1
|
Ruiz TFR, Colleta SJ, Dos Santos DD, Castro NFC, Cabral ÁS, Calmon MF, Rahal P, Gil CD, Girol AP, Vilamaior PSL, Leonel ECR, Taboga SR. Bisphenol A disruption promotes mammary tumor microenvironment via phenotypic cell polarization and inflammatory response. Cell Biol Int 2023; 47:1136-1146. [PMID: 36906806 DOI: 10.1002/cbin.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
Inflammation in the established tumor microenvironment (TME) is often associated with a poor prognosis of breast cancer. Bisphenol A (BPA) is an endocrine-disrupting chemical that acts as inflammatory promoter and tumoral facilitator in mammary tissue. Previous studies demonstrated the onset of mammary carcinogenesis at aging when BPA exposure occurred in windows of development/susceptibility. We aim to investigate the inflammatory repercussions of BPA in TME in mammary gland (MG) during neoplastic development in aging. Female Mongolian gerbils were exposed to low (50 µg/kg) or high BPA (5000 µg/kg) doses during pregnancy and lactation. They were euthanized at 18 months of age (aging) and the MG were collected for inflammatory markers and histopathological analysis. Contrarily to control MG, BPA induced carcinogenic development mediated by COX-2 and p-STAT3 expression. BPA was also able to promote macrophage and mast cell (MC) polarization in tumoral phenotype, evidenced by pathways for recruitment and activation of these inflammatory cells and tissue invasiveness triggered by tumor necrosis factor-alpha and transforming growth factor-beta 1 (TGF-β1). Increase of tumor-associated macrophages, M1 (CD68 + iNOS+) and M2 (CD163+) expressing pro-tumoral mediators and metalloproteases was observed; this aspect greatly contributed to stromal remodeling and invasion of neoplastic cells. In addition, the MC population drastically increased in BPA-exposed MG. Tryptase-positive MCs increased in disrupted MG and expressed TGF-β1, contributing to EMT process during carcinogenesis mediated by BPA. BPA exposure interfered in inflammatory response by releasing and enhancing the expression of mediators that contribute to tumor growth and recruitment of inflammatory cells that promote a malignant profile.
Collapse
Affiliation(s)
- Thalles F R Ruiz
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Simone J Colleta
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Diego D Dos Santos
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.,Department of Morphology and Genetics, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Nayara F C Castro
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Ágata S Cabral
- Laboratory of Genomic Studies, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Marilia F Calmon
- Laboratory of Genomic Studies, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Laboratory of Genomic Studies, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Cristiane D Gil
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.,Department of Morphology and Genetics, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Ana Paula Girol
- Department of Basics Sciences, University Center Padre Albino (UNIFIPA), Catanduva, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences (ICB III), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Sebastião R Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Mehtani D, Puri N. Steering Mast Cells or Their Mediators as a Prospective Novel Therapeutic Approach for the Treatment of Hematological Malignancies. Front Oncol 2021; 11:731323. [PMID: 34631562 PMCID: PMC8497976 DOI: 10.3389/fonc.2021.731323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023] Open
Abstract
Tumor cells require signaling and close interaction with their microenvironment for their survival and proliferation. In the recent years, Mast cells have earned a greater importance for their presence and role in cancers. It is known that mast cells are attracted towards tumor microenvironment by secreted soluble chemotactic factors. Mast cells seem to exert a pro-tumorigenic role in hematological malignancies with a few exceptions where they showed anti-cancerous role. This dual role of mast cells in tumor growth and survival may be dependent on the intrinsic characteristics of the particular tumor, differences in tumor microenvironment according to tumor type, and the interactions and heterogeneity of mediators released by mast cells in the tumor microenvironment. In many studies, Mast cells and their mediators have been shown to affect tumor survival and growth, prognosis, inflammation, tumor vascularization and angiogenesis. Modulating mast cell accumulation, viability, activity and mediator release patterns may thus be important in controlling these malignancies. In this review, we emphasize on the role of mast cells in lymphoid malignancies and discuss strategies for targeting and steering mast cells or their mediators as a potential therapeutic approach for the treatment of these malignancies.
Collapse
Affiliation(s)
| | - Niti Puri
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4278658. [PMID: 30881591 PMCID: PMC6381575 DOI: 10.1155/2019/4278658] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Radiation-induced fibrosis (RIF) develops months to years after initial radiation exposure. RIF occurs when normal fibroblasts differentiate into myofibroblasts and lay down aberrant amounts of extracellular matrix proteins. One of the main drivers for developing RIF is reactive oxygen species (ROS) generated immediately after radiation exposure. Generation of ROS is known to induce epigenetic changes and cause differentiation of fibroblasts to myofibroblasts. Several antioxidant compounds have been shown to prevent radiation-induced epigenetic changes and the development of RIF. Therefore, reviewing the ROS-linked epigenetic changes in irradiated fibroblast cells is essential to understand the development and prevention of RIF.
