1
|
Pan Z, Men K, Liang B, Song Z, Wu R, Dai J. A subregion-based prediction model for local-regional recurrence risk in head and neck squamous cell carcinoma. Radiother Oncol 2023; 184:109684. [PMID: 37120101 DOI: 10.1016/j.radonc.2023.109684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND AND PURPOSE Given that the intratumoral heterogeneity of head and neck squamous cell carcinoma may be related to the local control rate of radiotherapy, the aim of this study was to construct a subregion-based model that can predict the risk of local-regional recurrence, and to quantitatively assess the relative contribution of subregions. MATERIALS AND METHODS The CT images, PET images, dose images and GTVs of 228 patients with head and neck squamous cell carcinoma from four different institutions of the The Cancer Imaging Archive(TCIA) were included in the study. Using a supervoxel segmentation algorithm called maskSLIC to generate individual-level subregions. After extracting 1781 radiomics and 1767 dosiomics features from subregions, an attention-based multiple instance risk prediction model (MIR) was established. The GTV model was developed based on the whole tumour area and was used to compare the prediction performance with the MIR model. Furthermore, the MIR-Clinical model was constructed by integrating the MIR model with clinical factors. Subregional analysis was carried out through the Wilcoxon test to find the differential radiomic features between the highest and lowest weighted subregions. RESULTS Compared with the GTV model, the C-index of MIR model was significantly increased from 0.624 to 0.721(Wilcoxon test, p value< 0.0001). When MIR model was combined with clinical factors, the C-index was further increased to 0.766. Subregional analysis showed that for LR patients, the top three differential radiomic features between the highest and lowest weighted subregions were GLRLM_ShortRunHighGrayLevelEmphasis, GRLM_HghGrayLevelRunEmphasis and GLRLM_LongRunHighGrayLevelEmphasis. CONCLUSION This study developed a subregion-based model that can predict the risk of local-regional recurrence and quantitatively assess relevant subregions, which may provide technical support for the precision radiotherapy in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Ziqi Pan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kuo Men
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bin Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhiyue Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Runye Wu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
2
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
3
|
Apilan AG, Mothersill C. Targeted and Non-Targeted Mechanisms for Killing Hypoxic Tumour Cells-Are There New Avenues for Treatment? Int J Mol Sci 2021; 22:8651. [PMID: 34445354 PMCID: PMC8395506 DOI: 10.3390/ijms22168651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE A major issue in radiotherapy is the relative resistance of hypoxic cells to radiation. Historic approaches to this problem include the use of oxygen mimetic compounds to sensitize tumour cells, which were unsuccessful. This review looks at modern approaches aimed at increasing the efficacy of targeting and radiosensitizing hypoxic tumour microenvironments relative to normal tissues and asks the question of whether non-targeted effects in radiobiology may provide a new "target". Novel techniques involve the integration of recent technological advancements such as nanotechnology, cell manipulation, and medical imaging. Particularly, the major areas of research discussed in this review include tumour hypoxia imaging through PET imaging to guide carbogen breathing, gold nanoparticles, macrophage-mediated drug delivery systems used for hypoxia-activate prodrugs, and autophagy inhibitors. Furthermore, this review outlines several features of these methods, including the mechanisms of action to induce radiosensitization, the increased accuracy in targeting hypoxic tumour microenvironments relative to normal tissue, preclinical/clinical trials, and future considerations. CONCLUSIONS This review suggests that the four novel tumour hypoxia therapeutics demonstrate compelling evidence that these techniques can serve as powerful tools to increase targeting efficacy and radiosensitizing hypoxic tumour microenvironments relative to normal tissue. Each technique uses a different way to manipulate the therapeutic ratio, which we have labelled "oxygenate, target, use, and digest". In addition, by focusing on emerging non-targeted and out-of-field effects, new umbrella targets are identified, which instead of sensitizing hypoxic cells, seek to reduce the radiosensitivity of normal tissues.
