1
|
Yan L, Chen Y, He J. Leveraging MRI radiomics signature for predicting the diagnosis of CXCL9 in breast cancer. Heliyon 2024; 10:e38640. [PMID: 39430466 PMCID: PMC11490775 DOI: 10.1016/j.heliyon.2024.e38640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Objective A non-invasive predictive model was developed using radiomic features to forecast CXCL9 expression level in breast cancer patients. Methods CXCL9 expression data and MRI images of breast cancer patients were obtained from The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) databases, respectively. Local tissue samples from 20 breast cancer patients were collected to measure CXCL9 expression levels. Radiomic features were extracted from MRI images using 3DSlicer, and the minimum Redundancy Maximum Relevance and Recursive Feature Elimination (mRMR_RFE) method was employed to select the most pertinent radiomic features associated with CXCL9 expression levels. Support vector machine (SVM) and Logistic Regression (LR) models were utilized to construct the predictive model, and the area under the receiver operating characteristic curve (AUC) was calculated for performance evaluation. Results CXCL9 was found to be upregulated in breast cancer patients and linked to breast cancer prognosis. Nine radiomic features were ultimately selected using the mRMR_RFE method, and SVM and LR models were trained and validated. The SVM model achieved AUC values of 0.748 and 0.711 in the training and validation sets, respectively. The LR model obtained AUC values of 0.771 and 0.724 in the training and validation sets, respectively. Conclusion The utilization of MRI radiomic features for predicting CXCL9 expression level provides a novel non-invasive approach for breast cancer Prognostic research.
Collapse
Affiliation(s)
- Liping Yan
- Department of Breast Surgery, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, China
- Department of Surgery, the First Affiliated Hospital of Guangxi Medical University, China
| | - Yuexia Chen
- Department of Pathology, The Third Hospital of Nanchang, Nanchang, China
| | - Jianxin He
- Department of Ultrasound Medicine, The First Affiliated Hospital of Nanchang University, China
| |
Collapse
|
2
|
Fajemisin JA, Gonzalez G, Rosenberg SA, Ullah G, Redler G, Latifi K, Moros EG, El Naqa I. Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction. Tomography 2024; 10:1439-1454. [PMID: 39330753 PMCID: PMC11435563 DOI: 10.3390/tomography10090107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Magnetic resonance imaging (MRI) is known for its accurate soft tissue delineation of tumors and normal tissues. This development has significantly impacted the imaging and treatment of cancers. Radiomics is the process of extracting high-dimensional features from medical images. Several studies have shown that these extracted features may be used to build machine-learning models for the prediction of treatment outcomes of cancer patients. Various feature selection techniques and machine models interrogate the relevant radiomics features for predicting cancer treatment outcomes. This study aims to provide an overview of MRI radiomics features used in predicting clinical treatment outcomes with machine learning techniques. The review includes examples from different disease sites. It will also discuss the impact of magnetic field strength, sample size, and other characteristics on outcome prediction performance.
Collapse
Affiliation(s)
- Jesutofunmi Ayo Fajemisin
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
- Machine Learning Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Glebys Gonzalez
- Machine Learning Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Stephen A Rosenberg
- Machine Learning Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Radiation Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Gage Redler
- Radiation Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kujtim Latifi
- Radiation Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eduardo G Moros
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
- Machine Learning Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Radiation Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Issam El Naqa
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
- Machine Learning Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Brown KH, Kerr BN, Pettigrew M, Connor K, Miller IS, Shiels L, Connolly C, McGarry C, Byrne AT, Butterworth KT. A comparative analysis of preclinical computed tomography radiomics using cone-beam and micro-computed tomography scanners. Phys Imaging Radiat Oncol 2024; 31:100615. [PMID: 39157293 PMCID: PMC11328005 DOI: 10.1016/j.phro.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Background and purpose Radiomics analysis extracts quantitative data (features) from medical images. These features could potentially reflect biological characteristics and act as imaging biomarkers within precision medicine. However, there is a lack of cross-comparison and validation of radiomics outputs which is paramount for clinical implementation. In this study, we compared radiomics outputs across two computed tomography (CT)-based preclinical scanners. Materials and methods Cone beam CT (CBCT) and µCT scans were acquired using different preclinical CT imaging platforms. The reproducibility of radiomics features on each scanner was assessed using a phantom across imaging energies (40 & 60 kVp) and segmentation volumes (44-238 mm3). Retrospective mouse scans were used to compare feature reliability across varying tissue densities (lung, heart, bone), scanners and after voxel size harmonisation. Reliable features had an intraclass correlation coefficient (ICC) > 0.8. Results First order and GLCM features were the most reliable on both scanners across different volumes. There was an inverse relationship between tissue density and feature reliability, with the highest number of features in lung (CBCT=580, µCT=734) and lowest in bone (CBCT=110, µCT=560). Comparable features for lung and heart tissues increased when voxel sizes were harmonised. We have identified tissue-specific preclinical radiomics signatures in mice for the lung (133), heart (35), and bone (15). Conclusions Preclinical CBCT and µCT scans can be used for radiomics analysis to support the development of meaningful radiomics signatures. This study demonstrates the importance of standardisation and emphasises the need for multi-centre studies.
Collapse
Affiliation(s)
- Kathryn H Brown
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Brianna N Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Mihaela Pettigrew
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kate Connor
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ian S Miller
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- National Preclinical Imaging Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Liam Shiels
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Colum Connolly
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Belfast, United Kingdom
| | - Annette T Byrne
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- National Preclinical Imaging Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Orhan K, Yazici G, Önder M, Evli C, Volkan-Yazici M, Kolsuz ME, Bağış N, Kafa N, Gönüldaş F. Development and Validation of an Ultrasonography-Based Machine Learning Model for Predicting Outcomes of Bruxism Treatments. Diagnostics (Basel) 2024; 14:1158. [PMID: 38893684 PMCID: PMC11172325 DOI: 10.3390/diagnostics14111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES We aimed to develop a predictive model for the outcome of bruxism treatments using ultrasonography (USG)-based machine learning (ML) techniques. This study is a quantitative research study (predictive modeling study) in which different treatment methods applied to bruxism patients are evaluated through artificial intelligence. MATERIALS AND METHODS The study population comprised 102 participants with bruxism in three treatment groups: Manual therapy, Manual therapy and Kinesio Tape or Botulinum Toxin-A injection. USG imaging was performed on the masseter muscle to calculate muscle thickness, and pain thresholds were evaluated using an algometer. A radiomics platform was utilized to handle imaging and clinical data, as well as to perform a subsequent radiomics statistical analysis. RESULTS The area under the curve (AUC) values of all machine learning methods ranged from 0.772 to 0.986 for the training data and from 0.394 to 0.848 for the test data. The Support Vector Machine (SVM) led to excellent discrimination between bruxism and normal patients from USG images. Radiomics characteristics in pre-treatment ultrasound scans of patients, showing coarse and nonuniform muscles, were associated with a greater chance of less effective pain reduction outcomes. CONCLUSIONS This study has introduced a machine learning model using SVM analysis on ultrasound (USG) images for bruxism patients, which can detect masseter muscle changes on USG. Support Vector Machine regression analysis showed the combined ML models can also predict the outcome of the pain reduction.
Collapse
Affiliation(s)
- Kaan Orhan
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara 06560, Turkey; (K.O.); (M.E.K.)
