azienda Unità Sanitaria Locale, Istituto di Ricovero e Cura a Carattere Scientifico, Reggio Emilia, Italy; E-mail:
| | | | | | | | | | | | | |
Collapse
|
34
|
PET in Gastrointestinal, Pancreatic, and Liver Cancers. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Fennell JT, Gkika E, Grosu AL. Molecular Imaging in Photon Radiotherapy. Recent Results Cancer Res 2020; 216:845-863. [PMID: 32594409 DOI: 10.1007/978-3-030-42618-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, more than ever before, the treatment of cancer patients requires an interdisciplinary approach more than ever. Radiation therapy (RT) has become an indispensable pillar of cancer treatment early on, offering a local, curative treatment option and symptom control in palliative cases.
Collapse
Affiliation(s)
| | - Eleni Gkika
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Ampil F, Previgliano C, Porter C, Richards T, Takalkar A. Metachronous mediastinal and lung metastases from head and neck cancer: A case series, literature review and considerations for treatment. Oral Oncol 2019; 102:104518. [PMID: 31862239 DOI: 10.1016/j.oraloncology.2019.104518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
Abstract
Metachronous mediastinal and lung metastases (MMLM), important sources of morbidity and mortality, in people with head and neck cancer (HNC) have received little attention. Between 1980 and 2004, 37 patients with treated HNC and MMLM diagnosed on follow-up imaging (with histological confirmation in 14 cases) were identified. The median interval from diagnosis of HNC to the appearance of MMLM was 14.5 months. The overall median survival was 4 months, and the 1-year crude survival rate (CSR) was 16%. A meaningful difference in the 1-year CSRs between the palliative radiation treated and untreated subjects (39% and 4%, respectively, p < 0.01) was observed. Because associated costs of health care utilization are considerable, and yet survival is limited, optimum management of MMLM-HNC with improvement of prognosis remains a challenge.
Collapse
Affiliation(s)
- Federico Ampil
- Department of Radiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, USA.
| | - Carlos Previgliano
- Department of Radiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, USA
| | - Carrie Porter
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, USA
| | - Troy Richards
- Department of Radiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, USA
| | - Amol Takalkar
- Department of Radiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, USA
| |
Collapse
|
37
|
Pike LC, Thomas CM, Guerrero-Urbano T, Michaelidou A, Greener T, Miles E, Eaton D, Barrington SF. Guidance on the use of PET for treatment planning in radiotherapy clinical trials. Br J Radiol 2019; 92:20190180. [PMID: 31437023 PMCID: PMC6849663 DOI: 10.1259/bjr.20190180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this article is to propose meaningful guidance covering the practical and technical issues involved when planning or conducting clinical trials involving positron emission tomography (PET)-guided radiotherapy. The complexity of imaging requirements will depend on the study aims, design and PET methods used. Where PET is used to adapt radiotherapy, a high level of accuracy and reproducibility is required to ensure effective and safe treatment delivery. The guidance in this document is intended to assist researchers designing clinical trials involving PET-guided radiotherapy to provide sufficient information about the appropriate methods to complete PET-CT imaging to a consistent standard at participating centres. The guidance is divided into six categories: application of PET in radiotherapy, resource requirements, quality assurance, imaging protocol design, data management and image processing. Each section provides an overview of the recent literature to support the specific recommendations. This guidance builds on previous recommendations from the National Cancer Research Institute PET Research Network and has been produced in collaboration with the National Radiotherapy Trials Quality Assurance Group.
Collapse
Affiliation(s)
- Lucy C Pike
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, King’s Health Partners, London, UK
| | | | | | | | - Tony Greener
- Radiotherapy Physics, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Elizabeth Miles
- National Radiotherapy Trials QA Group, Mount Vernon Hospital, Northwood, UK
| | | | - Sally F Barrington
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, King’s Health Partners, London, UK
| |
Collapse
|
38
|
Das SK, McGurk R, Miften M, Mutic S, Bowsher J, Bayouth J, Erdi Y, Mawlawi O, Boellaard R, Bowen SR, Xing L, Bradley J, Schoder H, Yin FF, Sullivan DC, Kinahan P. Task Group 174 Report: Utilization of [ 18 F]Fluorodeoxyglucose Positron Emission Tomography ([ 18 F]FDG-PET) in Radiation Therapy. Med Phys 2019; 46:e706-e725. [PMID: 31230358 DOI: 10.1002/mp.13676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 02/03/2023] Open
Abstract
The use of positron emission tomography (PET) in radiation therapy (RT) is rapidly increasing in the areas of staging, segmentation, treatment planning, and response assessment. The most common radiotracer is 18 F-fluorodeoxyglucose ([18 F]FDG), a glucose analog with demonstrated efficacy in cancer diagnosis and staging. However, diagnosis and RT planning are different endeavors with unique requirements, and very little literature is available for guiding physicists and clinicians in the utilization of [18 F]FDG-PET in RT. The two goals of this report are to educate and provide recommendations. The report provides background and education on current PET imaging systems, PET tracers, intensity quantification, and current utilization in RT (staging, segmentation, image registration, treatment planning, and therapy response assessment). Recommendations are provided on acceptance testing, annual and monthly quality assurance, scanning protocols to ensure consistency between interpatient scans and intrapatient longitudinal scans, reporting of patient and scan parameters in literature, requirements for incorporation of [18 F]FDG-PET in treatment planning systems, and image registration. The recommendations provided here are minimum requirements and are not meant to cover all aspects of the use of [18 F]FDG-PET for RT.
Collapse
Affiliation(s)
- Shiva K Das
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ross McGurk
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - James Bowsher
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - John Bayouth
- Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Yusuf Erdi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Osama Mawlawi
- Department of Imaging Physics, University of Texas, M D Anderson Cancer Center, Houston, TX, USA
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey Bradley
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heiko Schoder
- Molecular Imaging and Therapy Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Daniel C Sullivan
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Paul Kinahan
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Fiorentino A, Laudicella R, Ciurlia E, Annunziata S, Lancellotta V, Mapelli P, Tuscano C, Caobelli F, Evangelista L, Marino L, Quartuccio N, Fiore M, Borghetti P, Chiaravalloti A, Ricci M, Desideri I, Alongi P. Positron emission tomography with computed tomography imaging (PET/CT) for the radiotherapy planning definition of the biological target volume: PART 2. Crit Rev Oncol Hematol 2019; 139:117-124. [PMID: 30940428 DOI: 10.1016/j.critrevonc.2019.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
AIM Positron Emission Tomography with Computed Tomography (PET/CT) has been proven to be useful in the definition of Radiotherapy (RT) target volume. In this regard, the present expert review summarizes existing data for pancreas, prostate, gynecological and rectum/anal cancer. METHODS A comprehensive search of published original article was made, based on SCOPUS and PubMed database, selecting the paper that evaluated the role of PET/CT in the definition of RT volume. RESULTS FDG-PET has an important and promising role for pancreatic cancer. Choline PET/CT could be useful for identifying high-risk volumes for prostate cancer; while PSMA PET/CT is still under evaluation. FDG PET/CT in gynecological cancers has been shown to impact external-beam RT planning. The role of FDG-PET for Gross Tumor volume identification is crucial, representing a useful and powerful tool for anal and rectal cancer. CONCLUSION Taken together, molecular and functional imaging approaches offer a major step to individualize radiotherapeutic approach.
Collapse
Affiliation(s)
- Alba Fiorentino
- Radiotherapy Oncology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti-Bari, Italy.
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina, Italy
| | - Elisa Ciurlia
- Radiotherapy Oncology Department, Vito Fazzi Hospital, Lecce, Italy
| | - Salvatore Annunziata
- Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, Roma, Italy
| | - Valentina Lancellotta
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Roma, Italy
| | - Paola Mapelli
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmelo Tuscano
- Radiotherapy Oncology Department, Azienda Ospedaliera Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Federico Caobelli
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura Evangelista
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lorenza Marino
- Radiotherapy Oncology Department, REM, Viagrande, Catania, Italy
| | | | - Michele Fiore
- Radiation Oncology, Campus Bio-Medico University, Rome, Italy
| | - Paolo Borghetti
- Radiation Oncology Department University and Spedali Civili, Brescia, Italy
| | - Agostino Chiaravalloti
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Maria Ricci
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Italy
| | - Pierpaolo Alongi
- Department of Radiological Sciences, Nuclear Medicine Service, Fondazione Istituto G. Giglio, Cefalu, Italy
| | | |
Collapse
|
40
|
The Optimal Use of Imaging in Radiation Therapy for Lymphoma: Guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int J Radiat Oncol Biol Phys 2019; 104:501-512. [DOI: 10.1016/j.ijrobp.2019.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/21/2022]
|
41
|
PET/MRI-guided GTV delineation during radiotherapy planning in patients with squamous cell carcinoma of the tongue. Strahlenther Onkol 2019; 195:780-791. [PMID: 31214735 PMCID: PMC6704108 DOI: 10.1007/s00066-019-01480-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/30/2019] [Indexed: 01/17/2023]
Abstract
Purpose The aim of the study was to evaluate the usefulness and accuracy of 18-fluorine-labeled fluorodeoxyglucose (PET) and magnetic resonance imaging (MRI) hybrid in gross tumor volume (GTV) delineation during radiotherapy planning in patients with carcinoma of the tongue. Methods Ten patients with squamous cell carcinoma (SCC) of the tongue underwent computed tomography (CT) and PET/MRI examination. The GTV for primary tumor and lymph nodes (nGTV) were defined on CT (GTV-CT) and compared to GTVs obtained from PET (GTV-PET) and MRI (GTV-MRI) images. Two methods of GTV determination were used: visual interpretation of CT, PET (GTV-PETvis) and MRI images and quantitative automatic method (Syngovia, Siemens) based on a chosen threshold value (20%, 30%, 40%, 50%) of standardized uptake values (SUVmax) from PET examination (GTV-PET20%, GTV-PET30%, etc.). Statistical analysis of differences in GTV values obtained from CT, PET and MRI studies was performed. GTV-CT was used as a reference. Results In all, 80% of GTV-MRI and 40% of GTV-PETvis were larger than GTV-CT. Respectively, 20% of GTV-MRI and 60% of GTV-PETvis were smaller than GTV-CT. Taking into account all threshold measurements, 70% of volumes were smaller than GTV-CT. GTV-PET30% were the most closely related volumes to GTV-CT from all threshold methods in 50% of patients. GTV-PETvis generated the most similar volumes in relation to GTV-CT from all PET measurements. Statistical analysis confirmed those results. Compared to nGTV-CT, 70% of nGTV-MRI and 20% of nGTV-PETvis were larger. The remaining nGTV-MRI and nGTV-PETvis measurements were smaller than nGTV-CT. Measurements of all thresholds nGTVs were smaller than nGTV-CTV in 52.5% of cases. nGTV-PET20% were the most closely related volumes to nGTV-CT in 40% of the cases. Statistical analysis showed that nGTV-PET20% (p = 0.0468), nGTV-PETvis (p = 0.0166), and nGTV-PET50% (p = 0.0166) diverge significantly from nGTV-CT results. nGTV-MRI (p = 0.1141), nGTV-PET30% (p = 0.2845), and nGTV-PET40% (p = 0.5076) were significantly related with nGTV-CT. Conclusion Combination of PET/MRI provides more information during target tumor mass delineation in radiotherapy planning of patients with SCC of the tongue than other standard imaging methods. The most frequently matching threshold value was 30% of SUVmax for primary tumor delineation and 30–40% of SUVmax for nGTV determination. Electronic supplementary material The online version of this article (10.1007/s00066-019-01480-3) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Lee KA, Rangaswamy G, Lavan NA, Dunne M, Collins CD, Small C, Thirion P. ICORG 06-35: a prospective evaluation of PET-CT scan in patients with non-operable or non-resectable non-small cell lung cancer treated by radical 3-dimensional conformal radiation therapy: a phase II study. Ir J Med Sci 2019; 188:1155-1161. [PMID: 31062176 DOI: 10.1007/s11845-019-02019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/09/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Radiotherapy (RT) is a key treatment modality in the curative treatment of patients with non-small cell lung cancer (NSCLC). Incorrect definition of the gross, or clinical, target volume is a common source of error which can lead to a reduced probability of tumour control. OBJECTIVE This was a pilot and a phase II study. The pilot evaluated the technical feasibility of integrating positron emission tomography-computed tomography (PET-CT) fusion. The primary outcome of the phase II study was to evaluate the safety of PET-CT scan-based RT by evaluating the rate of loco-regional recurrence outside the PET-CT planning target volume (PTV) but within conventional 3-D PTV. METHODS Patients underwent standard post-treatment follow-up, including repeated three monthly CT scans of the thorax. In case of loco-regional recurrence, three categories were considered, with only extra-PET scan PTV and intra-CT scan PTV recurrences considered as a failure. Our hypothesis was that the rate of these events would be < 10%. RESULTS Twelve patients were recruited; the study closed early due to poor recruitment. The primary endpoint of the pilot was met; it was feasible to deliver a PET-CT-based plan to ≥ 60% of patients. Two patients had intra-PET scan PTV recurrences, six had extra-PET scan PTV and extra-CT, and three patients had both. Another patient had extra-PET scan PTV and extra-CT as well as extra-PET scan PTV and intra-CT scan PTV recurrence. CONCLUSION/ADVANCES IN KNOWLEDGE PET-based planning has the potential to reduce radiation treatment volumes because of the avoidance of mediastinal lymph nodes that are PET negative.
Collapse
Affiliation(s)
- Karla A Lee
- St Luke's Radiation Oncology Network, Radiation Oncology, Dublin, Ireland. .,The Royal Marsden NHS Foundation Trust, Fulham Rd, London, SW3 6JJ, UK.
| | - Guhan Rangaswamy
- St Luke's Radiation Oncology Network, Radiation Oncology, Dublin, Ireland
| | - Naomi A Lavan
- St Luke's Radiation Oncology Network, Radiation Oncology, Dublin, Ireland
| | - Mary Dunne
- Clinical Trials, St Luke's Radiation Oncology Network, Dublin, Ireland
| | - Conor D Collins
- Department of Diagnostic Imaging St. Luke's Hospital and Department of Nuclear Medicine, Blackrock Clinic, Dublin, Ireland
| | - Cormac Small
- Radiation Oncology, Galway University Hospital, Galway, Ireland
| | - Pierre Thirion
- St Luke's Radiation Oncology Network, Radiation Oncology, Dublin, Ireland.,Cancer Trials Ireland, Dublin, Ireland
| |
Collapse
|
43
|
Beaton L, Bandula S, Gaze MN, Sharma RA. How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer 2019; 120:779-790. [PMID: 30911090 PMCID: PMC6474267 DOI: 10.1038/s41416-019-0412-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
Imaging has an essential role in the planning and delivery of radiotherapy. Recent advances in imaging have led to the development of advanced radiotherapy techniques—including image-guided radiotherapy, intensity-modulated radiotherapy, stereotactic body radiotherapy and proton beam therapy. The optimal use of imaging might enable higher doses of radiation to be delivered to the tumour, while sparing normal surrounding tissues. In this article, we review how the integration of existing and novel forms of computed tomography, magnetic resonance imaging and positron emission tomography have transformed tumour delineation in the radiotherapy planning process, and how these advances have the potential to allow a more individualised approach to the cancer therapy. Recent data suggest that imaging biomarkers that assess underlying tumour heterogeneity can identify areas within a tumour that are at higher risk of radio-resistance, and therefore potentially allow for biologically focussed dose escalation. The rapidly evolving concept of adaptive radiotherapy, including artificial intelligence, requires imaging during treatment to be used to modify radiotherapy on a daily basis. These advances have the potential to improve clinical outcomes and reduce radiation-related long-term toxicities. We outline how recent technological advances in both imaging and radiotherapy delivery can be combined to shape the future of precision radiation oncology.
Collapse
Affiliation(s)
- Laura Beaton
- Cancer Institute, University College London, London, UK
| | - Steve Bandula
- Cancer Institute, University College London, London, UK.,NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, University College London, London, UK
| | - Mark N Gaze
- NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, University College London, London, UK
| | - Ricky A Sharma
- Cancer Institute, University College London, London, UK. .,NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
44
|
Zhang B, Xu C, Sun C, Yu C. Polyphosphoester-Based Nanocarrier for Combined Radio-Photothermal Therapy of Breast Cancer. ACS Biomater Sci Eng 2019; 5:1868-1877. [PMID: 33405560 DOI: 10.1021/acsbiomaterials.9b00051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recently, clinical research on tumor therapy has gradually shifted from traditional monotherapy toward combination therapy as tumors are complex, diverse, and heterogeneous. Combination therapy may be essential for achieving the optimized treatment efficacy of tumors through distinct tumor-inhibiting mechanisms. At the same time, nanocarriers are emerging as an excellent strategy for delivering both drugs simultaneously. This work presents utilization of a polyphosphoester-based nanocarrier (NPIR/Cur) to achieve the codelivery of hydrophobic photothermal agent IR-780 and radiosensitizer curcumin (Cur). The IR-780 and curcumin coencapsulated NPIR/Cur exhibited adequate drug loading, a prolonged blood half-life, enhanced passive tumor homing, and improved curcumin bioavailability as well as combined therapeutic functions. Briefly, NPIR/Cur could not only achieve effective thermal ablation through the conversion of near-infrared light to heat, but also give rise to a significant boosted local radiation dose to trigger promoted radiation damages, thus resulting in enhanced tumor cell growth inhibition. In conclusion, the as-prepared NPIR/Cur manifested excellent performance in facilitating combined photothermal and radiation therapy, thus expanding the application range of PPE-based carriers in nanomedicine, and also prompting exploration of their potential for other effective combination therapies.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Congfei Xu
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guandong 510006, P. R. China
| | - Chunyang Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P.R. China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
45
|
Prasad A, Visweswaran S, Kanagaraj K, Raavi V, Arunan M, Venkatachalapathy E, Paneerselvam S, Jose M, Ozhimuthu A, Perumal V. 18F-FDG PET/CT scanning: Biological effects on patients: Entrance surface dose, DNA damage, and chromosome aberrations in lymphocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 838:59-66. [DOI: 10.1016/j.mrgentox.2018.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/29/2022]
|
46
|
Donche S, Verhoeven J, Descamps B, Bolcaen J, Deblaere K, Boterberg T, Van den Broecke C, Vanhove C, Goethals I. The Path Toward PET-Guided Radiation Therapy for Glioblastoma in Laboratory Animals: A Mini Review. Front Med (Lausanne) 2019; 6:5. [PMID: 30761302 PMCID: PMC6361864 DOI: 10.3389/fmed.2019.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most aggressive and malignant primary brain tumor in adults. Despite the current state-of-the-art treatment, which consists of maximal surgical resection followed by radiation therapy, concomitant, and adjuvant chemotherapy, progression remains rapid due to aggressive tumor characteristics. Several new therapeutic targets have been investigated using chemotherapeutics and targeted molecular drugs, however, the intrinsic resistance to induced cell death of brain cells impede the effectiveness of systemic therapies. Also, the unique immune environment of the central nervous system imposes challenges for immune-based therapeutics. Therefore, it is important to consider other approaches to treat these tumors. There is a well-known dose-response relationship for glioblastoma with increased survival with increasing doses, but this effect seems to cap around 60 Gy, due to increased toxicity to the normal brain. Currently, radiation treatment planning of glioblastoma patients relies on CT and MRI that does not visualize the heterogeneous nature of the tumor, and consequently, a homogenous dose is delivered to the entire tumor. Metabolic imaging, such as positron-emission tomography, allows to visualize the heterogeneous tumor environment. Using these metabolic imaging techniques, an approach called dose painting can be used to deliver a higher dose to the tumor regions with high malignancy and/or radiation resistance. Preclinical studies are required for evaluating the benefits of novel radiation treatment strategies, such as PET-based dose painting. The aim of this review is to give a brief overview of promising PET tracers that can be evaluated in laboratory animals to bridge the gap between PET-based dose painting in glioblastoma patients.
Collapse
Affiliation(s)
- Sam Donche
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Jeroen Verhoeven
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Julie Bolcaen
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | | | - Christian Vanhove
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Blais E, Vendrely V, Sargos P, Créhange G, Huguet F, Maingon P, Simon JM, Bourdais R, Ozsahin M, Bourhis J, Clément-Colmou K, Belghith B, Proudhom Briois MA, Gilliot O, Dujols JP, Peyras A, Dupin C, Riet FG, Canova CH, Huertas A, Troussier I. [Chemoradiation for oesophageal cancer: A critical review of the literature]. Cancer Radiother 2019; 23:62-72. [PMID: 30639379 DOI: 10.1016/j.canrad.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 10/27/2022]
Abstract
Locally advanced oesophageal cancer treatment requires a multidisciplinary approach with the combination of chemotherapy and radiotherapy for preoperative and definitive strategy. Preoperative chemoradiation improves the locoregional control and overall survival after surgery for locally advanced oesophageal cancer. Definitive chemoradiation can also be proposed for non-resectable tumours or medically inoperable patients. Besides, definitive chemoradiation is considered as an alternative option to surgery for locally advanced squamous cell carcinomas. Chemotherapy regimen associated to radiotherapy consists of a combination of platinum derived drugs (cisplatinum or oxaliplatin) and 5-fluorouracil or a weekly scheme combination of carboplatin and paclitaxel according to CROSS protocol in a neoadjuvant strategy. Radiation doses vary from 41.4Gy to 45Gy for a preoperative strategy or 50 to 50.4Gy for a definitive treatment. The high risk of lymphatic spread due to anatomical features could justify the use of an elective nodal irradiation when the estimated risk of microscopic involvement is higher than 15% to 20%. An appropriate delineation of the gross tumour volume requires an exhaustive and up-to-date evaluation of the disease. Intensity-modulated radiation therapy represents a promising approach to spare organs-at-risk. This critical review of the literature underlines the roles of radiotherapy for locally advanced oesophageal cancers and describes doses, volumes of treatment, technical aspects and dose constraints to organs-at-risk.
Collapse
Affiliation(s)
- E Blais
- Service de radiothérapie, hôpital de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| | - V Vendrely
- Service de radiothérapie, CHU de Bordeaux-Haut Lévêque, avenue du Haut-Lévêque, 33600 Pessac, France
| | - P Sargos
- Service de radiothérapie, institut Bergonié, 229, cours de l'Argonne, 33000 Bordeaux, France
| | - G Créhange
- Service de radiothérapie, centre Georges-François-Leclerc, 1, rue du Professeur-Marion, 21000 Dijon, France
| | - F Huguet
- Service de radiothérapie, hôpital Tenon, 4, rue de la Chine, 75020 Paris, France
| | - P Maingon
- Service de radiothérapie, hôpital de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - J-M Simon
- Service de radiothérapie, hôpital de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - R Bourdais
- Service de radiothérapie, hôpital de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - M Ozsahin
- Service de radio-oncologie, CHUV, rue du Bugnon 46, 1011 Lausanne, Suisse
| | - J Bourhis
- Service de radio-oncologie, CHUV, rue du Bugnon 46, 1011 Lausanne, Suisse
| | - K Clément-Colmou
- Service de radiothérapie, institut de cancérologie de l'Ouest (ICO) centre René-Gauducheau, boulevard Professeur-Jacques-Monod, 44800 Saint-Herblain, France
| | - B Belghith
- Service de radiothérapie, hôpital de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - M-A Proudhom Briois
- Service de radiothérapie, groupe de radiothérapie et d'oncologie des Pyrénées, 49, rue Aristide-Briand, 64000 Pau, France
| | - O Gilliot
- Service de radiothérapie, groupe de radiothérapie et d'oncologie des Pyrénées, 49, rue Aristide-Briand, 64000 Pau, France
| | - J-P Dujols
- Service de radiothérapie, groupe de radiothérapie et d'oncologie des Pyrénées, 49, rue Aristide-Briand, 64000 Pau, France
| | - A Peyras
- Service de radiothérapie, groupe de radiothérapie et d'oncologie des Pyrénées, 49, rue Aristide-Briand, 64000 Pau, France
| | - C Dupin
- Service de radiothérapie, CHU de Bordeaux-Haut Lévêque, avenue du Haut-Lévêque, 33600 Pessac, France
| | - F-G Riet
- Service de radiothérapie, hôpital de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - C-H Canova
- Service de radiothérapie, hôpital de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - A Huertas
- Service de radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France
| | - I Troussier
- Service de radio-oncologie, hôpitaux universitaires de Genève, rue Gabrielle-Perret-Gentil 4, 1205 Genève, Suisse
| |
Collapse
|
48
|
Ercelep O, Alan O, Sahin D, Telli TA, Salva H, Tuylu TB, Babacan NA, Kaya S, Dane F, Ones T, Alkis H, Adli M, Yumuk F. Effect of PET/CT standardized uptake values on complete response to treatment before definitive chemoradiotherapy in stage III non-small cell lung cancer. Clin Transl Oncol 2018; 21:499-504. [PMID: 30229391 DOI: 10.1007/s12094-018-1949-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/07/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE The standard treatment for patients with stage III non-small cell lung cancer (NSCLC), unsuitable for resection and with good performance, is definitive radiotherapy with cisplatin-based chemotherapy. Our aim is to evaluate the effect of the maximum value of standardized uptake values (SUVmax) of the primary tumor in positron emission tomography-computed tomography (PET/CT) before treatment on complete response (CR) and overall survival. METHODS The data of 73 stage III NSCLC patients treated with concurrent definitive chemoradiotherapy (CRT) between 2008 and 2017 and had PET/CT staging in the pretreatment period were evaluated. ROC curve analysis was performed to determine the ideal cut-off value of pretreatment SUVmax to predict CR. RESULTS Median age was 58 years (range 27-83 years) and 66 patients were male (90.4%). Median follow-up time was 18 months (range 3-98 months); median survival was 23 months. 1-year overall survival (OS) rate and 5-year OS rate were 72 and 19%, respectively. Median progression-free survival (PFS) was 9 months; 1-year PFS rate and 5-year PFS rate were 38 and 19%, respectively. The ideal cut-off value of pretreatment SUVmax that predicted the complete response of CRT was 12 in the ROC analysis [AUC 0.699 (0.550-0.833)/P < 0.01] with a sensitivity of 83%, and specificity of 55%. In patients with SUVmax < 12, CR rate was 60%, while, in patients with SUV ≥ 12, it was only 19% (P = 0.002). Median OS was 26 months in patients with pretreatment SUVmax < 12, and 21 months in patients with SUVmax ≥ 12 (HR = 2.93; 95% CI 17.24-28.75; P = 0.087). CR rate of the whole patient population was 26%, and it was the only factor that showed a significant benefit on survival in both univariate and multivariate analyses. CONCLUSION Pretreatment SUVmax of the primary tumor in PET/CT may predict CR in stage III NSCLC patients who were treated with definitive CRT. Having clinical CR is the only positive predictive factor for prolonged survival.
Collapse
Affiliation(s)
- O Ercelep
- Department of Medical Oncology, Pendik Education and Research Hospital, Marmara University, Istanbul, Turkey.
| | - O Alan
- Department of Medical Oncology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - D Sahin
- Department of Internal Medicine, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - T A Telli
- Department of Medical Oncology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - H Salva
- Department of Internal Medicine, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - T B Tuylu
- Department of Medical Oncology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - N A Babacan
- Department of Medical Oncology, Pendik Education and Research Hospital, Marmara University, Istanbul, Turkey
| | - S Kaya
- Department of Medical Oncology, Pendik Education and Research Hospital, Marmara University, Istanbul, Turkey
| | - F Dane
- Department of Medical Oncology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - T Ones
- Department of Nuclear Medicine, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - H Alkis
- Department of Radiation Oncology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - M Adli
- Department of Radiation Oncology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - F Yumuk
- Department of Medical Oncology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
49
|
Konert T, van de Kamer JB, Sonke JJ, Vogel WV. The developing role of FDG PET imaging for prognostication and radiotherapy target volume delineation in non-small cell lung cancer. J Thorac Dis 2018; 10:S2508-S2521. [PMID: 30206495 DOI: 10.21037/jtd.2018.07.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advancements in functional imaging technology have allowed new possibilities in contouring of target volumes, monitoring therapy, and predicting treatment outcome in non-small cell lung cancer (NSCLC). Consequently, the role of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) has expanded in the last decades from a stand-alone diagnostic tool to a versatile instrument integrated with computed tomography (CT), with a prominent role in lung cancer radiotherapy. This review outlines the most recent literature on developments in FDG PET imaging for prognostication and radiotherapy target volume delineation (TVD) in NSCLC. We also describe the challenges facing the clinical implementation of these developments and present new ideas for future research.
Collapse
Affiliation(s)
- Tom Konert
- Nuclear Medicine Department, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen B van de Kamer
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wouter V Vogel
- Nuclear Medicine Department, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Abstract
Over the last few decades, advances in radiation therapy technology have markedly improved radiation delivery. Advancements in treatment planning with the development of image-guided radiotherapy and techniques such as proton therapy, allow precise delivery of high doses of radiation conformed to the tumor. These advancements result in improved locoregional control while reducing radiation dose to surrounding normal tissue. The radiologic manifestations of these techniques can differ from radiation induced lung disease seen with traditional radiation therapy. Awareness of these radiologic manifestations and correlation with radiation treatment plans are important to differentiate expected radiation induced lung injury from recurrence, infection and drug toxicity.
Collapse
|