Collapse
|
4
|
Ferini G, Valenti V, Tripoli A, Illari SI, Molino L, Parisi S, Cacciola A, Lillo S, Giuffrida D, Pergolizzi S. Lattice or Oxygen-Guided Radiotherapy: What If They Converge? Possible Future Directions in the Era of Immunotherapy. Cancers (Basel) 2021; 13:cancers13133290. [PMID: 34209192 PMCID: PMC8268715 DOI: 10.3390/cancers13133290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/31/2022] Open
Abstract
Palliative radiotherapy has a great role in the treatment of large tumor masses. However, treating a bulky disease could be difficult, especially in critical anatomical areas. In daily clinical practice, short course hypofractionated radiotherapy is delivered in order to control the symptomatic disease. Radiation fields generally encompass the entire tumor mass, which is homogeneously irradiated. Recent technological advances enable delivering a higher radiation dose in small areas within a large mass. This goal, previously achieved thanks to the GRID approach, is now achievable using the newest concept of LATTICE radiotherapy (LT-RT). This kind of treatment allows exploiting various radiation effects, such as bystander and abscopal effects. These events may be enhanced by the concomitant use of immunotherapy, with the latter being ever more successfully delivered in cancer patients. Moreover, a critical issue in the treatment of large masses is the inhomogeneous intratumoral distribution of well-oxygenated and hypo-oxygenated areas. It is well known that hypoxic areas are more resistant to the killing effect of radiation, hence the need to target them with higher aggressive doses. This concept introduces the "oxygen-guided radiation therapy" (OGRT), which means looking for suitable hypoxic markers to implement in PET/CT and Magnetic Resonance Imaging. Future treatment strategies are likely to involve combinations of LT-RT, OGRT, and immunotherapy. In this paper, we review the radiobiological rationale behind a potential benefit of LT-RT and OGRT, and we summarize the results reported in the few clinical trials published so far regarding these issues. Lastly, we suggest what future perspectives may emerge by combining immunotherapy with LT-RT/OGRT.
Collapse
Affiliation(s)
- Gianluca Ferini
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
- Correspondence: ; Tel.: +39-095-789-4581
| | - Vito Valenti
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
| | | | | | - Laura Molino
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Silvana Parisi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Alberto Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Sara Lillo
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Dario Giuffrida
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy;
| | - Stefano Pergolizzi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| |
Collapse
|
5
|
Schaner PE, Tran LBA, Zaki BI, Swartz HM, Demidenko E, Williams BB, Siegel A, Kuppusamy P, Flood AB, Gallez B. The impact of particulate electron paramagnetic resonance oxygen sensors on fluorodeoxyglucose imaging characteristics detected via positron emission tomography. Sci Rep 2021; 11:4422. [PMID: 33627688 PMCID: PMC7904945 DOI: 10.1038/s41598-021-82754-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/25/2021] [Indexed: 11/08/2022] Open
Abstract
During a first-in-humans clinical trial investigating electron paramagnetic resonance tumor oximetry, a patient injected with the particulate oxygen sensor Printex ink was found to have unexpected fluorodeoxyglucose (FDG) uptake in a dermal nodule via positron emission tomography (PET). This nodule co-localized with the Printex ink injection; biopsy of the area, due to concern for malignancy, revealed findings consistent with ink and an associated inflammatory reaction. Investigations were subsequently performed to assess the impact of oxygen sensors on FDG-PET/CT imaging. A retrospective analysis of three clinical tumor oximetry trials involving two oxygen sensors (charcoal particulates and LiNc-BuO microcrystals) in 22 patients was performed to evaluate FDG imaging characteristics. The impact of clinically used oxygen sensors (carbon black, charcoal particulates, LiNc-BuO microcrystals) on FDG-PET/CT imaging after implantation in rat muscle (n = 12) was investigated. The retrospective review revealed no other patients with FDG avidity associated with particulate sensors. The preclinical investigation found no injected oxygen sensor whose mean standard uptake values differed significantly from sham injections. The risk of a false-positive FDG-PET/CT scan due to oxygen sensors appears low. However, in the right clinical context the potential exists that an associated inflammatory reaction may confound interpretation.
Collapse
Affiliation(s)
- Philip E Schaner
- Department of Medicine Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
| | - Ly-Binh-An Tran
- Biomedical Magnetic Resonance, Louvain Drug Research Institute, Universite Catholique du Louvain, Brussels, Belgium
| | - Bassem I Zaki
- Department of Medicine Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Harold M Swartz
- Department of Medicine Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
- Department of Radiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Benjamin B Williams
- Department of Medicine Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
- Department of Radiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Alan Siegel
- Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Periannan Kuppusamy
- Department of Medicine Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
- Department of Radiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Ann Barry Flood
- Department of Radiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Bernard Gallez
- Biomedical Magnetic Resonance, Louvain Drug Research Institute, Universite Catholique du Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Jiří K, Vladimír V, Michal A, Matěj N, Silvia S, Pavel V, Kateřina D, Jana P, Barbora O, Eliška R, Petr L, Matěj P, Alexander G, Jozef R. Proton pencil-beam scanning radiotherapy in the treatment of nasopharyngeal cancer: dosimetric parameters and 2-year results. Eur Arch Otorhinolaryngol 2020; 278:763-769. [PMID: 32623508 DOI: 10.1007/s00405-020-06175-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Patients with nasopharyngeal cancer are candidates for proton radiotherapy due to large and comprehensive target volumes, and the necessity for sparing of healthy tissues. The aim of this work is to evaluate treatment outcome and toxicity profile of patients treated with proton pencil-beam scanning radiotherapy. MATERIALS AND METHODS Between Jan 2013 and June 2018, 40 patients were treated for nasopharyngeal cancer (NPC) with IMPT (proton radiotherapy with modulated intensity). Median age was 47 years and the majority of patients had locally advanced tumors (stage 2-8 patients. (20%); stage 3-18 patients (45%); stage 4A-10 patients. (25%); stage 4B-4 patients. (10%). Median of total dose was 74 GyE (70-76 GyE) in 37 fractions (35-38). Bilateral neck irradiation was used in all cases. Concomitant chemotherapy was applied in 34 cases. (85%). Median follow-up time was 24 (1.5-62) months. RESULTS Two-year overall survival (OS), disease-free survival (DFS), and local control (LC) were 80%, 75%, and 84%, respectively. Acute toxicity was generally mild despite large target volumes and concurrent application of chemotherapy with skin toxicity and dysphagia reported as the most frequent acute side effects. The insertion of a percutaneous endoscopic gastrectomy (PEG) was necessary in four cases (10%). Serious late toxicity (G > 3. RTOG) was observed in two patients (5%) (dysphagia and brain necrosis). CONCLUSION IMPT for nasopharyngeal cancer patients is feasible with mild acute toxicity. Treatment outcomes are promising despite the high percentage of advanced disease in this group.