- Department of Dental and Maxillofacial Radiodiagnostics, Medical University of Lublin, 20-059 Lublin, Poland
- Medical Design Application and Research Center (MEDITAM), Ankara University, Ankara 06000, Turkey
- Department of Oral Diagnostics, Faculty of Dendistry, Semmelweis University, 1088 Budapest, Hungary
| | - Gokhan Yazici
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara 06490, Turkey; (G.Y.); (N.K.)
| | - Merve Önder
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara 06560, Turkey; (M.Ö.); (C.E.)
| | - Cengiz Evli
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara 06560, Turkey; (M.Ö.); (C.E.)
| | - Melek Volkan-Yazici
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Yuksek Ihtisas University, Ankara 06520, Turkey;
| | - Mehmet Eray Kolsuz
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara 06560, Turkey; (K.O.); (M.E.K.)
| | - Nilsun Bağış
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara 06560, Turkey;
| | - Nihan Kafa
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara 06490, Turkey; (G.Y.); (N.K.)
| | - Fehmi Gönüldaş
- Department of Prosthetic Dentistry, Faculty of Dentistry, Ankara University, Ankara 06500, Turkey
| |
Collapse
|
5
|
Ma Y, Gong Y, Qiu Q, Ma C, Yu S. Research on multi-model imaging machine learning for distinguishing early hepatocellular carcinoma. BMC Cancer 2024; 24:363. [PMID: 38515051 PMCID: PMC10956394 DOI: 10.1186/s12885-024-12109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVE To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and non-hepatocellular carcinoma (non-HCC) based on CT and MR multiphase radiomics combined with different machine learning models and compare the diagnostic efficacy between different radiomics models. BACKGROUND Primary liver cancer is one of the most common clinical malignancies, hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, accounting for approximately 90% of cases. A clear diagnosis of HCC is important for the individualized treatment of patients with HCC. However, more sophisticated diagnostic modalities need to be explored. METHODS This retrospective study included 211 patients with liver lesions: 97 HCC and 124 non-hepatocellular carcinoma (non-HCC) who underwent CT and MRI. Imaging data were used to obtain imaging features of lesions and radiomics regions of interest (ROI). The extracted imaging features were combined to construct different radiomics models. The clinical data and imaging features were then combined with radiomics features to construct the combined models. Support Vector Machine (SVM), K-nearest Neighbor (KNN), RandomForest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Multilayer Perceptron (MLP) six machine learning models were used for training. Five-fold cross-validation was used to train the models, and ROC curves were used to analyze the diagnostic efficacy of each model and calculate the accuracy rate. Model training and efficacy test were performed as before. RESULTS Statistical analysis showed that some clinical data (gender and concomitant cirrhosis) and imaging features (presence of envelope, marked enhancement in the arterial phase, rapid contouring in the portal phase, uniform density/signal and concomitant steatosis) were statistical differences (P < 0.001). The results of machine learning models showed that KNN had the best diagnostic efficacy. The results of the combined model showed that SVM had the best diagnostic efficacy, indicating that the combined model (accuracy 0.824) had better diagnostic efficacy than the radiomics-only model. CONCLUSIONS Our results demonstrate that the radiomic features of CT and MRI combined with machine learning models enable differential diagnosis of HCC and non-HCC (malignant, benign). The diagnostic model with dual radiomic had better diagnostic efficacy. The combined model was superior to the radiomic model alone.
Collapse
Affiliation(s)
- Ya Ma
- Department of Graduate, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Physics, Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong Province, 250117, Jinan, China
| | - Yue Gong
- Department of Graduate, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Physics, Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong Province, 250117, Jinan, China
| | - QingTao Qiu
- Department of Radiation Physics, Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong Province, 250117, Jinan, China
| | - Changsheng Ma
- Department of Radiation Physics, Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong Province, 250117, Jinan, China.
| | - Shuang Yu
- Department of Hematology, Qilu Hospital of Shandong University, 250012, Jinan, China.
| |
Collapse
|
6
|
Cherezov D, Viswanathan VS, Fu P, Gupta A, Madabhushi A. Rank acquisition impact on radiomics estimation (AсquIRE) in chest CT imaging: A retrospective multi-site, multi-use-case study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107990. [PMID: 38194767 PMCID: PMC10872259 DOI: 10.1016/j.cmpb.2023.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Radiomics is a method within medical image analysis that involves the extraction of quantitative data from radiologic scans, often in conjunction with machine learning algorithms to phenotype disease appearance, prognosticate disease outcome, and predict treatment response. However, variance in CT scanner acquisition parameters, such as convolution kernels or pixel spacing, can impact radiomics texture feature values. PURPOSE The extent to which the parameters influence radiomics features continues to be an active area of investigation. In this study, we describe a novel approach, Acquisition Impact on Radiomics Estimation (AcquIRE), to rank the impact of CT acquisition parameters on radiomic texture features. METHODS In this work, we used three chest CT imaging datasets (n = 749 patients) from nine sites comprising: i) lung granulomas and adenocarcinomas (D1) (10 and 52 patients, respectively); ii) minimal and frank invasive adenocarcinoma (D2) (74 and 145 patients); and iii) early-stage NSCLC patients (D3) (315 patients). Datasets D2 and D3 were collected from four sites each, and D1 from a single site. For each patient, 744 texture features and nine acquisition parameters were extracted and utilized to evaluate which parameters impact radiomic features the most. The AcquIRE method establishes a relative assessment between acquisition parameters and radiomic texture featuresa through the creation of a classification model, which is then utilized to assess the rank of the acquisition parameters. RESULTS Across the use cases, CT software version and convolution kernel parameters were found to have the most variance. In D1, it was observed that the Haralick texture feature family was the least affected by variations in acquisition parameters, while the Gabor feature family was the most impacted. However, in datasets D2 and D3, the Gabor features were found to be the least affected. Our findings suggest that the impact on radiomic parameters is as much a function of the problem in question as it is acquisition parameters. CONCLUSIONS The software version and convolution kernel parameters impacted the radiomics feature the most.
Collapse
Affiliation(s)
- Dmitry Cherezov
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | | | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Atlanta, GA, USA.
| |
Collapse
|
7
|
Cheki M, Mostafaei S, Hanafi MG, Farasat M, Talaiezadeh A, Ghasemi MS, Modava M, Abdollahi H. Radioproteomics modeling of metformin-enhanced radiosensitivity: an animal study. Jpn J Radiol 2023; 41:1265-1274. [PMID: 37204669 DOI: 10.1007/s11604-023-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
PURPOSE Metformin is considered as radiation modulator in both tumors and healthy tissues. Radiomics has the potential to decode biological mechanisms of radiotherapy response. The aim of this study was to apply radiomics analysis in metformin-induced radiosensitivity and finding radioproteomics associations of computed tomography (CT) imaging features and proteins involved in metformin radiosensitivity signaling pathways. MATERIALS AND METHODS A total of 32 female BALB/c mice were used in this study and were subjected to injection of breast cancer cells. When tumors reached a mean volume of 150 mm3, mice were randomly divided into the four groups including Control, Metformin, Radiation, and Radiation + Metformin. Western blot analysis was performed after treatment to measure expression of proteins including AMPK-alpha, phospho-AMPK-alpha (Thr172), mTOR, phospho-mTOR (Ser2448), phospho-4EBP1 (Thr37/46), phospho-ACC (Ser79), and β-actin. CT imaging was performed before treatment and at the end of treatment in all groups. Radiomics features extracted from segmented tumors were selected using Elastic-net regression and were assessed in terms of correlation with expression of the proteins. RESULTS It was observed that proteins including phospho-mTOR, phospho-4EBP1, and mTOR had positive correlations with changes in tumor volumes in days 28, 24, 20, 16, and 12, while tumor volume changes at these days had negative correlations with AMPK-alpha, phospho-AMPK-alpha, and phospho-ACC proteins. Furthermore, median feature had a positive correlation with AMPK-alpha, phospho-ACC, and phospho-AMPK-alpha proteins. Also, Cluster shade feature had positive correlations with mTOR and p-mTOR. On the other hand, LGLZE feature had negative correlations with AMPK-alpha and phospho-AMPK-alpha. CONCLUSION Radiomics features can decode proteins that involved in response to metformin and radiation, although further studies are warranted to investigate the optimal way to integrate radiomics into biological experiments.
Collapse
Affiliation(s)
- Mohsen Cheki
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shayan Mostafaei
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Maryam Farasat
- Department of Radiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Mohammad Modava
- Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hamid Abdollahi
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Monti S, Truppa ME, Albanese S, Mancini M. Radiomics and Radiogenomics in Preclinical Imaging on Murine Models: A Narrative Review. J Pers Med 2023; 13:1204. [PMID: 37623455 PMCID: PMC10455673 DOI: 10.3390/jpm13081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Over the past decade, medical imaging technologies have become increasingly significant in both clinical and preclinical research, leading to a better understanding of disease processes and the development of new diagnostic and theranostic methods. Radiomic and radiogenomic approaches have furthered this progress by exploring the relationship between imaging characteristics, genomic information, and outcomes that qualitative interpretations may have overlooked, offering valuable insights for personalized medicine. Preclinical research allows for a controlled environment where various aspects of a pathology can be replicated in animal models, providing radiomic and radiogenomic approaches with the unique opportunity to investigate the causal connection between imaging and molecular factors. The aim of this review is to present the current state of the art in the application of radiomics and radiogenomics on murine models. This review will provide a brief description of relevant articles found in the literature with a discussion on the implications and potential translational relevance of these findings.