Collapse
|
4
|
Glajcar A, Szpor J, Pacek A, Tyrak KE, Chan F, Streb J, Hodorowicz-Zaniewska D, Okoń K. The relationship between breast cancer molecular subtypes and mast cell populations in tumor microenvironment. Virchows Arch 2017; 470:505-515. [PMID: 28315938 PMCID: PMC5406445 DOI: 10.1007/s00428-017-2103-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
Abstract
Mast cells (MCs) are a part of the innate immune system. The MC functions toward cancer are partially based on the release of chymase and tryptase. However, the MC effect on breast cancer is controversial. The aim of our study was to investigate the presence of MCs in breast cancer tumors of different molecular subtypes and their relationships with other pathological prognostic factors. Tryptase- and chymase-positive mast cell densities were evaluated by immunohistochemistry in 108 primary invasive breast cancer tissue samples. Positive cells were counted within the tumor bed and at the invasive margin. For all analyzed MC subpopulations, we observed statistically significant differences between individual molecular subtypes of breast cancer. The significantly higher numbers of intratumoral chymase- and tryptase-positive mast cells were observed in luminal A and luminal B tumors compared to triple-negative and HER2+ non-luminal lesions. A denser MC infiltration was associated with lower tumor grade, higher ER and PR expression, lower proliferation rate as well as the lack of HER2 overexpression. The results obtained in our study indicate a possible association of chymase- and tryptase-positive MCs with more favorable cancer immunophenotype and with beneficial prognostic indicators in breast cancer.
Collapse
Affiliation(s)
- Anna Glajcar
- Department of Pathomorphology, Jagiellonian University Medical College, ul. Grzegórzecka 16, 31-531, Kraków, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Jagiellonian University Medical College, ul. Grzegórzecka 16, 31-531, Kraków, Poland
| | - Agnieszka Pacek
- Department of Pathomorphology, Jagiellonian University Medical College, ul. Grzegórzecka 16, 31-531, Kraków, Poland
| | - Katarzyna Ewa Tyrak
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Florence Chan
- Department of Pathomorphology, Jagiellonian University Medical College, ul. Grzegórzecka 16, 31-531, Kraków, Poland
| | - Joanna Streb
- Department of Oncology, Jagiellonian University Medical College, Kraków, Poland
| | - Diana Hodorowicz-Zaniewska
- Department of General, Oncological, and Gastrointestinal Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, ul. Grzegórzecka 16, 31-531, Kraków, Poland.
| |
Collapse
|
5
|
Tanis E, Julié C, Emile JF, Mauer M, Nordlinger B, Aust D, Roth A, Lutz MP, Gruenberger T, Wrba F, Sorbye H, Bechstein W, Schlag P, Fisseler A, Ruers T. Prognostic impact of immune response in resectable colorectal liver metastases treated by surgery alone or surgery with perioperative FOLFOX in the randomised EORTC study 40983. Eur J Cancer 2015; 51:2708-17. [PMID: 26342674 DOI: 10.1016/j.ejca.2015.08.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/29/2015] [Accepted: 08/14/2015] [Indexed: 12/21/2022]
Abstract
AIM To investigate whether the immune response in colorectal liver metastases is related to progression free survival (PFS) and if this may be influenced by systemic therapy. METHODS A retrospective central collection of tumour tissue was organised for the European Organisation for Research and Treatment of Cancer (EORTC) study 40983, where patients with colorectal liver metastases were treated by either resection alone or resection with perioperative FOLFOX. Immunostaining on whole slides was performed to recognise T-lymphocytes (CD3+, CD4+, CD8+), B-lymphocytes (CD20+), macrophages (CD68+) and mast cells (CD117+) inside the tumour, at the tumour border (TNI) and in normal liver tissue surrounding the tumour (0.5-2mm from the TNI). Immunological response was compared between treatment arms and correlated to PFS. RESULTS Tumour tissue and immune response profiles were available for 82 resected patients, 38 in the perioperative chemotherapy arm and 44 in the surgery alone arm. Baseline patient and disease characteristics were similar between the treatment arms. In response to chemotherapy, we observed increased CD3+ lymphocyte and mast cell counts inside the tumour (p<0.01), lower CD4+ lymphocytes in the normal liver tissue (p=0.02) and lower macrophage counts in normal tissue (p<0.01) and at the TNI (p=0.02). High number of CD3+ lymphocyte and mast cells, and high T-cell score were correlated with tumour regression grade (TRG). Prolonged PFS correlated with the presence of mast cells in the tumour (9.8 versus 16.5 months, Hazard ratio (HR) 0.54 p=0.03), higher CD3+ lymphocyte count at the TNI (10.8 versus 22.8 months, HR 0.57, p=0.03) and T-cell score >2 (10.8 versus 38.6 months, HR 0.51, p=0.04). CONCLUSION Our analyses in the context of a randomised study suggest that chemotherapy influences immune cell profiles, independent of patient characteristics. Immune responses of lymphocytes and mast cells were associated with pathological response to chemotherapy and to increased PFS. High CD3+ lymphocytes at the tumour front and intratumoural mast cells appear to be prognostic for patients with colorectal liver metastases.
Collapse
Affiliation(s)
- Erik Tanis
- EORTC headquarters, Brussels, Belgium; The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | - Fritz Wrba
- Rudolfstiftung Hospital, Vienna, Austria
| | | | - Wolf Bechstein
- Klinikum der Johann-Wolfgang-Goethe-Universität, Frankfurt am Main, Germany
| | - Peter Schlag
- Charité Campus Buch/ECRC and MDC, Berlin, Germany
| | | | - Theo Ruers
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|