Collapse
Affiliation(s)
- Kubeš Jiří
- Proton Therapy Center Czech, Budínova 1a, 18000, Prague 8, Czech Republic
- Department of Oncology, 1st Faculty of Medicine, General University Hospital, Charles University, Kateřinská, 32 121 08, Praha 2, Czech Republic
- Department of Oncology, 2nd Faculty of Medicine, Charles University Prague and Motol University Hospital, Kateřinská, 32 121 08, Praha 2, Czech Republic
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University, Sítná square 3105, 272 01, Kladno, Czech Republic
| | - Vondráček Vladimír
- Proton Therapy Center Czech, Budínova 1a, 18000, Prague 8, Czech Republic
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University, Sítná square 3105, 272 01, Kladno, Czech Republic
| | - Andrlik Michal
- Proton Therapy Center Czech, Budínova 1a, 18000, Prague 8, Czech Republic.
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University, Sítná square 3105, 272 01, Kladno, Czech Republic.
| | - Navrátil Matěj
- Proton Therapy Center Czech, Budínova 1a, 18000, Prague 8, Czech Republic
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University, Sítná square 3105, 272 01, Kladno, Czech Republic
| | - Sláviková Silvia
- Proton Therapy Center Czech, Budínova 1a, 18000, Prague 8, Czech Republic
| | - Vítek Pavel
- Proton Therapy Center Czech, Budínova 1a, 18000, Prague 8, Czech Republic
- Department of Oncology, 1st Faculty of Medicine, General University Hospital, Charles University, Kateřinská, 32 121 08, Praha 2, Czech Republic
- Department of Oncology, 2nd Faculty of Medicine, Charles University Prague and Motol University Hospital, Kateřinská, 32 121 08, Praha 2, Czech Republic
| | - Dědečková Kateřina
- Proton Therapy Center Czech, Budínova 1a, 18000, Prague 8, Czech Republic
- Department of Oncology, 2nd Faculty of Medicine, Charles University Prague and Motol University Hospital, Kateřinská, 32 121 08, Praha 2, Czech Republic
| | - Prausová Jana
- Department of Oncology, 2nd Faculty of Medicine, Charles University Prague and Motol University Hospital, Kateřinská, 32 121 08, Praha 2, Czech Republic
| | - Ondrová Barbora
- Proton Therapy Center Czech, Budínova 1a, 18000, Prague 8, Czech Republic
| | - Rotnáglová Eliška
- Proton Therapy Center Czech, Budínova 1a, 18000, Prague 8, Czech Republic
| | - Lukeš Petr
- Proton Therapy Center Czech, Budínova 1a, 18000, Prague 8, Czech Republic
- Department of Otorhinolaryngology, Head and Neck Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Patzelt Matěj
- Department of Medical Biophysics and Informatics, 3rd Faculty of Medicine, Charles University, Praha 10 Ruská 87, 100 00, Prague, Czech Republic
- Department of Plastic Surgery, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Grebenyuk Alexander
- Department of Health Protection and Disaster Medicine, Pavlov First Saint Petersburg State Medical University, Lva Tolstogo 6-8, 197020, Saint Petersburg, Russia
| | - Rosina Jozef
- Department of Medical Biophysics and Informatics, 3rd Faculty of Medicine, Charles University, Praha 10 Ruská 87, 100 00, Prague, Czech Republic
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University, Sítná square 3105, 272 01, Kladno, Czech Republic
| |
Collapse
|
7
|
Duchêne G, Abarca‐Quinones J, Leclercq I, Duprez T, Peeters F. Insights into tissue microstructure using a double diffusion encoding sequence on a clinical scanner: Validation and application to experimental tumor models. Magn Reson Med 2019; 83:1263-1276. [DOI: 10.1002/mrm.28012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
| | - Jorge Abarca‐Quinones
- Université Catholique de Louvain Brussels Belgium
- Cliniques Universitaires Saint‐Luc Brussels Belgium
| | - Isabelle Leclercq
- Université Catholique de Louvain Brussels Belgium
- Cliniques Universitaires Saint‐Luc Brussels Belgium
| | - Thierry Duprez
- Université Catholique de Louvain Brussels Belgium
- Cliniques Universitaires Saint‐Luc Brussels Belgium
| | | |
Collapse
|
8
|
Donche S, Verhoeven J, Descamps B, Bolcaen J, Deblaere K, Boterberg T, Van den Broecke C, Vanhove C, Goethals I. The Path Toward PET-Guided Radiation Therapy for Glioblastoma in Laboratory Animals: A Mini Review. Front Med (Lausanne) 2019; 6:5. [PMID: 30761302 PMCID: PMC6361864 DOI: 10.3389/fmed.2019.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most aggressive and malignant primary brain tumor in adults. Despite the current state-of-the-art treatment, which consists of maximal surgical resection followed by radiation therapy, concomitant, and adjuvant chemotherapy, progression remains rapid due to aggressive tumor characteristics. Several new therapeutic targets have been investigated using chemotherapeutics and targeted molecular drugs, however, the intrinsic resistance to induced cell death of brain cells impede the effectiveness of systemic therapies. Also, the unique immune environment of the central nervous system imposes challenges for immune-based therapeutics. Therefore, it is important to consider other approaches to treat these tumors. There is a well-known dose-response relationship for glioblastoma with increased survival with increasing doses, but this effect seems to cap around 60 Gy, due to increased toxicity to the normal brain. Currently, radiation treatment planning of glioblastoma patients relies on CT and MRI that does not visualize the heterogeneous nature of the tumor, and consequently, a homogenous dose is delivered to the entire tumor. Metabolic imaging, such as positron-emission tomography, allows to visualize the heterogeneous tumor environment. Using these metabolic imaging techniques, an approach called dose painting can be used to deliver a higher dose to the tumor regions with high malignancy and/or radiation resistance. Preclinical studies are required for evaluating the benefits of novel radiation treatment strategies, such as PET-based dose painting. The aim of this review is to give a brief overview of promising PET tracers that can be evaluated in laboratory animals to bridge the gap between PET-based dose painting in glioblastoma patients.
Collapse
Affiliation(s)
- Sam Donche
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Jeroen Verhoeven
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Julie Bolcaen
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | | | - Christian Vanhove
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Tran LBA, Cao-Pham TT, Jordan BF, Deschoemaeker S, Heyerick A, Gallez B. Impact of myo-inositol trispyrophosphate (ITPP) on tumour oxygenation and response to irradiation in rodent tumour models. J Cell Mol Med 2018; 23:1908-1916. [PMID: 30575283 PMCID: PMC6378184 DOI: 10.1111/jcmm.14092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 02/01/2023] Open
Abstract
Tumour hypoxia is a well-established factor of resistance in radiation therapy (RT). Myo-inositol trispyrophosphate (ITPP) is an allosteric effector that reduces the oxygen-binding affinity of haemoglobin and facilitates the release of oxygen by red blood cells. We investigated herein the oxygenation effect of ITPP in six tumour models and its radiosensitizing effect in two of these models. The evolution of tumour pO2 upon ITPP administration was monitored on six models using 1.2 GHz Electron Paramagnetic Resonance (EPR) oximetry. The effect of ITPP on tumour perfusion was assessed by Hoechst staining and the oxygen consumption rate (OCR) in vitro was measured using 9.5 GHz EPR. The therapeutic effect of ITPP with and without RT was evaluated on rhabdomyosarcoma and 9L-glioma rat models. ITPP enhanced tumour oxygenation in six models. The administration of 2 g/kg ITPP once daily for 2 days led to a tumour reoxygenation for at least 4 days. ITPP reduced the OCR in six cell lines but had no effect on tumour perfusion when tested on 9L-gliomas. ITPP plus RT did not improve the outcome in rhabdomyosarcomas. In 9L-gliomas, some of tumours receiving the combined treatment were cured while other tumours did not benefit from the treatment. ITPP increased oxygenation in six tumour models. A decrease in OCR could contribute to the decrease in tumour hypoxia. The association of RT with ITPP was beneficial for a few 9L-gliomas but was absent in the rhabdomyosarcomas.
Collapse
Affiliation(s)
- Ly-Binh-An Tran
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Thanh-Trang Cao-Pham
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | | - Bernard Gallez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
10
|
Melsens E, De Vlieghere E, Descamps B, Vanhove C, Kersemans K, De Vos F, Goethals I, Brans B, De Wever O, Ceelen W, Pattyn P. Hypoxia imaging with 18F-FAZA PET/CT predicts radiotherapy response in esophageal adenocarcinoma xenografts. Radiat Oncol 2018. [PMID: 29514673 PMCID: PMC5842657 DOI: 10.1186/s13014-018-0984-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal cancer is an aggressive disease with poor survival rates. A more patient-tailored approach based on predictive biomarkers could improve outcome. We aimed to predict radiotherapy (RT) response by imaging tumor hypoxia with 18F-FAZA PET/CT in an esophageal adenocarcinoma (EAC) mouse model. Additionally, we investigated the radiosensitizing effect of the hypoxia modifier nimorazole in vitro and in vivo. Methods In vitro MTS cell proliferation assays (OACM5 1.C SC1, human EAC cell line) were performed under normoxic and hypoxic (< 1%) conditions: control (100 μL PBS), nimorazole, irradiation (5, 10 or 20 Gy) with or without nimorazole. In vivo, subcutaneous xenografts were induced in nude mice (OACM5 1.C SC1). Treatment was given daily for 5 consecutive days: (A) control (600 μl NaCl 0.9% intraperitoneally (IP)) (N = 5, n = 7), (B) RT (5 Gy/d) (N = 11, n = 20), (C) combination (nimorazole (200 mg/kg/d IP) 30 min before RT) (N = 13, n = 21). N = number of mice, n = number of tumors. 18F-FAZA PET/CT was performed before treatment and tumor to background (T/B) ratios were calculated. Relative tumor growth was calculated and tumor sections were examined histologically (hypoxia, proliferation). Results A T/B ≥ 3.59 on pre-treatment 18F-FAZA PET/CT was predictive for worse RT response (sensitivity 92.3%, specificity 71.4%). Radiation was less effective in hypoxic tumors (T/B ≥ 3.59) compared to normoxic tumors (T/B < 3.59) (P = 0.0025). In vitro, pre-treatment with nimorazole significantly decreased hypoxic radioresistance (P < 0.01) while in vivo, nimorazole enhanced the efficacy of RT to suppress cancer cell proliferation in hypoxic tumor areas (Ki67, P = 0.064), but did not affect macroscopic tumor growth. Conclusions Tumor tissue hypoxia as measured with 18F-FAZA PET/CT is predictive for RT response in an EAC xenograft model. The radiosensitizing effect of nimorazole was questionable and requires further investigation. Electronic supplementary material The online version of this article (10.1186/s13014-018-0984-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elodie Melsens
- Laboratory of Experimental Surgery, Department of Gastro- Intestinal Surgery, Ghent University Hospital, De Pintelaan 185, B-9000, Ghent, Belgium.
| | - Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Ken Kersemans
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Filip De Vos
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Boudewijn Brans
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Laboratory of Experimental Surgery, Department of Gastro- Intestinal Surgery, Ghent University Hospital, De Pintelaan 185, B-9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Piet Pattyn
- Laboratory of Experimental Surgery, Department of Gastro- Intestinal Surgery, Ghent University Hospital, De Pintelaan 185, B-9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Cao-Pham TT, Joudiou N, Van Hul M, Bouzin C, Cani PD, Gallez B, Jordan BF. Combined endogenous MR biomarkers to predict basal tumor oxygenation and response to hyperoxic challenge. NMR IN BIOMEDICINE 2017; 30:e3836. [PMID: 29024086 DOI: 10.1002/nbm.3836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/18/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Hypoxia is a common feature of solid tumors, which translates into increased angiogenesis, malignant phenotype cell selection, change in gene expression and greater resistance to radiotherapy and chemotherapy. Therefore, there is a need for markers of hypoxia to stratify patients, in order to personalize treatment to improve therapeutic outcome. However, no modality has yet been validated for the screening of hypoxia in routine clinical practice. Magnetic resonance imaging (MRI) R1 and R2 * relaxation parameters are sensitive to tissue oxygenation: R1 is sensitive to dissolved oxygen and R2 * is sensitive to intravascular deoxyhemoglobin content. Two rat tumor models with distinct levels of hypoxia, 9L-glioma and rhabdomyosarcoma, were imaged for R1 and R2 * under air and carbogen (95% O2 and 5% CO2 ) breathing conditions. It was observed that the basal tumor oxygenation level had an impact on the amplitude of response to carbogen in the vascular compartment (R2 *), but not in the tissue compartment (R1 ). In addition, the change in tissue oxygenation estimated by ΔR1 correlated with the change in vascular oxygenation estimated by ΔR2 *, which is consistent with an increase in oxygen supply generating an elevated tumor pO2 . At the intra-tumoral level, we identified four types of voxel to which a hypoxic feature was attributed (mild hypoxia, severe hypoxia, normoxia and vascular steal), depending on the carbogen-induced change in R1 and R2 * values for each voxel. The results showed that 9L-gliomas present more normoxic fractions, whereas rhabdomyosarcomas present more hypoxic fractions, which is in accordance with a previous study using 18 F-fluoroazomycin arabinoside (18 F-FAZA) and electron paramagnetic resonance (EPR) oximetry. The response of the combined endogenous MRI contrasts to carbogen challenge could be a useful tool to predict different tumor hypoxic fractions.
Collapse
Affiliation(s)
- Thanh-Trang Cao-Pham
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Nicolas Joudiou
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Matthias Van Hul
- Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Caroline Bouzin
- Université catholique de Louvain, IREC Imaging Platform, Brussels, Belgium
| | - Patrice D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Bernard Gallez
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Bénédicte F Jordan
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| |
Collapse
|
12
|
Raccagni I, Valtorta S, Moresco RM, Belloli S. Tumour hypoxia: lessons learnt from preclinical imaging. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0248-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Troost EGC, Koi L, Yaromina A, Krause M. Therapeutic options to overcome tumor hypoxia in radiation oncology. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0247-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Gallez B, Neveu MA, Danhier P, Jordan BF. Manipulation of tumor oxygenation and radiosensitivity through modification of cell respiration. A critical review of approaches and imaging biomarkers for therapeutic guidance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:700-711. [DOI: 10.1016/j.bbabio.2017.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/17/2022]
|
15
|
Colliez F, Gallez B, Jordan BF. Assessing Tumor Oxygenation for Predicting Outcome in Radiation Oncology: A Review of Studies Correlating Tumor Hypoxic Status and Outcome in the Preclinical and Clinical Settings. Front Oncol 2017; 7:10. [PMID: 28180110 PMCID: PMC5263142 DOI: 10.3389/fonc.2017.00010] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 12/30/2022] Open
Abstract
Tumor hypoxia is recognized as a limiting factor for the efficacy of radiotherapy, because it enhances tumor radioresistance. It is strongly suggested that assessing tumor oxygenation could help to predict the outcome of cancer patients undergoing radiation therapy. Strategies have also been developed to alleviate tumor hypoxia in order to radiosensitize tumors. In addition, oxygen mapping is critically needed for intensity modulated radiation therapy (IMRT), in which the most hypoxic regions require higher radiation doses and the most oxygenated regions require lower radiation doses. However, the assessment of tumor oxygenation is not yet included in day-to-day clinical practice. This is due to the lack of a method for the quantitative and non-invasive mapping of tumor oxygenation. To fully integrate tumor hypoxia parameters into effective improvements of the individually tailored radiation therapy protocols in cancer patients, methods allowing non-invasively repeated, safe, and robust mapping of changes in tissue oxygenation are required. In this review, non-invasive methods dedicated to assessing tumor oxygenation with the ultimate goal of predicting outcome in radiation oncology are presented, including positron emission tomography used with nitroimidazole tracers, magnetic resonance methods using endogenous contrasts (R1 and R2*-based methods), and electron paramagnetic resonance oximetry; the goal is to highlight results of studies establishing correlations between tumor hypoxic status and patients’ outcome in the preclinical and clinical settings.
Collapse
Affiliation(s)
- Florence Colliez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|
16
|
Gallez B. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:16-37. [PMID: 27421469 DOI: 10.1093/rpd/ncw157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far.
Collapse
Affiliation(s)
- Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Avenue Mounier 73.08, B-1200, Brussels, Belgium
| |
Collapse
|
17
|
Cao-Pham TT, Tran LBA, Colliez F, Joudiou N, El Bachiri S, Grégoire V, Levêque P, Gallez B, Jordan BF. Monitoring Tumor Response to Carbogen Breathing by Oxygen-Sensitive Magnetic Resonance Parameters to Predict the Outcome of Radiation Therapy: A Preclinical Study. Int J Radiat Oncol Biol Phys 2016; 96:149-60. [PMID: 27511852 DOI: 10.1016/j.ijrobp.2016.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/25/2016] [Accepted: 04/30/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE In an effort to develop noninvasive in vivo methods for mapping tumor oxygenation, magnetic resonance (MR)-derived parameters are being considered, including global R1, water R1, lipids R1, and R2*. R1 is sensitive to dissolved molecular oxygen, whereas R2* is sensitive to blood oxygenation, detecting changes in dHb. This work compares global R1, water R1, lipids R1, and R2* with pO2 assessed by electron paramagnetic resonance (EPR) oximetry, as potential markers of the outcome of radiation therapy (RT). METHODS AND MATERIALS R1, R2*, and EPR were performed on rhabdomyosarcoma and 9L-glioma tumor models, under air and carbogen breathing conditions (95% O2, 5% CO2). Because the models demonstrated different radiosensitivity properties toward carbogen, a growth delay (GD) assay was performed on the rhabdomyosarcoma model and a tumor control dose 50% (TCD50) was performed on the 9L-glioma model. RESULTS Magnetic resonance imaging oxygen-sensitive parameters detected the positive changes in oxygenation induced by carbogen within tumors. No consistent correlation was seen throughout the study between MR parameters and pO2. Global and lipids R1 were found to be correlated to pO2 in the rhabdomyosarcoma model, whereas R2* was found to be inversely correlated to pO2 in the 9L-glioma model (P=.05 and .03). Carbogen increased the TCD50 of 9L-glioma but did not increase the GD of rhabdomyosarcoma. Only R2* was predictive (P<.05) for the curability of 9L-glioma at 40 Gy, a dose that showed a difference in response to RT between carbogen and air-breathing groups. (18)F-FAZA positron emission tomography imaging has been shown to be a predictive marker under the same conditions. CONCLUSION This work illustrates the sensitivity of oxygen-sensitive R1 and R2* parameters to changes in tumor oxygenation. However, R1 parameters showed limitations in terms of predicting the outcome of RT in the tumor models studied, whereas R2* was found to be correlated with the outcome in the responsive model.
Collapse
Affiliation(s)
- Thanh-Trang Cao-Pham
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Ly-Binh-An Tran
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Florence Colliez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Nicolas Joudiou
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Sabrina El Bachiri
- Université Catholique de Louvain, IMMAQ Technological Platform, Methodology and Statistical Support, Louvain-la-Neuve, Belgium
| | - Vincent Grégoire
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Center for Molecular Imaging, Radiotherapy and Oncology, Brussels, Belgium
| | - Philippe Levêque
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Bénédicte F Jordan
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium.
| |
Collapse
|
18
|
Positron emission tomography of high-grade gliomas. J Neurooncol 2016; 127:415-25. [PMID: 26897013 DOI: 10.1007/s11060-016-2077-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
High-grade gliomas [HGG (WHO grades III-IV)] are almost invariably fatal. Imaging of HGG is important for orientating diagnosis, prognosis and treatment planning and is crucial for development of novel, more effective therapies. Given the potentially unlimited number of usable tracing molecules and the elevated number of available radionuclides, PET allows gathering multiple informations on HGG including data on tissue metabolism and drug pharmacokinetics. PET studies on the diagnosis, prognosis and treatment of HGG carried out by most frequently used tracers and radionuclides ((11)C and (18)F) and published in 2014 have been reviewed. These studies demonstrate that a thorough choice of tracers may confer elevated diagnostic and prognostic power to PET imaging of HGG. They also suggest that a combination of PET and MRI may give the most complete and reliable imaging information on HGG and that research on hybrid PET/MRI may be paying back in terms of improved diagnosis, prognosis and treatment planning of these deadly tumours.
Collapse
|
19
|
Tran LBA, Bol A, Labar D, Karroum O, Mignion L, Bol V, Jordan BF, Grégoire V, Gallez B. DW-MRI and18F-FLT PET for early assessment of response to radiation therapy associated with hypoxia-driven interventions. Preclinical studies using manipulation of oxygenation and/or dose escalation. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:115-21. [DOI: 10.1002/cmmi.1670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 07/17/2015] [Accepted: 09/03/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Ly-Binh-An Tran
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group; Université catholique de Louvain; Brussels Belgium
| | - Anne Bol
- Institut de Recherche Expérimentale et Clinique, Center for Molecular Imaging, Radiotherapy and Oncology; Université catholique de Louvain; Brussels Belgium
| | - Daniel Labar
- Institut de Recherche Expérimentale et Clinique, Center for Molecular Imaging, Radiotherapy and Oncology; Université catholique de Louvain; Brussels Belgium
| | - Oussama Karroum
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group; Université catholique de Louvain; Brussels Belgium
| | - Lionel Mignion
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group; Université catholique de Louvain; Brussels Belgium
| | - Vanesa Bol
- Institut de Recherche Expérimentale et Clinique, Center for Molecular Imaging, Radiotherapy and Oncology; Université catholique de Louvain; Brussels Belgium
| | - Bénédicte F. Jordan
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group; Université catholique de Louvain; Brussels Belgium
| | - Vincent Grégoire
- Institut de Recherche Expérimentale et Clinique, Center for Molecular Imaging, Radiotherapy and Oncology; Université catholique de Louvain; Brussels Belgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group; Université catholique de Louvain; Brussels Belgium
| |
Collapse
|
20
|
Grégoire V, Langendijk JA, Nuyts S. Advances in Radiotherapy for Head and Neck Cancer. J Clin Oncol 2015; 33:3277-84. [PMID: 26351354 DOI: 10.1200/jco.2015.61.2994] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last few decades, significant improvements have been made in the radiotherapy (RT) treatment of head and neck malignancies. The progressive introduction of intensity-modulated RT and the use of multimodality imaging for target volume and organs at risk delineation, together with the use of altered fractionation regimens and concomitant administration of chemotherapy or targeted agents, have accompanied efficacy improvements in RT. Altogether, such improvements have translated into improvement in locoregional control and overall survival probability, with a decrease in the long-term adverse effects of RT and an improvement in quality of life. Further progress in the treatment of head and neck malignancies may come from a better integration of molecular imaging to identify tumor subvolumes that may require additional radiation doses (ie, dose painting) and from treatment adaptation tracing changes in patient anatomy during treatment. Proton therapy generates even more exquisite dose distribution in some patients, thus potentially further improving patient outcomes. However, the clinical benefit of these approaches, although promising, for patients with head and neck cancer need to be demonstrated in prospective randomized studies. In this context, our article will review some of these advances, with special emphasis on target volume and organ-at-risk delineation, use of molecular imaging for tumor delineation, dose painting for dose escalation, dose adaptation throughout treatment, and potential benefit of proton therapy.
Collapse
Affiliation(s)
- Vincent Grégoire
- Vincent Grégoire, Institut de Recherche Clinique, Université Catholique de Louvain, St-Luc University Hospital, Brussels; Sandra Nuyts, Katholieke Universiteit Leuven-University of Leuven, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; and Johannes A. Langendijk, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Johannes A Langendijk
- Vincent Grégoire, Institut de Recherche Clinique, Université Catholique de Louvain, St-Luc University Hospital, Brussels; Sandra Nuyts, Katholieke Universiteit Leuven-University of Leuven, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; and Johannes A. Langendijk, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sandra Nuyts
- Vincent Grégoire, Institut de Recherche Clinique, Université Catholique de Louvain, St-Luc University Hospital, Brussels; Sandra Nuyts, Katholieke Universiteit Leuven-University of Leuven, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; and Johannes A. Langendijk, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
21
|
Klaassen R, Bennink RJ, van Tienhoven G, Bijlsma MF, Besselink MGH, van Berge Henegouwen MI, Wilmink JW, Nederveen AJ, Windhorst AD, Hulshof MCCM, van Laarhoven HWM. Feasibility and repeatability of PET with the hypoxia tracer [(18)F]HX4 in oesophageal and pancreatic cancer. Radiother Oncol 2015; 116:94-9. [PMID: 26049919 DOI: 10.1016/j.radonc.2015.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the feasibility and to determine the repeatability of recurrent [(18)F]HX4 PET scans in patients with oesophageal (EC) and pancreatic (PC) cancer. MATERIALS AND METHODS 32 patients were scanned in total; seven patients (4 EC/3 PC) were scanned 2, 3 and 4h post injection (PI) of [(18)F]HX4 and 25 patients (15 EC/10 PC) were scanned twice 3.5h PI, on two separate days (median 4, range 1-9days). Maximum tumour to background ratio (TBRmax) and the tumour hypoxic volume (HV) (TBR>1.0) were calculated. Repeatability was assessed using Bland-Altman analysis. Agreement in localization was calculated as the distance between the centres of mass in the HVs. RESULTS For EC, the TBRmax in the tumour (mean±SD) was 1.87±0.46 with a coefficient of repeatability (CoR) of 0.53 (28% of mean). The HV ranged from 3.4 to 98.8ml with a CoR of 5.1ml. For PC, the TBRmax was 1.72±0.23 with a CoR of 0.27 (16% of mean). The HV ranged from 4.6 to 104.0ml with a CoR of 7.8ml. The distance between the centres of mass in the HV was 2.2±1.3mm for EC and 2.1±1.5mm for PC. CONCLUSIONS PET scanning with [(18)F]HX4 was feasible in both EC and PC patients. Amount and location of elevated [(18)F]HX4 uptake showed good repeatability, suggesting [(18)F]HX4 PET could be a promising tool for radiation therapy planning and treatment response monitoring in EC and PC patients.
Collapse
Affiliation(s)
- Remy Klaassen
- Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands; LEXOR (Laboratory for Experimental Oncology and Radiobiology), Academic Medical Center, Amsterdam, The Netherlands.
| | - Roelof J Bennink
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Maarten F Bijlsma
- LEXOR (Laboratory for Experimental Oncology and Radiobiology), Academic Medical Center, Amsterdam, The Netherlands
| | - Marc G H Besselink
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Johanna W Wilmink
- Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Maarten C C M Hulshof
- Department of Radiation Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
22
|
Predictive value of 18F-FAZA PET imaging for guiding the association of radiotherapy with nimorazole: A preclinical study. Radiother Oncol 2015; 114:189-94. [DOI: 10.1016/j.radonc.2014.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/16/2014] [Accepted: 12/31/2014] [Indexed: 12/16/2022]
|