Collapse
Affiliation(s)
| | | | - Sandra Albanese
- National Research Council, Institute of Biostructures and Bioimaging, 80145 Naples, Italy; (S.M.); (M.E.T.); (M.M.)
| | | |
Collapse
|
9
|
Brown KH, Illyuk J, Ghita M, Walls GM, McGarry CK, Butterworth KT. Assessment of Variabilities in Lung-Contouring Methods on CBCT Preclinical Radiomics Outputs. Cancers (Basel) 2023; 15:2677. [PMCID: PMC10216427 DOI: 10.3390/cancers15102677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Simple Summary This study is the first to evaluate the impact of contouring differences on radiomics analysis in preclinical CBCT scans. We found that the variation in quantitative image readouts was greater between segmentation tools than between observers. Abstract Radiomics image analysis has the potential to uncover disease characteristics for the development of predictive signatures and personalised radiotherapy treatment. Inter-observer and inter-software delineation variabilities are known to have downstream effects on radiomics features, reducing the reliability of the analysis. The purpose of this study was to investigate the impact of these variabilities on radiomics outputs from preclinical cone-beam computed tomography (CBCT) scans. Inter-observer variabilities were assessed using manual and semi-automated contours of mouse lungs (n = 16). Inter-software variabilities were determined between two tools (3D Slicer and ITK-SNAP). The contours were compared using Dice similarity coefficient (DSC) scores and the 95th percentile of the Hausdorff distance (HD95p) metrics. The good reliability of the radiomics outputs was defined using intraclass correlation coefficients (ICC) and their 95% confidence intervals. The median DSC scores were high (0.82–0.94), and the HD95p metrics were within the submillimetre range for all comparisons. the shape and NGTDM features were impacted the most. Manual contours had the most reliable features (73%), followed by semi-automated (66%) and inter-software (51%) variabilities. From a total of 842 features, 314 robust features overlapped across all contouring methodologies. In addition, our results have a 70% overlap with features identified from clinical inter-observer studies.
Collapse
Affiliation(s)
- Kathryn H. Brown
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| | - Jacob Illyuk
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| | - Gerard M. Walls
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Belfast BT9 7JL, UK
| | - Conor K. McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Belfast BT9 7JL, UK
| | - Karl T. Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| |
Collapse
|
10
|
Brown KH, Payan N, Osman S, Ghita M, Walls GM, Patallo IS, Schettino G, Prise KM, McGarry CK, Butterworth KT. Development and optimisation of a preclinical cone beam computed tomography-based radiomics workflow for radiation oncology research. Phys Imaging Radiat Oncol 2023; 26:100446. [PMID: 37252250 PMCID: PMC10213103 DOI: 10.1016/j.phro.2023.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Background and purpose Radiomics features derived from medical images have the potential to act as imaging biomarkers to improve diagnosis and predict treatment response in oncology. However, the complex relationships between radiomics features and the biological characteristics of tumours are yet to be fully determined. In this study, we developed a preclinical cone beam computed tomography (CBCT) radiomics workflow with the aim to use in vivo models to further develop radiomics signatures. Materials and methods CBCT scans of a mouse phantom were acquired using onboard imaging from a small animal radiotherapy research platform (SARRP, Xstrahl). The repeatability and reproducibility of radiomics outputs were compared across different imaging protocols, segmentation sizes, pre-processing parameters and materials. Robust features were identified and used to compare scans of two xenograft mouse tumour models (A549 and H460). Results Changes to the radiomics workflow significantly impact feature robustness. Preclinical CBCT radiomics analysis is feasible with 119 stable features identified from scans imaged at 60 kV, 25 bin width and 0.26 mm slice thickness. Large variation in segmentation volumes reduced the number of reliable radiomics features for analysis. Standardization in imaging and analysis parameters is essential in preclinical radiomics analysis to improve accuracy of outputs, leading to more consistent and reproducible findings. Conclusions We present the first optimised workflow for preclinical CBCT radiomics to identify imaging biomarkers. Preclinical radiomics has the potential to maximise the quantity of data captured in in vivo experiments and could provide key information supporting the wider application of radiomics.
Collapse
Affiliation(s)
- Kathryn H. Brown
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Neree Payan
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Sarah Osman
- University College London Hospitals NHS Foundation Trust Department of Radiotherapy, London, UK
| | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Gerard M. Walls
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
- Cancer Centre, Belfast Health & Social Care Trust, Lisburn Road, Belfast BT9 7AB, Northern Ireland, UK
| | | | | | - Kevin M. Prise
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Conor K. McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
- Cancer Centre, Belfast Health & Social Care Trust, Lisburn Road, Belfast BT9 7AB, Northern Ireland, UK
| | - Karl T. Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| |
Collapse
|
11
|
Karacaoglu F, Kolsuz ME, Bagis N, Evli C, Orhan K. Development and validation of intraoral periapical radiography-based machine learning model for periodontal defect diagnosis. Proc Inst Mech Eng H 2023:9544119231162682. [PMID: 36939160 DOI: 10.1177/09544119231162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Radiographic determination of the bone level is useful in the diagnosis and determination of the severity of the periodontal disease. Various two- and three-dimensional imaging modalities offer choices for imaging pathologic processes that affect the periodontium. In recent years, innovative computer techniques, especially artificial intelligence (AI), have begun to be used in many areas of dentistry and are helping increase treatment and diagnostic performance. This study was aimed at developing a machine-learning (ML) model and assessing the extent to which it was capable of classifying periodontal defects on 2D periapical images. Eighty-seven periapical images were examined as part of this research. The existence or absence of periodontal defects in the aforementioned images were evaluated by a human observer. The evaluations were subsequently repeated using a radiomics platform. A comparison was made of all data acquired through human observation and ML techniques by SVM analysis. According to the study findings the ability of human observers and the ML model to detect periodontal defects was significantly different in comparison to the gold standard. However, ML and human observers performed similarly for the detection of periodontal defects without a significant difference. This study reveals that the prediction of periodontal defects can be achieved by combining particular radiomic features with image variables. The proposed machine leaning model can be utilized for supporting clinical practitioners and eventually substitute evaluations conducted by human observers while enhancing future levels of performance.
Collapse
Affiliation(s)
- Fatma Karacaoglu
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Mehmet Eray Kolsuz
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Nilsun Bagis
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Cengiz Evli
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Kaan Orhan
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey.,Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey
| |
Collapse
|
12
|
Chen H, Wang X, Lan X, Yu T, Li L, Tang S, Liu S, Jiang F, Wang L, Zhang J. A radiomics model development via the associations with genomics features in predicting axillary lymph node metastasis of breast cancer: a study based on a public database and single-centre verification. Clin Radiol 2023; 78:e279-e287. [PMID: 36623978 DOI: 10.1016/j.crad.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
AIM To evaluate the predictive performance of the radiomics model in predicting axillary lymph node (ALN) metastasis through the associations between radiomics features and genomic features in patients with breast cancer. MATERIALS AND METHODS Patients with breast cancer were enrolled retrospectively from a public database (111 patients as training group) and one hospital (15 patients as external validation group). The genomics features from transcriptome data and radiomics features from dynamic contrast-enhanced magnetic resonance imaging (MRI) were collected. Firstly, overlapping genes were identified using the Kyoto Encyclopedia of Genes and Genomes and differentially expressed gene analysis, while radiomics features were reduced using a data-driven method. Then, the associations between overlapping genes and retained radiomics features were assessed to obtain key pairs of radiomics-genomics features. Furthermore, the least absolute shrinkage and selection operator (LASSO) algorithm was used to detect the key-pairs features. Finally, radiomics and genomics models were constructed to predict ALN metastasis. RESULTS After using the hybrid data- and gene-driven selection method, key pairs of features were detected, which consisted of six radiomic features associated with four genomic features. The radiomics model exhibited comparable performance to the genomics model in predicting ALN metastasis (radiomic model: area under the curve [AUC] = 0.71, sensitivity = 77%, specificity = 56%; genomic model: AUC = 0.72, sensitivity = 85%, specificity = 74%). The four genomic features were enriched in six pathways and related to metabolism and human diseases. CONCLUSION The radiomics model established using the gene-driven hybrid selection method could predict ALN metastasis in breast cancer, which showed comparable performance to the genomics model.
Collapse
Affiliation(s)
- H Chen
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - X Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - X Lan
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - T Yu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - L Li
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - S Tang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - S Liu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - F Jiang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - L Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - J Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China.
| |
Collapse
|
13
|
Dovrou A, Bei E, Sfakianakis S, Marias K, Papanikolaou N, Zervakis M. Synergies of Radiomics and Transcriptomics in Lung Cancer Diagnosis: A Pilot Study. Diagnostics (Basel) 2023; 13:738. [PMID: 36832225 PMCID: PMC9955510 DOI: 10.3390/diagnostics13040738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Radiotranscriptomics is an emerging field that aims to investigate the relationships between the radiomic features extracted from medical images and gene expression profiles that contribute in the diagnosis, treatment planning, and prognosis of cancer. This study proposes a methodological framework for the investigation of these associations with application on non-small-cell lung cancer (NSCLC). Six publicly available NSCLC datasets with transcriptomics data were used to derive and validate a transcriptomic signature for its ability to differentiate between cancer and non-malignant lung tissue. A publicly available dataset of 24 NSCLC-diagnosed patients, with both transcriptomic and imaging data, was used for the joint radiotranscriptomic analysis. For each patient, 749 Computed Tomography (CT) radiomic features were extracted and the corresponding transcriptomics data were provided through DNA microarrays. The radiomic features were clustered using the iterative K-means algorithm resulting in 77 homogeneous clusters, represented by meta-radiomic features. The most significant differentially expressed genes (DEGs) were selected by performing Significance Analysis of Microarrays (SAM) and 2-fold change. The interactions among the CT imaging features and the selected DEGs were investigated using SAM and a Spearman rank correlation test with a False Discovery Rate (FDR) of 5%, leading to the extraction of 73 DEGs significantly correlated with radiomic features. These genes were used to produce predictive models of the meta-radiomics features, defined as p-metaomics features, by performing Lasso regression. Of the 77 meta-radiomic features, 51 can be modeled in terms of the transcriptomic signature. These significant radiotranscriptomics relationships form a reliable basis to biologically justify the radiomics features extracted from anatomic imaging modalities. Thus, the biological value of these radiomic features was justified via enrichment analysis on their transcriptomics-based regression models, revealing closely associated biological processes and pathways. Overall, the proposed methodological framework provides joint radiotranscriptomics markers and models to support the connection and complementarities between the transcriptome and the phenotype in cancer, as demonstrated in the case of NSCLC.
Collapse
Affiliation(s)
- Aikaterini Dovrou
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering (ECE), Technical University of Crete, GR-73100 Chania, Greece
| | - Ekaterini Bei
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering (ECE), Technical University of Crete, GR-73100 Chania, Greece
| | - Stelios Sfakianakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece
| | - Kostas Marias
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR-71410 Heraklion, Greece
| | - Nickolas Papanikolaou
- Computational Clinical Imaging Group, Champalimaud Clinical Centre, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - Michalis Zervakis
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering (ECE), Technical University of Crete, GR-73100 Chania, Greece
| |
Collapse
|
14
|
Wang B, Liu J, Zhang X, Wang Z, Cao Z, Lu L, Lv W, Wang A, Li S, Wu X, Dong X. Prognostic value of 18F-FDG PET/CT-based radiomics combining dosiomics and dose volume histogram for head and neck cancer. EJNMMI Res 2023; 13:14. [PMID: 36779997 PMCID: PMC9925656 DOI: 10.1186/s13550-023-00959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/26/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVES By comparing the prognostic performance of 18F-FDG PET/CT-based radiomics combining dose features [Includes Dosiomics feature and the dose volume histogram (DVH) features] with that of conventional radiomics in head and neck cancer (HNC), multidimensional prognostic models were constructed to investigate the overall survival (OS) in HNC. MATERIALS AND METHODS A total of 220 cases from four centres based on the Cancer Imaging Archive public dataset were used in this study, 2260 radiomics features and 1116 dosiomics features and 8 DVH features were extracted for each case, and classified into seven different models of PET, CT, Dose, PET+CT, PET+Dose, CT+Dose and PET+CT+Dose. Features were selected by univariate Cox and Spearman correlation coefficients, and the selected features were brought into the least absolute shrinkage and selection operator (LASSO)-Cox model. A nomogram was constructed to visually analyse the prognostic impact of the incorporated dose features. C-index and Kaplan-Meier curves (log-rank analysis) were used to evaluate and compare these models. RESULTS The cases from the four centres were divided into three different training and validation sets according to the hospitals. The PET+CT+Dose model had C-indexes of 0.873 (95% CI 0.812-0.934), 0.759 (95% CI 0.663-0.855) and 0.835 (95% CI 0.745-0.925) in the validation set respectively, outperforming the rest models overall. The PET+CT+Dose model did well in classifying patients into high- and low-risk groups under all three different sets of experiments (p < 0.05). CONCLUSION Multidimensional model of radiomics features combining dosiomics features and DVH features showed high prognostic performance for predicting OS in patients with HNC.
Collapse
Affiliation(s)
- Bingzhen Wang
- grid.413851.a0000 0000 8977 8425Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei China
| | - Jinghua Liu
- Department of Nursing, Chengde Central Hospital, Chengde, Hebei China ,grid.11142.370000 0001 2231 800XDepartment of Nursing, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Xiaolei Zhang
- grid.413851.a0000 0000 8977 8425Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei China
| | - Zhongxiao Wang
- grid.413851.a0000 0000 8977 8425Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei China
| | - Zhendong Cao
- grid.413851.a0000 0000 8977 8425Department of Radiology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei China
| | - Lijun Lu
- grid.284723.80000 0000 8877 7471School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong China
| | - Wenbing Lv
- grid.440773.30000 0000 9342 2456Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan China
| | - Aihui Wang
- grid.413851.a0000 0000 8977 8425Department of Nuclear Medicine, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei China
| | - Shuyan Li
- grid.413851.a0000 0000 8977 8425Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei China
| | - Xiaotian Wu
- grid.413851.a0000 0000 8977 8425Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei China
| | - Xianling Dong
- Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China. .,Hebei International Research Center of Medical-Engineering, Chengde Medical University, Chengde, Hebei, China.
| |
Collapse
|
15
|
Li N, Song C, Huang X, Zhang H, Su J, Yang L, He J, Cui G. Optimized Radiomics Nomogram Based on Automated Breast Ultrasound System: A Potential Tool for Preoperative Prediction of Metastatic Lymph Node Burden in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:121-132. [PMID: 36776542 PMCID: PMC9910101 DOI: 10.2147/bctt.s398300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Background Axillary lymph node dissection (ALND) can be safely avoided in women with T1 or T2 primary invasive breast cancer (BC) and one to two metastatic sentinel lymph nodes (SLNs). However, cancellation of ALND based solely on SLN biopsy (SLNB) may lead to adverse outcomes. Therefore, preoperative assessment of LN tumor burden becomes a new focus for ALN status. Objective This study aimed to develop and validate a nomogram incorporating the radiomics score (rad-score) based on automated breast ultrasound system (ABUS) and other clinicopathological features for evaluating the ALN status in patients with early-stage BC preoperatively. Methods Totally 354 and 163 patients constituted the training and validation cohorts. They were divided into ALN low burden (<3 metastatic LNs) and high burden (≥3 metastatic LNs) based on the histopathological diagnosis. The radiomics features of the segmented breast tumor in ABUS images were extracted and selected to generate the rad-score of each patient. These rad-scores, along with the ALN burden predictors identified from the clinicopathologic characteristics, were included in the multivariate analysis to establish a nomogram. It was further evaluated in the training and validation cohorts. Results High ALN burdens accounted for 11.2% and 10.8% in the training and validation cohorts. The rad-score for each patient was developed based on 7 radiomics features extracted from the ABUS images. The radiomics nomogram was built with the rad-score, tumor size, US-reported LN status, and ABUS retraction phenomenon. It achieved better predictive efficacy than the nomogram without the rad-score and exhibited favorable discrimination, calibration and clinical utility in both cohorts. Conclusion We developed an ABUS-based radiomics nomogram for the preoperative prediction of ALN burden in BC patients. It would be utilized for the identification of patients with low ALN burden if further validated, which contributed to appropriate axillary treatment and might avoid unnecessary ALND.
Collapse
Affiliation(s)
- Ning Li
- Department of Ultrasound, Anning First People’s Hospital, Kunming City, People’s Republic of China
| | - Chao Song
- Department of Radiology, Anning First People’s Hospital, Kunming City, People’s Republic of China,Correspondence: Chao Song, Department of Radiology, Anning First People’s Hospital, Ganghe South Road, Anning City, Kunming City, Yunnan Province, 650302, People’s Republic of China, Tel + 86-13908848395, Email
| | - Xian Huang
- Department of Ultrasound, Kunming City Maternal and Child Health Hospital, Kunming City, People’s Republic of China
| | - Hongjiang Zhang
- Department of Ultrasound, Anning First People’s Hospital, Kunming City, People’s Republic of China,Hongjiang Zhang, Department of Ultrasound, Anning First People’s Hospital, Ganghe South Road, Anning City, Kunming City, Yunnan Province, 650302, People’s Republic of China, Tel +86- 13308809792, Email
| | - Juan Su
- Department of Ultrasound, Yulong People’s Hospital, Lijiang City, People’s Republic of China
| | - Lichun Yang
- Department of Ultrasound, Yunnan Cancer Hospital, Kunming City, People’s Republic of China
| | - Juhua He
- Department of Function Examination, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming City, People’s Republic of China
| | - Guihua Cui
- Department of Ultrasound, Anning First People’s Hospital, Kunming City, People’s Republic of China
| |
Collapse
|
16
|
Liu H, Zhao D, Huang Y, Li C, Dong Z, Tian H, Sun Y, Lu Y, Chen C, Wu H, Zhang Y. Comprehensive prognostic modeling of locoregional recurrence after radiotherapy for patients with locoregionally advanced hypopharyngeal squamous cell carcinoma. Front Oncol 2023; 13:1129918. [PMID: 37025592 PMCID: PMC10072214 DOI: 10.3389/fonc.2023.1129918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose To propose and evaluate a comprehensive modeling approach combing radiomics, dosiomics and clinical components, for more accurate prediction of locoregional recurrence risk after radiotherapy for patients with locoregionally advanced HPSCC. Materials and methods Clinical data of 77 HPSCC patients were retrospectively investigated, whose median follow-up duration was 23.27 (4.83-81.40) months. From the planning CT and dose distribution, 1321 radiomics and dosiomics features were extracted respectively from planning gross tumor volume (PGTV) region each patient. After stability test, feature dimension was further reduced by Principal Component Analysis (PCA), yielding Radiomic and Dosiomic Principal Components (RPCs and DPCs) respectively. Multiple Cox regression models were constructed using various combinations of RPC, DPC and clinical variables as the predictors. Akaike information criterion (AIC) and C-index were used to evaluate the performance of Cox regression models. Results PCA was performed on 338 radiomic and 873 dosiomic features that were tested as stable (ICC1 > 0.7 and ICC2 > 0.95), yielding 5 RPCs and DPCs respectively. Three comprehensive features (RPC0, P<0.01, DPC0, P<0.01 and DPC3, P<0.05) were found to be significant in the individual Radiomic or Dosiomic Cox regression models. The model combining the above features and clinical variable (total stage IVB) provided best risk stratification of locoregional recurrence (C-index, 0.815; 95%CI, 0.770-0.859) and prevailing balance between predictive accuracy and complexity (AIC, 143.65) than any other investigated models using either single factors or two combined components. Conclusion This study provided quantitative tools and additional evidence for the personalized treatment selection and protocol optimization for HPSCC, a relatively rare cancer. By combining complementary information from radiomics, dosiomics, and clinical variables, the proposed comprehensive model provided more accurate prediction of locoregional recurrence risk after radiotherapy.
Collapse
Affiliation(s)
- Hongjia Liu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dan Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuliang Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Chenguang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhengkun Dong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongbo Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yijie Sun
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanye Lu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Chen Chen
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Hao Wu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yibao Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Yibao Zhang,
| |
Collapse
|
17
|
Wu J, Mayer AT, Li R. Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. Semin Cancer Biol 2022; 84:310-328. [PMID: 33290844 PMCID: PMC8319834 DOI: 10.1016/j.semcancer.2020.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Radiological imaging is an integral component of cancer care, including diagnosis, staging, and treatment response monitoring. It contains rich information about tumor phenotypes that are governed not only by cancer cellintrinsic biological processes but also by the tumor microenvironment, such as the composition and function of tumor-infiltrating immune cells. By analyzing the radiological scans using a quantitative radiomics approach, robust relations between specific imaging and molecular phenotypes can be established. Indeed, a number of studies have demonstrated the feasibility of radiogenomics for predicting intrinsic molecular subtypes and gene expression signatures in breast cancer based on MRI. In parallel, promising results have been shown for inferring the amount of tumor-infiltrating lymphocytes, a key factor for the efficacy of cancer immunotherapy, from standard-of-care radiological images. Compared with the biopsy-based approach, radiogenomics offers a unique avenue to profile the molecular makeup of the tumor and immune microenvironment as well as its evolution in a noninvasive and holistic manner through longitudinal imaging scans. Here, we provide a systematic review of the state of the art radiogenomics studies in the era of immunotherapy and discuss emerging paradigms and opportunities in AI and deep learning approaches. These technical advances are expected to transform the radiogenomics field, leading to the discovery of reliable imaging biomarkers. This will pave the way for their clinical translation to guide precision cancer therapy.
Collapse
Affiliation(s)
- Jia Wu
- Department of Imaging Physics, MD Anderson Cancer Center, Texas, 77030, USA; Department of Thoracic/Head & Neck Medical Oncology, MD Anderson Cancer Center, Texas, 77030, USA.
| | - Aaron T Mayer
- Department of Bioengineering, Stanford University, Stanford, California, 94305, USA; Department of Radiology, Stanford University, Stanford, California, 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, California, 94305, USA; BioX Program at Stanford, Stanford University, Stanford, California, 94305, USA
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University, Stanford, California, 94305, USA
| |
Collapse
|
18
|
Field M, I Thwaites D, Carolan M, Delaney GP, Lehmann J, Sykes J, Vinod S, Holloway L. Infrastructure platform for privacy-preserving distributed machine learning development of computer-assisted theragnostics in cancer. J Biomed Inform 2022; 134:104181. [PMID: 36055639 DOI: 10.1016/j.jbi.2022.104181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/29/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Emerging evidence suggests that data-driven support tools have found their way into clinical decision-making in a number of areas, including cancer care. Improving them and widening their scope of availability in various differing clinical scenarios, including for prognostic models derived from retrospective data, requires co-ordinated data sharing between clinical centres, secondary analyses of large multi-institutional clinical trial data, or distributed (federated) learning infrastructures. A systematic approach to utilizing routinely collected data across cancer care clinics remains a significant challenge due to privacy, administrative and political barriers. METHODS An information technology infrastructure and web service software was developed and implemented which uses machine learning to construct clinical decision support systems in a privacy-preserving manner across datasets geographically distributed in different hospitals. The infrastructure was deployed in a network of Australian hospitals. A harmonized, international ontology-linked, set of lung cancer databases were built with the routine clinical and imaging data at each centre. The infrastructure was demonstrated with the development of logistic regression models to predict major cardiovascular events following radiation therapy. RESULTS The infrastructure implemented forms the basis of the Australian computer-assisted theragnostics (AusCAT) network for radiation oncology data extraction, reporting and distributed learning. Four radiation oncology departments (across seven hospitals) in New South Wales (NSW) participated in this demonstration study. Infrastructure was deployed at each centre and used to develop a model predicting for cardiovascular admission within a year of receiving curative radiotherapy for non-small cell lung cancer. A total of 10417 lung cancer patients were identified with 802 being eligible for the model. Twenty features were chosen for analysis from the clinical record and linked registries. After selection, 8 features were included and a logistic regression model achieved an area under the receiver operating characteristic (AUROC) curve of 0.70 and C-index of 0.65 on out-of-sample data. CONCLUSION The infrastructure developed was demonstrated to be usable in practice between clinical centres to harmonize routinely collected oncology data and develop models with federated learning. It provides a promising approach to enable further research studies in radiation oncology using real world clinical data.
Collapse
Affiliation(s)
- Matthew Field
- South Western Sydney Clinical Campus, School of Clinical Medicine, University of New South Wales, NSW, Australia; South Western Sydney Cancer Services, NSW Health, Sydney, NSW, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.
| | - David I Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, NSW, Australia
| | - Martin Carolan
- Illawarra Cancer Care Centre, Wollongong, NSW, Australia
| | - Geoff P Delaney
- South Western Sydney Clinical Campus, School of Clinical Medicine, University of New South Wales, NSW, Australia; South Western Sydney Cancer Services, NSW Health, Sydney, NSW, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Joerg Lehmann
- Institute of Medical Physics, School of Physics, University of Sydney, NSW, Australia; Department of Radiation Oncology, Calvary Mater Newcastle, NSW, Australia
| | - Jonathan Sykes
- Institute of Medical Physics, School of Physics, University of Sydney, NSW, Australia; Blacktown Haematology and Oncology Cancer Care Centre, Blacktown Hospital, Blacktown, NSW, Australia; Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW, Australia
| | - Shalini Vinod
- South Western Sydney Clinical Campus, School of Clinical Medicine, University of New South Wales, NSW, Australia; South Western Sydney Cancer Services, NSW Health, Sydney, NSW, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Lois Holloway
- South Western Sydney Clinical Campus, School of Clinical Medicine, University of New South Wales, NSW, Australia; South Western Sydney Cancer Services, NSW Health, Sydney, NSW, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia; Institute of Medical Physics, School of Physics, University of Sydney, NSW, Australia
| |
Collapse
|
19
|
Quraishi MI. Radiomics-Guided Precision Medicine Approaches for Colorectal Cancer. Front Oncol 2022; 12:872656. [PMID: 35756680 PMCID: PMC9218262 DOI: 10.3389/fonc.2022.872656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of precision oncology entails molecular profiling of tumors to guide therapeutic interventions. Genomic testing through next-generation sequencing (NGS) molecular analysis provides the basis of such highly targeted therapeutics in oncology. As radiomic analysis delivers an array of structural and functional imaging-based biomarkers that depict these molecular mechanisms and correlate with key genetic alterations related to cancers. There is an opportunity to synergize these two big-data approaches to determine the molecular guidance for precision therapeutics. Colorectal cancer is one such disease whose therapeutic management is being guided by genetic and genomic analyses. We review the rationale and utility of radiomics as a combinative strategy for these approaches in the management of colorectal cancer.
Collapse
Affiliation(s)
- Mohammed I Quraishi
- Department of Radiology, University of Tennessee Medical Center, Knoxville, TN, United States
| |
Collapse
|
20
|
Yang B, Liu C, Wu R, Zhong J, Li A, Ma L, Zhong J, Yin S, Zhou C, Ge Y, Tao X, Zhang L, Lu G. Development and Validation of a DeepSurv Nomogram to Predict Survival Outcomes and Guide Personalized Adjuvant Chemotherapy in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:895014. [PMID: 35814402 PMCID: PMC9260694 DOI: 10.3389/fonc.2022.895014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022] Open
Abstract
Objective To develop and validate a DeepSurv nomogram based on radiomic features extracted from computed tomography images and clinicopathological factors, to predict the overall survival and guide individualized adjuvant chemotherapy in patients with non-small cell lung cancer (NSCLC). Patients and Methods This retrospective study involved 976 consecutive patients with NSCLC (training cohort, n=683; validation cohort, n=293). DeepSurv was constructed based on 1,227 radiomic features, and the risk score was calculated for each patient as the output. A clinical multivariate Cox regression model was built with clinicopathological factors to determine the independent risk factors. Finally, a DeepSurv nomogram was constructed by integrating the risk score and independent clinicopathological factors. The discrimination capability, calibration, and clinical usefulness of the nomogram performance were assessed using concordance index evaluation, the Greenwood-Nam-D’Agostino test, and decision curve analysis, respectively. The treatment strategy was analyzed using a Kaplan–Meier curve and log-rank test for the high- and low-risk groups. Results The DeepSurv nomogram yielded a significantly better concordance index (training cohort, 0.821; validation cohort 0.768) with goodness-of-fit (P<0.05). The risk score, age, thyroid transcription factor-1, Ki-67, and disease stage were the independent risk factors for NSCLC.The Greenwood-Nam-D’Agostino test showed good calibration performance (P=0.39). Both high- and low-risk patients did not benefit from adjuvant chemotherapy, and chemotherapy in low-risk groups may lead to a poorer prognosis. Conclusions The DeepSurv nomogram, which is based on the risk score and independent risk factors, had good predictive performance for survival outcome. Further, it could be used to guide personalized adjuvant chemotherapy in patients with NSCLC.
Collapse
Affiliation(s)
- Bin Yang
- Medical Imaging Center, Calmette Hospital and The First Hospital of Kunming (Affiliated Calmette Hospital of Kunming Medical University), Kunming, China
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chengxing Liu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ren Wu
- Department of Medical Imaging, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ang Li
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Ma
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jian Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Saisai Yin
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Changsheng Zhou
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Xinwei Tao
- Siemens Healthineers Ltd., Shanghai, China
| | - Longjiang Zhang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Guangming Lu, ; Longjiang Zhang,
| | - Guangming Lu
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Medical Imaging, Jinling Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Guangming Lu, ; Longjiang Zhang,
| |
Collapse
|
21
|
Chen Q, Li Y, Cheng Q, Van Valkenburgh J, Sun X, Zheng C, Zhang R, Yuan R. EGFR Mutation Status and Subtypes Predicted by CT-Based 3D Radiomic Features in Lung Adenocarcinoma. Onco Targets Ther 2022; 15:597-608. [PMID: 35669165 PMCID: PMC9165655 DOI: 10.2147/ott.s352619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
Objective In this study, we aim to establish a non-invasive tool to predict epidermal growth factor receptor (EGFR) mutation status and subtypes based on radiomic features of computed tomography (CT). Methods A total of 233 lung adenocarcinoma patients were investigated and randomly divided into the training and test cohorts. In this study, 2300 radiomic features were extracted from original and filtered (Exponential, Laplacian of Gaussian, Logarithm, Gabor, Wavelet) CT images. The radiomic features were divided into four categories, including histogram, volumetric, morphologic, and texture features. An RF-BFE algorithm was developed to select the features for building the prediction models. Clinicopathological features (including age, gender, smoking status, TNM staging, maximum diameter, location, and growth pattern) were combined to establish an integrated model with radiomic features. ROC curve and AUC quantified the effectiveness of the predictor of EGFR mutation status and subtypes. Results A set of 10 features were selected to predict EGFR mutation status between EGFR mutant and wild type, while 9 selected features were used to predict mutation subtypes between exon 19 deletion and exon 21 L858R mutation. To predict the EGFR mutation status, the AUC of the training cohort was 0.778 and the AUC of the test cohort was 0.765. To predict the EGFR mutation subtypes, the AUC of training cohort was 0.725 and the AUC of test cohort was 0.657. The integrated model showed the most optimal predictive performance with EGFR mutation status (AUC = 0.870 and 0.759) and subtypes (AUC = 0.797 and 0.554) in the training and test cohorts. Conclusion CT-based radiomic features can extract information on tumor heterogeneity in lung adenocarcinoma. In addition, we have established a radiomic model and an integrated model to non-invasively predict the EGFR mutation status and subtypes of lung adenocarcinoma, which is conducive to saving clinical costs and guiding targeted therapy.
Collapse
Affiliation(s)
- Quan Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People’s Republic of China
| | - Yan Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qiguang Cheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People’s Republic of China
| | - Juno Van Valkenburgh
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaotian Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People’s Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People’s Republic of China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Correspondence: Ruiguang Zhang, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China, Email
| | - Rong Yuan
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Rong Yuan, Department of Radiology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China, Email
| |
Collapse
|
22
|
Salahuddin Z, Woodruff HC, Chatterjee A, Lambin P. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Comput Biol Med 2022; 140:105111. [PMID: 34891095 DOI: 10.1016/j.compbiomed.2021.105111] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023]
Abstract
Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis.
Collapse
Affiliation(s)
- Zohaib Salahuddin
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Avishek Chatterjee
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
23
|
Machine Learning: Applications and Advanced Progresses of Radiomics in Endocrine Neoplasms. JOURNAL OF ONCOLOGY 2021; 2021:8615450. [PMID: 34671399 PMCID: PMC8523238 DOI: 10.1155/2021/8615450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Endocrine neoplasms remain a great threat to human health. It is extremely important to make a clear diagnosis and timely treatment of endocrine tumors. Machine learning includes radiomics, which has long been utilized in clinical cancer research. Radiomics refers to the extraction of valuable information by analyzing a large amount of standard data with high-throughput medical images mainly including computed tomography, positron emission tomography, magnetic resonance imaging, and ultrasound. With the quantitative imaging analysis and model building, radiomics can reflect specific underlying characteristics of a disease that otherwise could not be evaluated visually. More and more promising results of radiomics in oncological practice have been seen in recent years. Radiomics may have the potential to supplement traditional imaging analysis and assist in providing precision medicine for patients. Radiomics had developed rapidly in endocrine neoplasms practice in the past decade. In this review, we would introduce the general workflow of radiomics and summarize the applications and developments of radiomics in endocrine neoplasms in recent years. The limitations of current radiomic research studies and future development directions would also be discussed.
Collapse
|
24
|
Yi Z, Long L, Zeng Y, Liu Z. Current Advances and Challenges in Radiomics of Brain Tumors. Front Oncol 2021; 11:732196. [PMID: 34722274 PMCID: PMC8551958 DOI: 10.3389/fonc.2021.732196] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Imaging diagnosis is crucial for early detection and monitoring of brain tumors. Radiomics enable the extraction of a large mass of quantitative features from complex clinical imaging arrays, and then transform them into high-dimensional data which can subsequently be mined to find their relevance with the tumor's histological features, which reflect underlying genetic mutations and malignancy, along with grade, progression, therapeutic effect, or even overall survival (OS). Compared to traditional brain imaging, radiomics provides quantitative information linked to meaningful biologic characteristics and application of deep learning which sheds light on the full automation of imaging diagnosis. Recent studies have shown that radiomics' application is broad in identifying primary tumor, differential diagnosis, grading, evaluation of mutation status and aggression, prediction of treatment response and recurrence in pituitary tumors, gliomas, and brain metastases. In this descriptive review, besides establishing a general understanding among protocols, results, and clinical significance of these studies, we further discuss the current limitations along with future development of radiomics.
Collapse
Affiliation(s)
- Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lifu Long
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Ibrahim A, Widaatalla Y, Refaee T, Primakov S, Miclea RL, Öcal O, Fabritius MP, Ingrisch M, Ricke J, Hustinx R, Mottaghy FM, Woodruff HC, Seidensticker M, Lambin P. Reproducibility of CT-Based Hepatocellular Carcinoma Radiomic Features across Different Contrast Imaging Phases: A Proof of Concept on SORAMIC Trial Data. Cancers (Basel) 2021; 13:cancers13184638. [PMID: 34572870 PMCID: PMC8468150 DOI: 10.3390/cancers13184638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Radiomics has been reported to have potential for correlating with clinical outcomes. However, handcrafted radiomic features (HRFs)—the quantitative features extracted from medical images—are limited by their sensitivity to variations in scanning parameters. Furthermore, radiomics analyses require big data with good quality to achieve desirable performances. In this study, we investigated the reproducibility of HRFs between scans acquired with the same scanning parameters except for the imaging phase (arterial and portal venous phases) to assess the possibilities of merging scans from different phases or replacing missing scans from a phase with other phases to increase data entries. Additionally, we assessed the potential of ComBat harmonization to remove batch effects attributed to this variation. Our results show that the majority of HRFs were not reproducible between the arterial and portal venous phases before or after ComBat harmonization. We provide a guide for analyzing scans of different imaging phases. Abstract Handcrafted radiomic features (HRFs) are quantitative imaging features extracted from regions of interest on medical images which can be correlated with clinical outcomes and biologic characteristics. While HRFs have been used to train predictive and prognostic models, their reproducibility has been reported to be affected by variations in scan acquisition and reconstruction parameters, even within the same imaging vendor. In this work, we evaluated the reproducibility of HRFs across the arterial and portal venous phases of contrast-enhanced computed tomography images depicting hepatocellular carcinomas, as well as the potential of ComBat harmonization to correct for this difference. ComBat harmonization is a method based on Bayesian estimates that was developed for gene expression arrays, and has been investigated as a potential method for harmonizing HRFs. Our results show that the majority of HRFs are not reproducible between the arterial and portal venous imaging phases, yet a number of HRFs could be used interchangeably between those phases. Furthermore, ComBat harmonization increased the number of reproducible HRFs across both phases by 1%. Our results guide the pooling of arterial and venous phases from different patients in an effort to increase cohort size, as well as joint analysis of the phases.
Collapse
Affiliation(s)
- Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liege and GIGA CRC-In Vivo Imaging, University of Liege, 4000 Liege, Belgium;
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
- Correspondence: (A.I.); (T.R.)
| | - Yousif Widaatalla
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
| | - Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (A.I.); (T.R.)
| | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Razvan L. Miclea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
| | - Osman Öcal
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Matthias P. Fabritius
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liege and GIGA CRC-In Vivo Imaging, University of Liege, 4000 Liege, Belgium;
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
| |
Collapse
|
26
|
Wang W, Wu SS, Zhang JC, Xian MF, Huang H, Li W, Zhou ZM, Zhang CQ, Wu TF, Li X, Xu M, Xie XY, Kuang M, Lu MD, Hu HT. Preoperative Pathological Grading of Hepatocellular Carcinoma Using Ultrasomics of Contrast-Enhanced Ultrasound. Acad Radiol 2021; 28:1094-1101. [PMID: 32622746 DOI: 10.1016/j.acra.2020.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVES To develop an ultrasomics model for preoperative pathological grading of hepatocellular carcinoma (HCC) using contrast-enhanced ultrasound (CEUS). MATERIAL AND METHODS A total of 235 HCCs were retrospectively enrolled, including 65 high-grade and 170 low-grade HCCs. Representative images of four-phase CEUS were selected from the baseline sonography, arterial, portal venous, and delayed phase images. Tumor ultrasomics features were automatically extracted using Ultrasomics-Platform software. Models were built via the classifier support vector machine, including an ultrasomics model using the ultrasomics features, a clinical model using the clinical factors, and a combined model using them both. Model performances were tested in the independent validation cohort considering efficiency and clinical usefulness. RESULTS A total of 1502 features were extracted from each image. After the reproducibility test and dimensionality reduction, 25 ultrasomics features and 3 clinical factors were selected to build the models. In the validation cohort, the combined model showed the best predictive power, with an area under the curve value of 0.785 (95% confidence interval [CI] 0.662-0.909), compared to the ultrasomics model of 0.720 (95% CI 0.576-0.864) and the clinical model of 0.665 (95% CI 0.537-0.793). Decision curve analysis suggested that the combined model was clinically useful, with a corresponding net benefit of 0.760 compared to the other two models. CONCLUSION We presented an ultrasomics-clinical model based on multiphase CEUS imaging and clinical factors, which showed potential value for the preoperative discrimination of HCC pathological grades.
Collapse
|
27
|
Patel H, Vock DM, Marai GE, Fuller CD, Mohamed ASR, Canahuate G. Oropharyngeal cancer patient stratification using random forest based-learning over high-dimensional radiomic features. Sci Rep 2021; 11:14057. [PMID: 34234160 PMCID: PMC8263609 DOI: 10.1038/s41598-021-92072-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/10/2021] [Indexed: 11/27/2022] Open
Abstract
To improve risk prediction for oropharyngeal cancer (OPC) patients using cluster analysis on the radiomic features extracted from pre-treatment Computed Tomography (CT) scans. 553 OPC Patients randomly split into training (80%) and validation (20%), were classified into 2 or 3 risk groups by applying hierarchical clustering over the co-occurrence matrix obtained from a random survival forest (RSF) trained over 301 radiomic features. The cluster label was included together with other clinical data to train an ensemble model using five predictive models (Cox, random forest, RSF, logistic regression, and logistic-elastic net). Ensemble performance was evaluated over the independent test set for both recurrence free survival (RFS) and overall survival (OS). The Kaplan-Meier curves for OS stratified by cluster label show significant differences for both training and testing (p val < 0.0001). When compared to the models trained using clinical data only, the inclusion of the cluster label improves AUC test performance from .62 to .79 and from .66 to .80 for OS and RFS, respectively. The extraction of a single feature, namely a cluster label, to represent the high-dimensional radiomic feature space reduces the dimensionality and sparsity of the data. Moreover, inclusion of the cluster label improves model performance compared to clinical data only and offers comparable performance to the models including raw radiomic features.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, 52242, USA
| | - David M Vock
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, USA
| | - G Elisabeta Marai
- Department of Department of Computer Science, University of Illinois at Chicago, Chicago, 60607, USA
| | - Clifton D Fuller
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, 77030, USA
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, 77030, USA
| | - Guadalupe Canahuate
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, 52242, USA.
| |
Collapse
|
28
|
Development and Validation of a Magnetic Resonance Imaging-Based Machine Learning Model for TMJ Pathologies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6656773. [PMID: 34327235 PMCID: PMC8277497 DOI: 10.1155/2021/6656773] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/05/2020] [Accepted: 06/25/2021] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to propose a machine learning model and assess its ability to classify TMJ pathologies on magnetic resonance (MR) images. This retrospective cohort study included 214 TMJs from 107 patients with TMJ signs and symptoms. A radiomics platform was used to extract (Huiying Medical Technology Co., Ltd., China) imaging features of TMJ pathologies, condylar bone changes, and disc displacements. Thereafter, different machine learning (ML) algorithms and logistic regression were implemented on radiomic features for feature selection, classification, and prediction. The following radiomic features included first-order statistics, shape, texture, gray-level cooccurrence matrix (GLCM), gray-level run length matrix (GLRLM), and gray-level size zone matrix (GLSZM). Six classifiers, including logistic regression (LR), random forest (RF), decision tree (DT), k-nearest neighbors (KNN), XGBoost, and support vector machine (SVM) were used for model building which could predict the TMJ pathologies. The performance of models was evaluated by sensitivity, specificity, and ROC curve. KNN and RF classifiers were found to be the most optimal machine learning model for the prediction of TMJ pathologies. The AUC, sensitivity, and specificity for the training set were 0.89 and 1, while those for the testing set were 0.77 and 0.74, respectively, for condylar changes and disc displacement, respectively. For TMJ condylar bone changes Large-Area High-Gray-Level Emphasis, Gray-Level Nonuniformity, Long-Run Emphasis Long-Run High-Gray-Level Emphasis, Flatness, and Volume features, while for TMJ disc displacements Average Intensity, Sum Average, Spherical Disproportion, and Entropy features, were selected. This study has proposed a machine learning model by KNN and RF analysis on TMJ MR images, which can be used to classify condylar changes and TMJ disc displacements.
Collapse
|
29
|
Yang B, Zhou L, Zhong J, Lv T, Li A, Ma L, Zhong J, Yin S, Huang L, Zhou C, Li X, Ge YQ, Tao X, Zhang L, Son Y, Lu G. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer. Respir Res 2021; 22:189. [PMID: 34183009 PMCID: PMC8240400 DOI: 10.1186/s12931-021-01780-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In this study, we tested whether a combination of radiomic features extracted from baseline pre-immunotherapy computed tomography (CT) images and clinicopathological characteristics could be used as novel noninvasive biomarkers for predicting the clinical benefits of non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs). METHODS The data from 92 consecutive patients with lung cancer who had been treated with ICIs were retrospectively analyzed. In total, 88 radiomic features were selected from the pretreatment CT images for the construction of a random forest model. Radiomics model 1 was constructed based on the Rad-score. Using multivariate logistic regression analysis, the Rad-score and significant predictors were integrated into a single predictive model (radiomics nomogram model 1) to predict the durable clinical benefit (DCB) of ICIs. Radiomics model 2 was developed based on the same Rad-score as radiomics model 1.Using multivariate Cox proportional hazards regression analysis, the Rad-score, and independent risk factors, radiomics nomogram model 2 was constructed to predict the progression-free survival (PFS). RESULTS The models successfully predicted the patients who would benefit from ICIs. For radiomics model 1, the area under the receiver operating characteristic curve values for the training and validation cohorts were 0.848 and 0.795, respectively, whereas for radiomics nomogram model 1, the values were 0.902 and 0.877, respectively. For the PFS prediction, the Harrell's concordance indexes for the training and validation cohorts were 0.717 and 0.760, respectively, using radiomics model 2, whereas they were 0.749 and 0.791, respectively, using radiomics nomogram model 2. CONCLUSIONS CT-based radiomic features and clinicopathological factors can be used prior to the initiation of immunotherapy for identifying NSCLC patients who are the most likely to benefit from the therapy. This could guide the individualized treatment strategy for advanced NSCLC.
Collapse
Affiliation(s)
- Bin Yang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Li Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Sch Med, Nanjing, 210002, Jiangsu, China
| | - Jing Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Sch Med, Nanjing, 210002, Jiangsu, China
| | - Ang Li
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Lu Ma
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jian Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Saisai Yin
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Litang Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Southeast University, Sch Med, Nanjing, 210002, Nanjing, China
| | - Changsheng Zhou
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xinyu Li
- Department of Medical Imaging, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Ying Qian Ge
- Siemens Healthineers Ltd., Shanghai, 200000, China
| | - Xinwei Tao
- Siemens Healthineers Ltd., Shanghai, 200000, China
| | - Longjiang Zhang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Yong Son
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Sch Med, Nanjing, 210002, Jiangsu, China.
| | - Guangming Lu
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
30
|
Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma-A Pilot Study. Cancers (Basel) 2021; 13:cancers13092145. [PMID: 33946826 PMCID: PMC8124289 DOI: 10.3390/cancers13092145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. METHODS We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. RESULTS The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (p < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. CONCLUSIONS Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival.
Collapse
|
31
|
Li J, Antonecchia E, Camerlenghi M, Chiaravalloti A, Chu Q, Costanzo AD, Li Z, Wan L, Zhang X, D'Ascenzo N, Schillaci O, Xie Q. Correlation of [ 18F]florbetaben textural features and age of onset of Alzheimer's disease: a principal components analysis approach. EJNMMI Res 2021; 11:40. [PMID: 33881633 PMCID: PMC8060386 DOI: 10.1186/s13550-021-00774-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND When Alzheimer's disease (AD) is occurring at an early onset before 65 years old, its clinical course is generally more aggressive than in the case of a late onset. We aim at identifying [[Formula: see text]F]florbetaben PET biomarkers sensitive to differences between early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). We conducted [[Formula: see text]F]florbetaben PET/CT scans of 43 newly diagnosed AD subjects. We calculated 93 textural parameters for each of the 83 Hammers areas. We identified 41 independent principal components for each brain region, and we studied their Spearman correlation with the age of AD onset, by taking into account multiple comparison corrections. Finally, we calculated the probability that EOAD and LOAD patients have different amyloid-[Formula: see text] ([Formula: see text]) deposition by comparing the mean and the variance of the significant principal components obtained in the two groups with a 2-tailed Student's t-test. RESULTS We found that four principal components exhibit a significant correlation at a 95% confidence level with the age of onset in the left lateral part of the anterior temporal lobe, the right anterior orbital gyrus of the frontal lobe, the right lateral orbital gyrus of the frontal lobe and the left anterior part of the superior temporal gyrus. The data are consistent with the hypothesis that EOAD patients have a significantly different [[Formula: see text]F]florbetaben uptake than LOAD patients in those four brain regions. CONCLUSIONS Early-onset AD implies a very irregular pattern of [Formula: see text] deposition. The authors suggest that the identified textural features can be used as quantitative biomarkers for the diagnosis and characterization of EOAD patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Luoyu Road, Wuhan, 430074, China
| | - Emanuele Antonecchia
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Luoyu Road, Wuhan, 430074, China.,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S, Via Dell'Elettronica, 83008, Pozzilli, Italy
| | - Marco Camerlenghi
- NIM Competence Center for Digital Healthcare GmbH, Potsdamerplatz, 10, 10785, Berlin, Germany
| | - Agostino Chiaravalloti
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S, Via Dell'Elettronica, 83008, Pozzilli, Italy. .,Department of Biomedicine and Prevention, University of Tor Vergata, 86100, Rome, Italy.
| | - Qian Chu
- Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan, 430030, China.,Department of Oncology, Tongji Hospital, Jiefang Avenue, Wuhan, 430030, China
| | - Alfonso Di Costanzo
- Universita degli Studi del Molise, Via Francesco de Sanctis, 1, 10115, Campobasso, Italy
| | - Zhen Li
- Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan, 430030, China.,Department of Radiology, Tongji Hospital, Jiefang Avenue, Wuhan, 430030, China
| | - Lin Wan
- Department of Software Engineering, Huazhong University of Science and Technology, Luoyu Road, Wuhan, 430074, China
| | - