1
|
Lim B, Matsui Y, Jung S, Djekidel MN, Qi W, Yuan ZF, Wang X, Yang X, Connolly N, Pilehroud AS, Pan H, Wang F, Pruett-Miller SM, Kavdia K, Pagala V, Fan Y, Peng J, Xu B, Peng JC. Phosphorylation of the DNA damage repair factor 53BP1 by ATM kinase controls neurodevelopmental programs in cortical brain organoids. PLoS Biol 2024; 22:e3002760. [PMID: 39226322 PMCID: PMC11398655 DOI: 10.1371/journal.pbio.3002760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/13/2024] [Accepted: 07/19/2024] [Indexed: 09/05/2024] Open
Abstract
53BP1 is a well-established DNA damage repair factor that has recently emerged to critically regulate gene expression for tumor suppression and neural development. However, its precise function and regulatory mechanisms remain unclear. Here, we showed that phosphorylation of 53BP1 at serine 25 by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical brain organoids. Dynamic phosphorylation of 53BP1-serine 25 controls 53BP1 target genes governing neuronal differentiation and function, cellular response to stress, and apoptosis. Mechanistically, ATM and RNF168 govern 53BP1's binding to gene loci to directly affect gene regulation, especially at genes for neuronal differentiation and maturation. 53BP1 serine 25 phosphorylation effectively impedes its binding to bivalent or H3K27me3-occupied promoters, especially at genes regulating H3K4 methylation, neuronal functions, and cell proliferation. Beyond 53BP1, ATM-dependent phosphorylation displays wide-ranging effects, regulating factors in neuronal differentiation, cytoskeleton, p53 regulation, as well as key signaling pathways such as ATM, BDNF, and WNT during cortical organoid differentiation. Together, our data suggest that the interplay between 53BP1 and ATM orchestrates essential genetic programs for cell morphogenesis, tissue organization, and developmental pathways crucial for human cortical development.
Collapse
Affiliation(s)
- Bitna Lim
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yurika Matsui
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Seunghyun Jung
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Wenjie Qi
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xiaoyang Yang
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Nina Connolly
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Abbas Shirinifard Pilehroud
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Haitao Pan
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fang Wang
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Shondra M. Pruett-Miller
- Department of Cell & Molecular Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yiping Fan
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Junmin Peng
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Beisi Xu
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jamy C. Peng
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
2
|
Scherthan H, Geiger B, Ridinger D, Müller J, Riccobono D, Bestvater F, Port M, Hausmann M. Nano-Architecture of Persistent Focal DNA Damage Regions in the Minipig Epidermis Weeks after Acute γ-Irradiation. Biomolecules 2023; 13:1518. [PMID: 37892200 PMCID: PMC10605239 DOI: 10.3390/biom13101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Exposure to high acute doses of ionizing radiation (IR) can induce cutaneous radiation syndrome. Weeks after such radiation insults, keratinocyte nuclei of the epidermis exhibit persisting genomic lesions that present as focal accumulations of DNA double-strand break (DSB) damage marker proteins. Knowledge about the nanostructure of these genomic lesions is scarce. Here, we compared the chromatin nano-architecture with respect to DNA damage response (DDR) factors in persistent genomic DNA damage regions and healthy chromatin in epidermis sections of two minipigs 28 days after lumbar irradiation with ~50 Gy γ-rays, using single-molecule localization microscopy (SMLM) combined with geometric and topological mathematical analyses. SMLM analysis of fluorochrome-stained paraffin sections revealed, within keratinocyte nuclei with perisitent DNA damage, the nano-arrangements of pATM, 53BP1 and Mre11 DDR proteins in γ-H2AX-positive focal chromatin areas (termed macro-foci). It was found that persistent macro-foci contained on average ~70% of 53BP1, ~23% of MRE11 and ~25% of pATM single molecule signals of a nucleus. MRE11 and pATM fluorescent tags were organized in focal nanoclusters peaking at about 40 nm diameter, while 53BP1 tags formed nanoclusters that made up super-foci of about 300 nm in size. Relative to undamaged nuclear chromatin, the enrichment of DDR protein signal tags in γ-H2AX macro-foci was on average 8.7-fold (±3) for 53BP1, 3.4-fold (±1.3) for MRE11 and 3.6-fold (±1.8) for pATM. The persistent macro-foci of minipig epidermis displayed a ~2-fold enrichment of DDR proteins, relative to DSB foci of lymphoblastoid control cells 30 min after 0.5 Gy X-ray exposure. A lasting accumulation of damage signaling and sensing molecules such as pATM and 53BP1, as well as the DSB end-processing protein MRE11 in the persistent macro-foci suggests the presence of diverse DNA damages which pose an insurmountable problem for DSB repair.
Collapse
Affiliation(s)
- Harry Scherthan
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Beatrice Geiger
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| | - David Ridinger
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| | - Jessica Müller
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Diane Riccobono
- Département des Effets Biologiques des Rayonnements, French Armed Forces Biomedical Research Institute, UMR 1296, BP 73, 91223 Brétigny-sur-Orge, France;
| | - Felix Bestvater
- Core Facility Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany;
| | - Matthias Port
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| |
Collapse
|
3
|
Lim B, Djekidel MN, Matsui Y, Jung S, Yuan ZF, Wang X, Yang X, Pilehroud AS, Pan H, Wang F, Pruett-Miller S, Kavdia K, Pagala V, Fan Y, Peng J, Xu B, Peng JC. Phosphorylation of 53BP1 by ATM enforce neurodevelopmental programs in cortical organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539457. [PMID: 37205560 PMCID: PMC10187281 DOI: 10.1101/2023.05.04.539457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
53BP1 is a well-established DNA damage repair factor recently shown to regulate gene expression and critically influence tumor suppression and neural development. For gene regulation, how 53BP1 is regulated remains unclear. Here, we showed that 53BP1-serine 25 phosphorylation by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical organoids. 53BP1-serine 25 phosphorylation dynamics controls 53BP1 target genes for neuronal differentiation and function, cellular response to stress, and apoptosis. Beyond 53BP1, ATM is required for phosphorylation of factors in neuronal differentiation, cytoskeleton, p53 regulation, and ATM, BNDF, and WNT signaling pathways for cortical organoid differentiation. Overall, our data suggest that 53BP1 and ATM control key genetic programs required for human cortical development.
Collapse
|
4
|
Rizvi SFA, Wasim B, Usman S, Borges KJJ, Sahibdad I, Salim A, Khan I. Zinc and hypoxic preconditioning: a strategy to enhance the functionality and therapeutic potential of bone marrow-derived mesenchymal stem cells. Mol Cell Biochem 2022; 477:2735-2749. [PMID: 35610401 DOI: 10.1007/s11010-022-04468-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
Abstract
The therapeutic use of bone marrow mesenchymal stem cells (BM-MSCs) requires a large number of cells (1-100 × 106 cells/kg of body weight). Extensive in vitro growth is limited due to the aging of cultured BM-MSCs which leads to abnormal morphology and senescence. Hypoxia increases BM-MSC proliferation, but the question of whether hypoxia preconditioning is safe for clinical application of BM-MSCs remains to be answered. Zinc is essential for cell proliferation and differentiation, especially for the regulation of DNA synthesis and mitosis. It is a structural constituent of numerous proteins on a molecular level, including transcription factors and enzymes of cellular signaling machinery. All the tissues, fluids, and organs of the human body contain zinc. More than 95% of zinc is intracellular, of which 44% is involved in the transcription of DNA. We investigated the effects of ZnCl2 on proliferation, morphology, migration, population doubling time (PDT), and gene expression of BM-MSCs under hypoxic (1% O2) and normoxic (21% O2) environments. BM-MSCs were preconditioned with optimized concentrations of ZnCl2 under normoxic and hypoxic environments and further examined for morphology by the phase-contrast inverted microscope, cell proliferation by MTT assay, PDT, cell migration ability, and gene expression analysis. Zinc significantly enhanced the proliferation of BM-MSCs, and it decreases PDT under hypoxic and normoxic environments as compared to control cells. Migration of BM-MSCs toward the site of injury increased and expression of HIF1-α significantly decreased under hypoxic conditions as compared to non-treated hypoxic cells and control. At late passages (P9), the morphology of normoxic BM-MSCs was transformed into large, wide, and flat cells, and they became polygonal and lost their communication with other cells. Conversely, zinc-preconditioned BM-MSCs retained their spindle-shaped, fibroblast-like morphology at P9. The expression of proliferative genes was found significantly upregulated, while downregulation of genes OCT4 and CCNA2 was observed in zinc-treated BM-MSCs under both normoxic and hypoxic conditions. ZnCl2 treatment can be used for extensive expansion of BM-MSCs in aged populations to obtain a large number of cells required for systemic administration to produce therapeutic efficacy.
Collapse
Affiliation(s)
- Syed Faizan Ali Rizvi
- Ghulam Muhammad Mahar Medical College Sukkur at Shaheed Mohtarma Benazir Bhutto Medical University Larkana, Larkana, 77150, Pakistan.,Ziauddin University, Clifton, Karachi, 74700, Pakistan
| | - Bushra Wasim
- Ziauddin University, Clifton, Karachi, 74700, Pakistan
| | | | | | - Iqra Sahibdad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Centre for Chemical and Biological Sciences, Karachi, 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Centre for Chemical and Biological Sciences, Karachi, 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Centre for Chemical and Biological Sciences, Karachi, 75270, Pakistan. .,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
5
|
Ebata H, Loo TM, Takahashi A. Telomere Maintenance and the cGAS-STING Pathway in Cancer. Cells 2022; 11:1958. [PMID: 35741087 PMCID: PMC9221635 DOI: 10.3390/cells11121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer cells exhibit the unique characteristics of high proliferation and aberrant DNA damage response, which prevents cancer therapy from effectively eliminating them. The machinery required for telomere maintenance, such as telomerase and the alternative lengthening of telomeres (ALT), enables cancer cells to proliferate indefinitely. In addition, the molecules in this system are involved in noncanonical pro-tumorigenic functions. Of these, the function of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which contains telomere-related molecules, is a well-known contributor to the tumor microenvironment (TME). This review summarizes the current knowledge of the role of telomerase and ALT in cancer regulation, with emphasis on their noncanonical roles beyond telomere maintenance. The components of the cGAS-STING pathway are summarized with respect to intercell communication in the TME. Elucidating the underlying functional connection between telomere-related molecules and TME regulation is important for the development of cancer therapeutics that target cancer-specific pathways in different contexts. Finally, strategies for designing new cancer therapies that target cancer cells and the TME are discussed.
Collapse
Affiliation(s)
- Hiroshi Ebata
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo 113-0033, Japan;
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Tze Mun Loo
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Akiko Takahashi
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| |
Collapse
|
6
|
Köcher S, Zech HB, Krug L, Gatzemeier F, Christiansen S, Meyer F, Rietow R, Struve N, Mansour WY, Kriegs M, Petersen C, Betz C, Rothkamm K, Rieckmann T. A Lack of Effectiveness in the ATM-Orchestrated DNA Damage Response Contributes to the DNA Repair Defect of HPV-Positive Head and Neck Cancer Cells. Front Oncol 2022; 12:765968. [PMID: 35719921 PMCID: PMC9204973 DOI: 10.3389/fonc.2022.765968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with human papillomavirus-positive squamous cell carcinoma of the head and neck (HPV+ HNSCC) have a favorable prognosis compared to those with HPV-negative (HPV−) ones. We have shown previously that HPV+ HNSCC cell lines are characterized by enhanced radiation sensitivity and impaired DNA double-strand break (DSB) repair. Since then, various publications have suggested a defect in homologous recombination (HR) and dysregulated expression of DSB repair proteins as underlying mechanisms, but conclusions were often based on very few cell lines. When comparing the expression levels of suggested proteins and other key repair factors in 6 HPV+ vs. 5 HPV− HNSCC strains, we could not confirm most of the published differences. Furthermore, HPV+ HNSCC strains did not demonstrate enhanced sensitivity towards PARP inhibition, questioning a general HR defect. Interestingly, our expression screen revealed minimal levels of the central DNA damage response kinase ATM in the two most radiosensitive HPV+ strains. We therefore tested whether insufficient ATM activity may contribute to the enhanced cellular radiosensitivity. Irrespective of their ATM expression level, radiosensitive HPV+ HNSCC cells displayed DSB repair kinetics similar to ATM-deficient cells. Upon ATM inhibition, HPV+ cell lines showed only a marginal increase in residual radiation-induced γH2AX foci and induction of G2 cell cycle arrest as compared to HPV− ones. In line with these observations, ATM inhibition sensitized HPV+ HNSCC strains less towards radiation than HPV− strains, resulting in similar levels of sensitivity. Unexpectedly, assessment of the phosphorylation kinetics of the ATM targets KAP-1 and Chk2 as well as ATM autophosphorylation after radiation did not indicate directly compromised ATM activity in HPV-positive cells. Furthermore, ATM inhibition delayed radiation induced DNA end resection in both HPV+ and HPV− cells to a similar extent, further suggesting comparable functionality. In conclusion, DNA repair kinetics and a reduced effectiveness of ATM inhibition clearly point to an impaired ATM-orchestrated DNA damage response in HPV+ HNSCC cells, but since ATM itself is apparently functional, the molecular mechanisms need to be further explored.
Collapse
Affiliation(s)
- Sabrina Köcher
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrike Barbara Zech
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Krug
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Christiansen
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Meyer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruth Rietow
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Department, Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wael Yassin Mansour
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Thorsten Rieckmann,
| |
Collapse
|
7
|
Visser H, Thomas AD. MicroRNAs and the DNA damage response: How is cell fate determined? DNA Repair (Amst) 2021; 108:103245. [PMID: 34773895 DOI: 10.1016/j.dnarep.2021.103245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
It is becoming clear that the DNA damage response orchestrates an appropriate response to a given level of DNA damage, whether that is cell cycle arrest and repair, senescence or apoptosis. It is plausible that the alternative regulation of the DNA damage response (DDR) plays a role in deciding cell fate following damage. MicroRNAs (miRNAs) are associated with the transcriptional regulation of many cellular processes. They have diverse functions, affecting, presumably, all aspects of cell biology. Many have been shown to be DNA damage inducible and it is conceivable that miRNA species play a role in deciding cell fate following DNA damage by regulating the expression and activation of key DDR proteins. From a clinical perspective, miRNAs are attractive targets to improve cancer patient outcomes to DNA-damaging chemotherapy. However, cancer tissue is known to be, or to become, well adapted to DNA damage as a means of inducing chemoresistance. This frequently results from an altered DDR, possibly owing to miRNA dysregulation. Though many studies provide an overview of miRNAs that are dysregulated within cancerous tissues, a tangible, functional association is often lacking. While miRNAs are well-documented in 'ectopic biology', the physiological significance of endogenous miRNAs in the context of the DDR requires clarification. This review discusses miRNAs of biological relevance and their role in DNA damage response by potentially 'fine-tuning' the DDR towards a particular cell fate in response to DNA damage. MiRNAs are thus potential therapeutic targets/strategies to limit chemoresistance, or improve chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Hartwig Visser
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom
| | - Adam D Thomas
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
8
|
Wozny AS, Gauthier A, Alphonse G, Malésys C, Varoclier V, Beuve M, Brichart-Vernos D, Magné N, Vial N, Ardail D, Nakajima T, Rodriguez-Lafrasse C. Involvement of HIF-1α in the Detection, Signaling, and Repair of DNA Double-Strand Breaks after Photon and Carbon-Ion Irradiation. Cancers (Basel) 2021; 13:cancers13153833. [PMID: 34359734 PMCID: PMC8345054 DOI: 10.3390/cancers13153833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Hypoxia-Inducible Factor 1α (HIF-1α), the main regulator of the oxygen homeostasis, promotes cancer cell survival through proliferation, angiogenesis, metastasis and radioresistance. Previously, our group demonstrated that silencing HIF-1α under hypoxia leads to a substantial radiosensitization of Head-and-Neck Squamous Cell Carcinoma (HNSCC) cells after both photons and carbon-ions, probably resulting from an accumulation of deleterious complex DNA damage. In this study, we aimed at determining the potential role of HIF-1α in the detection, signaling, and repair of DNA Double-Strand-Breaks (DSBs) in response to both irradiations, under hypoxia, in two HNSCC cell lines and their subpopulations of Cancer-Stem Cells (CSCs). Silencing HIF-1α under hypoxia led us to demonstrate the involvement of this transcriptional regulator in DSB repair in non-CSCS and CSC, thus highlighting its targeting together with radiation as a promising therapeutic strategy against radioresistant tumor cells in hypoxic niches. Abstract Hypoxia-Inducible Factor 1α (HIF-1α), which promotes cancer cell survival, is the main regulator of oxygen homeostasis. Hypoxia combined with photon and carbon ion irradiation (C-ions) stabilizes HIF-1α. Silencing HIF-1α under hypoxia leads to substantial radiosensitization of Head-and-Neck Squamous Cell Carcinoma (HNSCC) cells after both photons and C-ions. Thus, this study aimed to clarify a potential involvement of HIF-1α in the detection, signaling, and repair of DNA Double-Strand-Breaks (DSBs) in response to both irradiations, in two HNSCC cell lines and their subpopulations of Cancer-Stem Cells (CSCs). After confirming the nucleoshuttling of HIF-1α in response to both exposure under hypoxia, we showed that silencing HIF-1α in non-CSCs and CSCs decreased the initiation of the DSB detection (P-ATM), and increased the residual phosphorylated H2AX (γH2AX) foci. While HIF-1α silencing did not modulate 53BP1 expression, P-DNA-PKcs (NHEJ-c) and RAD51 (HR) signals decreased. Altogether, our experiments demonstrate the involvement of HIF-1α in the detection and signaling of DSBs, but also in the main repair pathways (NHEJ-c and HR), without favoring one of them. Combining HIF-1α silencing with both types of radiation could therefore present a potential therapeutic benefit of targeting CSCs mostly present in tumor hypoxic niches.
Collapse
Affiliation(s)
- Anne-Sophie Wozny
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Arnaud Gauthier
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Gersende Alphonse
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Céline Malésys
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Virginie Varoclier
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Michael Beuve
- Univ Lyon, Lyon 1 University, UMR CNRS5822/IP2I, 69100 Villeurbanne, France;
| | - Delphine Brichart-Vernos
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Nicolas Magné
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Radiotherapy, Institute of Cancerology Lucien Neuwirth, 42270 Saint-Priest-en-Jarez, France
| | - Nicolas Vial
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Radiotherapy, Institute of Cancerology Lucien Neuwirth, 42270 Saint-Priest-en-Jarez, France
| | - Dominique Ardail
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Tetsuo Nakajima
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Claire Rodriguez-Lafrasse
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- Correspondence: ; Tel.: +33-426-235-965
| |
Collapse
|
9
|
Pan YR, Wu CE, Yeh CN. ATM Inhibitor Suppresses Gemcitabine-Resistant BTC Growth in a Polymerase θ Deficiency-Dependent Manner. Biomolecules 2020; 10:E1529. [PMID: 33182492 PMCID: PMC7697425 DOI: 10.3390/biom10111529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Patients with advanced biliary tract cancer (BTC) inevitably experience progression after first-line, gemcitabine-based chemotherapy, due to chemo-resistance. The genetic alterations of DNA damage repair (DDR) genes are usually determined in BTC tumors. In this study, we found that the POLQ mRNA levels are downregulated and the ataxia-telangiectasia mutated (ATM) inhibitor AZD0156 was more sensitive in gemcitabine-resistant BTC sublines than in the parental cell lines. The knockdown of DNA polymerase θ does not affect cell proliferation, but its combination with the ATM inhibitor facilitated cell death in gemcitabine-resistant and gemcitabine-intensive BTC cells. Moreover, in the DNA damage caused by photon, hydrogen peroxide, or chemotherapy drugs, synthetic lethal interactions were found in combination with ATM inhibition by AZD0156 and DNA polymerase θ depletion, resulting in increased DNA damage accumulation and micronucleus formation, as well as reduced cell survival and colony formation. Collectively, our results reveal that ATM acts as a potential target in gemcitabine-resistant and DNA polymerase θ-deficient BTC.
Collapse
Affiliation(s)
- Yi-Ru Pan
- Department of General Surgery and Liver Research Center, Chang Gung Memorial Hospital, Linkou branch, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Chun-Nan Yeh
- Department of General Surgery and Liver Research Center, Chang Gung Memorial Hospital, Linkou branch, Chang Gung University, Taoyuan 333, Taiwan;
| |
Collapse
|
10
|
Functional cooperativity of p97 and histone deacetylase 6 in mediating DNA repair in mantle cell lymphoma cells. Leukemia 2019; 33:1675-1686. [PMID: 30664664 DOI: 10.1038/s41375-018-0355-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/15/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
p97 is an ATPase that works in concert with histone deacetylase 6 (HDAC6), to facilitate the degradation of misfolded proteins by autophagosomes. p97 has also been implicated in DNA repair and maintaining genomic stability. In this study, we determined the effect of combined inhibition of p97 and HDAC6 activities in mantle cell lymphoma (MCL) cells. We report that treatment with p97 inhibitors induces dose-dependent apoptosis in MCL cells. The p97 inhibitor CB-5083 induces ER stress markers GRP78 and CHOP and results in the accumulation of polyubiquitylated proteins. Co-treatment with CB-5083 and the HDAC6 inhibitor ACY-1215 result in marked downregulation of CDK4, Cyclin D1, and BRCA1 levels without inhibiting autophagic flux. Consequently, treatment with CB-5083 accentuates DNA damage in response to treatment with ACY-1215 resulting in enhanced accumulation of H2AX-γ and synergistic apoptosis. Furthermore, ATM loss severely impairs phosphorylation of 53BP1 following co-treatment with CB-5083 and ACY-1215 in response to gamma irradiation. Finally, co-treatment CB-5083 and ACY-1215 results in reduced tumor volumes and improves survival in Z138C and Jeko-1 xenografts in NSG mice. These observations suggest that combined inhibition of p97 and HDAC6 abrogates resolution of proteotoxic stress and impairs DNA repair mechanisms in MCL cells.
Collapse
|
11
|
Krishnaraj J, Baba AB, Viswanathan P, Veeravarmal V, Balasubramanian V, Nagini S. Impact of stainless-steel welding fumes on proteins and non-coding RNAs regulating DNA damage response in the respiratory tract of Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1231-1245. [PMID: 30507362 DOI: 10.1080/15287394.2018.1550027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Substantial evidence has established the negative impact of inhalation exposure to welding fumes on respiratory functions. The aim of the present study was to investigate the effect of welding fume inhalation on expression of molecules that function as sensors, transducers and effectors of DNA damage response (DDR) in the respiratory tract of male Sprague-Dawley rats. Animals were exposed to 50 mg/m3 stainless steel welding fumes for 1 h/d for 4, 8, and 12 weeks, respectively. Histological examination demonstrated preneoplastic changes in trachea and bronchi with focal atelectasis and accumulation of chromium (Cr) in the lungs. This was associated with elevated levels of DNA damage markers (8-oxodG, γH2AX), ATM phosphorylation, cell cycle arrest, apoptosis induction, activation of homologous recombination (HR), non-homologous end joining (NHEJ), and Nrf2 signaling, as well as altered expression of noncoding RNAs (ncRNAs). However, after 12 weeks of exposure, DDR was compromised as reflected by resumption of the cell cycle, repair inhibition, and failure of apoptosis. Data demonstrate that exposure to welding fumes influences two crucial layers of DDR regulation, phosphorylation of key proteins in NHEJ and HR, as well as the ncRNAs that epigenetically modulate DDR. Evidence indicates that marked DNA damage coupled with non-productive DNA repair and apoptosis avoidance may be involved in neoplastic transformation.
Collapse
Affiliation(s)
- Jayaraman Krishnaraj
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| | - Abdul Basit Baba
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| | - Periasamy Viswanathan
- b Division of Pathology, Rajah Muthiah Medical College & Hospital , Annamalai University , Annamalinagar , TN , India
| | - Veeran Veeravarmal
- c Division of Oral Pathology, Rajah Muthiah Dental College & Hospital , Annamalai University , Annamalinagar , TN , India
| | - Viswalingam Balasubramanian
- d Department of Manufacturing Engineering, Faculty of Engineering and Technology , Annamalai University , Annamalainagar , TN , India
| | - Siddavaram Nagini
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| |
Collapse
|
12
|
Beach TA, Groves AM, Johnston CJ, Williams JP, Finkelstein JN. Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis. Int J Radiat Biol 2018; 94:1104-1115. [PMID: 30238842 PMCID: PMC6309234 DOI: 10.1080/09553002.2018.1516907] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/17/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Radiation-induced lung injuries (RILI), namely radiation pneumonitis and/or fibrosis, are dose-limiting outcomes following treatment for thoracic cancers. As part of a search for mitigation targets, we sought to determine if persistent DNA damage is a characteristic of this progressive injury. METHODS C57BL/6J female mice were sacrificed at 24 h, 1, 4, 12, 16, 24 and 32 weeks following a single dose of 12.5 Gy thorax only gamma radiation; their lungs were compared to age-matched unirradiated animals. Tissues were examined for DNA double-strand breaks (DSBs) (γ-H2A.X and p53bp1), cellular senescence (senescence-associated beta-galactosidase and p21) and oxidative stress (malondialdehyde). RESULTS Data revealed consistently higher numbers of DSBs compared to age-matched controls, with increases in γ-H2A.X positivity beyond 24 h post-exposure, particularly during the pathological phases, suggesting periods of recurrent DNA damage. Additional intermittent increases in both cellular senescence and oxidative stress also appeared to coincide with pneumonitis and fibrosis. CONCLUSIONS These novel, long-term data indicate (a) increased and persistent levels of DSBs, oxidative stress and cellular senescence may serve as bioindicators of RILI, and (b) prevention of genotoxicity, via mitigation of free radical production, continues to be a potential strategy for the prevention of pulmonary radiation injury.
Collapse
Affiliation(s)
- Tyler A. Beach
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Angela M. Groves
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Carl J. Johnston
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
13
|
Yang Y, Lei T, Du S, Tong R, Wang H, Yang J, Huang J, Sun M, Wang Y, Dong Z. Nuclear GSK3β induces DNA double-strand break repair by phosphorylating 53BP1 in glioblastoma. Int J Oncol 2018; 52:709-720. [PMID: 29328365 PMCID: PMC5807039 DOI: 10.3892/ijo.2018.4237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most malignant and lethal subtype brain tumors with high risk of recurrence and therapeutic resistance. Emerging evidence has indicated that glycogen synthesis kinase 3 (GSK3)β plays oncogenic roles in multiple tumor types; however, the underlying mechanisms remain largely unknown. It has also been demonstrated that p53 binding protein 1 (53BP1) plays a central role in DNA double-strand break (DSB) repair. This study aimed to reveal the significance of GSK3β translocation from the cytoplasm to the nucleus, and to determine whether GSK3β induces DNA DSB repair in the nuclei of glioblastoma cells via phospho-53BP1. By performing in vitro experiments, we found that GSK3β translocated from the cytoplasm to the nucleus, and it then bound to 53BP1 following exposure to IR (IR). In addition, 53BP1-mediated DNA DSB repair was observed to be abrogated by the inhibition of GSK3β. Further experiments on the phosphorylation site of 53BP1 by GSK3β revealed that the S/T-Q motif may play a critical role. Importantly, our in vivo and in vitro data clearly indicated that GSK3β induced the phosphorylation of 53BP1 at the Ser166 site. Moreover, brain tumor xenograft models revealed that following exposure to IR plus SB216763, a specific GSK3β inhibitor, tumor growth was markedly inhibited and the survival of mice markedly increased. Based on these results, we concluded that the phosphorylation of 53BP1 by GSK3β was indispensable for DNA DSB repair. Our study also suggested that the inhibition of GSK3β by SB216763 significantly inhibited the proliferation and induced the apoptosis of glioblastoma cells. Taken together, our data indicate that GSK3β, a key phosphorylation protein for 53BP1, may be a potential target for enhancing the sensitivity of glioblastoma cells to radiation.
Collapse
Affiliation(s)
- Yong Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Suya Du
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Hailian Wang
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Jiao Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Juan Huang
- Department of Pharmacy, Medical Center Hospital of Qionglai, Qionglai, Sichuan 611500, P.R. China
| | - Minghan Sun
- Department of Gynecology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Zhi Dong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
14
|
Bigot N, Mouche A, Preti M, Loisel S, Renoud ML, Le Guével R, Sensebé L, Tarte K, Pedeux R. Hypoxia Differentially Modulates the Genomic Stability of Clinical-Grade ADSCs and BM-MSCs in Long-Term Culture. Stem Cells 2015; 33:3608-20. [PMID: 26422646 DOI: 10.1002/stem.2195] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/02/2015] [Indexed: 12/12/2022]
Abstract
Long-term cultures under hypoxic conditions have been demonstrated to maintain the phenotype of mesenchymal stromal/stem cells (MSCs) and to prevent the emergence of senescence. According to several studies, hypoxia has frequently been reported to drive genomic instability in cancer cells and in MSCs by hindering the DNA damage response and DNA repair. Thus, we evaluated the occurrence of DNA damage and repair events during the ex vivo expansion of clinical-grade adipose-derived stromal cells (ADSCs) and bone marrow (BM)-derived MSCs cultured with platelet lysate under 21% (normoxia) or 1% (hypoxia) O2 conditions. Hypoxia did not impair cell survival after DNA damage, regardless of MSC origin. However, ADSCs, unlike BM-MSCs, displayed altered γH2AX signaling and increased ubiquitylated γH2AX levels under hypoxic conditions, indicating an impaired resolution of DNA damage-induced foci. Moreover, hypoxia specifically promoted BM-MSC DNA integrity, with increased Ku80, TP53BP1, BRCA1, and RAD51 expression levels and more efficient nonhomologous end joining and homologous recombination repair. We further observed that hypoxia favored mtDNA stability and maintenance of differentiation potential after genotoxic stress. We conclude that long-term cultures under 1% O2 were more suitable for BM-MSCs as suggested by improved genomic stability compared with ADSCs.
Collapse
Affiliation(s)
- Nicolas Bigot
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| | - Audrey Mouche
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| | - Milena Preti
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,UMR5273-INSERM U1031, Toulouse, France
| | - Séverine Loisel
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| | - Marie-Laure Renoud
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,UMR5273-INSERM U1031, Toulouse, France
| | - Rémy Le Guével
- Université de Rennes 1, Rennes, France.,ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France
| | - Luc Sensebé
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,UMR5273-INSERM U1031, Toulouse, France
| | - Karin Tarte
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France.,Service ITeCH, CHU Pontchaillou, Rennes, France
| | - Rémy Pedeux
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| |
Collapse
|
15
|
Luoto KR, Kumareswaran R, Bristow RG. Tumor hypoxia as a driving force in genetic instability. Genome Integr 2013; 4:5. [PMID: 24152759 PMCID: PMC4016142 DOI: 10.1186/2041-9414-4-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/16/2013] [Indexed: 12/26/2022] Open
Abstract
Sub-regions of hypoxia exist within all tumors and the presence of intratumoral hypoxia has an adverse impact on patient prognosis. Tumor hypoxia can increase metastatic capacity and lead to resistance to chemotherapy and radiotherapy. Hypoxia also leads to altered transcription and translation of a number of DNA damage response and repair genes. This can lead to inhibition of recombination-mediated repair of DNA double-strand breaks. Hypoxia can also increase the rate of mutation. Therefore, tumor cell adaptation to the hypoxic microenvironment can drive genetic instability and malignant progression. In this review, we focus on hypoxia-mediated genetic instability in the context of aberrant DNA damage signaling and DNA repair. Additionally, we discuss potential therapeutic approaches to specifically target repair-deficient hypoxic tumor cells.
Collapse
Affiliation(s)
- Kaisa R Luoto
- Ontario Cancer Institute, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), Toronto, ON, Canada
| | - Ramya Kumareswaran
- Ontario Cancer Institute, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), Toronto, ON, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), 610 University Avenue, Toronto, ON M5G2M9, Canada
| | - Robert G Bristow
- Ontario Cancer Institute, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), Toronto, ON, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), 610 University Avenue, Toronto, ON M5G2M9, Canada
| |
Collapse
|
16
|
Baumann M, Bodis S, Dikomey E, van der Kogel A, Overgaard J, Rodemann HP, Wouters B. Molecular radiation biology/oncology at its best: Cutting edge research presented at the 13th International Wolfsberg Meeting on Molecular Radiation Biology/Oncology. Radiother Oncol 2013; 108:357-61. [DOI: 10.1016/j.radonc.2013.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
17
|
Ding G, Liu HD, Liang HX, Ni RF, Ding ZY, Ni GY, Hua HW, Xu WG. HIF1-regulated ATRIP expression is required for hypoxia induced ATR activation. FEBS Lett 2013; 587:930-5. [PMID: 23454212 DOI: 10.1016/j.febslet.2013.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/01/2013] [Accepted: 02/08/2013] [Indexed: 11/18/2022]
Abstract
The ATR-ATRIP protein kinase complex plays a crucial role in the cellular response to replication stress and DNA damage. Recent studies found that ATR could be activated in response to hypoxia and be involved in hypoxia-induced genetic instability in cancer cells. However, the underlying mechanisms for ATR activation in response to hypoxic stress are still not fully understood. We reported that ATRIP is a direct target of HIF-1. Silencing the expression of HIF-1α in cancer cells by RNA interference abolished hypoxia-induced ATRIP expression. Silencing the expression of ATRIP by RNA interference abolished hypoxia induced ATR activation and CHK1 phosphorylation in cancer cells. Taken together, these data shed novel insights on the mechanism of hypoxia-induced activation of the ATR pathway.
Collapse
Affiliation(s)
- Gang Ding
- Department of Oncology, Chongming Branch of Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ahmed EA, Agay D, Schrock G, Drouet M, Meineke V, Scherthan H. Persistent DNA damage after high dose in vivo gamma exposure of minipig skin. PLoS One 2012; 7:e39521. [PMID: 22761813 PMCID: PMC3384646 DOI: 10.1371/journal.pone.0039521] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 05/22/2012] [Indexed: 12/21/2022] Open
Abstract
Background Exposure to high doses of ionizing radiation (IR) can lead to localized radiation injury of the skin and exposed cells suffer dsDNA breaks that may elicit cell death or stochastic changes. Little is known about the DNA damage response after high-dose exposure of the skin. Here, we investigate the cellular and DNA damage response in acutely irradiated minipig skin. Methods and Findings IR-induced DNA damage, repair and cellular survival were studied in 15 cm2 of minipig skin exposed in vivo to ∼50 Co-60 γ rays. Skin biopsies of control and 4 h up to 96 days post exposure were investigated for radiation-induced foci (RIF) formation using γ-H2AX, 53BP1, and active ATM-p immunofluorescence. High-dose IR induced massive γ-H2AX phosphorylation and high 53BP1 RIF numbers 4 h, 20 h after IR. As time progressed RIF numbers dropped to a low of <1% of keratinocytes at 28–70 days. The latter contained large RIFs that included ATM-p, indicating the accumulation of complex DNA damage. At 96 days most of the cells with RIFs had disappeared. The frequency of active-caspase-3-positive apoptotic cells was 17-fold increased 3 days after IR and remained >3-fold elevated at all subsequent time points. Replicating basal cells (Ki67+) were reduced 3 days post IR followed by increased proliferation and recovery of epidermal cellularity after 28 days. Conclusions Acute high dose irradiation of minipig epidermis impaired stem cell replication and induced elevated apoptosis from 3 days onward. DNA repair cleared the high numbers of DBSs in skin cells, while RIFs that persisted in <1% cells marked complex and potentially lethal DNA damage up to several weeks after exposure. An elevated frequency of keratinocytes with persistent RIFs may thus serve as indicator of previous acute radiation exposure, which may be useful in the follow up of nuclear or radiological accident scenarios.
Collapse
Affiliation(s)
- Emad A. Ahmed
- Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Diane Agay
- IRBA-antenne La Tronche - CRSSA, La Tronche, France
| | - Gerrit Schrock
- Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | | | - Viktor Meineke
- Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Harry Scherthan
- Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
- * E-mail:
| |
Collapse
|
19
|
Harding SM, Bristow RG. Discordance between phosphorylation and recruitment of 53BP1 in response to DNA double-strand breaks. Cell Cycle 2012; 11:1432-44. [PMID: 22421153 DOI: 10.4161/cc.19824] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During the DNA damage response (DDR), chromatin modifications contribute to localization of 53BP1 to sites of DNA double-strand breaks (DSBs). 53BP1 is phosphorylated during the DDR, but it is unclear whether phosphorylation is directly coupled to chromatin binding. In this study, we used human diploid fibroblasts and HCT116 tumor cells to study 53BP1 phosphorylation at Serine-25 and Serine-1778 during endogenous and exogenous DSBs (DNA replication and whole-cell or sub-nuclear microbeam irradiation, respectively). In non-stressed conditions, endogenous DSBs in S-phase cells led to accumulation of 53BP1 and γH2AX into discrete nuclear foci. Only the frank collapse of DNA replication forks following hydroxyurea treatment initiated 53BP1(Ser25) and 53BP1(Ser1778) phosphorylation. In response to exogenous DSBs, 53BP1(Ser25) and 53BP1(Ser1778) phosphoforms localized to sites of initial DSBs in a cell cycle-independent manner. 53BP1 phosphoforms also localized to late residual foci and associated with PML-NBs during IR-induced senescence. Using isogenic cell lines and small-molecule inhibitors, we observed that DDR-induced 53BP1 phosphorylation was dependent on ATM and DNA-PKcs kinase activity but independent of MRE11 sensing or RNF168 chromatin remodeling. However, loss of RNF168 blocked recruitment of phosphorylated 53BP1 to sites of DNA damage. Our results uncouple 53BP1 phosphorylation from DSB localization and support parallel pathways for 53BP1 biology during the DDR. As relative 53BP1 expression may be a biomarker of DNA repair capacity in solid tumors, the tracking of 53BP1 phosphoforms in situ may give unique information regarding different cancer phenotypes or response to cancer treatment.
Collapse
Affiliation(s)
- Shane M Harding
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | |
Collapse
|
20
|
Parplys AC, Petermann E, Petersen C, Dikomey E, Borgmann K. DNA damage by X-rays and their impact on replication processes. Radiother Oncol 2012; 102:466-71. [PMID: 22326574 DOI: 10.1016/j.radonc.2012.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/08/2011] [Accepted: 01/02/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Replication-dependent radiosensitization of tumors ranks among the most promising tools for future improvements in tumor therapy. However, cell cycle checkpoint signaling during S phase is a key for maintaining genomic stability after ionizing irradiation allowing DNA damage repair by stabilizing replication forks, inhibiting new origin firing and recruiting DNA repair proteins. As the impact of the different types of DNA damage induced by ionizing radiation on replication fork functionality has not been investigated, this study was performed in tumor cells treated with various agents that induce specific DNA lesions. METHODS U2OS cells were exposed to methyl methanesulfonate (MMS) to induce base damage, low or high concentrations of hydrogen peroxide for the induction of SSBs, Topotecan to induce DSBs at replication, Mitomycin C (MMC) to induce interstrand cross-links or ionizing irradiation to analyze all damages. Chk1 phosphorylation, origin firing and replication fork progression, and cell cycle distribution were analyzed. RESULTS In our system, the extent of Chk1 phosphorylation was dependent on the type of damage induced and prolonged Chk1 phosphorylation correlated with the inhibition of replication initiation. Ionizing radiation, high concentrations of hydrogen peroxide, and Topotecan affected replication elongation much more strongly that the other agents. Almost all agents induced a slight increase in the S phase population but subsequent G2 arrest was only observed in response to those agents that strongly inhibited replication elongation and caused prolonged Chk1 phosphorylation. CONCLUSIONS Our data suggest that to improve radiotherapy, radiosensitivity in S phase could be increased by combining irradiation with agents that induce secondary DSB or inhibit checkpoint signaling, such as inhibitors of PARP or Chk1.
Collapse
|
21
|
Role of poly(ADP-ribose) glycohydrolase in the regulation of cell fate in response to benzo(a)pyrene. Exp Cell Res 2012; 318:682-90. [PMID: 22266578 DOI: 10.1016/j.yexcr.2012.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 01/01/2012] [Accepted: 01/03/2012] [Indexed: 11/20/2022]
Abstract
Poly(ADP-ribosyl)ation is a crucial regulator of cell fate in response to genotoxic stress. Poly(ADP-ribosyl)ation plays important roles in multiple cellular processes, including DNA repair, chromosomal stability, chromatin function, apoptosis, and transcriptional regulation. Poly(ADP-ribose) (PAR) degradation is carried out mainly by poly(ADP-ribose) glycohydrolase (PARG) enzymes. Benzo(a)pyrene (BaP) is a known human carcinogen. Previous studies in our laboratory demonstrated that exposure to BaP caused a concentration-dependent DNA damage in human bronchial epithelial (16HBE) cells. The role of PARG in the regulation of DNA damage induced by BaP is still unclear. To gain insight into the function of PARG and PAR in response to BaP, we used lentiviral gene silencing to generate 16HBE cell lines with stably suppressed PARG, and determined parameters of cell death and cell cycle following BaP exposure. We found that PARG was partially dependent on PAR synthesis, PARG depletion led to PAR accumulation. BaP-induced cell death was regulated by PARG, the absence of which was beneficial for undamaged cells. Our results further suggested that PARG probably has influence on ATM/p53 pathway and metabolic activation of BaP. Experimental evidences provided from this study suggest significant preventive properties of PAR accumulation in the toxicity caused by BaP.
Collapse
|
22
|
Rodemann HP, Wouters BG. Frontiers in molecular radiation biology/oncology. Radiother Oncol 2011; 101:1-6. [DOI: 10.1016/j.radonc.2011.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 12/15/2022]
|
23
|
Kwon JY, Seo YR. Differential gene expression following ionizing radiation in multicellular spheroid depending on p53 status: identification of potential targets and prediction of responsive signaling pathways. BIOCHIP JOURNAL 2011. [DOI: 10.1007/s13206-011-5313-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Nagelkerke A, van Kuijk SJA, Sweep FCGJ, Nagtegaal ID, Hoogerbrugge N, Martens JWM, Timmermans MA, van Laarhoven HWM, Bussink J, Span PN. Constitutive expression of γ-H2AX has prognostic relevance in triple negative breast cancer. Radiother Oncol 2011; 101:39-45. [PMID: 21840613 DOI: 10.1016/j.radonc.2011.07.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/09/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Constitutive γ-H2AX expression might indicate disruption of the DNA damage repair pathway, genomic instability, or shortened telomeric ends. Here, we quantified expression of endogenous γ-H2AX and its downstream factor 53BP1 in a large number of breast cancer cell lines (n=54) and a node-negative breast cancer cohort that had not received adjuvant systemic treatment (n=122). MATERIALS AND METHODS Formalin fixed paraffin embedded breast cancer cell lines and tumors were immunohistochemically analyzed for γ-H2AX and 53BP1 expression, and related to cell line, patient and tumor characteristics and to disease progression. RESULTS In breast cancer cell lines, γ-H2AX positivity was associated with the triple negative/basal like subgroup (p=0.005), and with BRCA1 (p=0.011) or p53 (p=0.053) mutations. Specifically in triple negative breast cancer patients a high number of γ-H2AX foci indicated a significantly worse prognosis (p=0.006 for triple negative vs. p=0.417 for estrogen receptor (ER), progesterone receptor (PR) or HER2 positive patients). A similar association with disease progression was found for 53BP1. In a multivariate analysis with tumor size, grade, and triple negativity, only the interaction between triple negativity and γ-H2AX remained significant (p=0.002, Hazard Ratio=6.77, 95% CI=2.07-22.2). CONCLUSIONS Constitutive γ-H2AX and 53BP1 staining reveals a subset of patients with triple negative breast tumors that have a significantly poorer prognosis.
Collapse
Affiliation(s)
- Anika Nagelkerke
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|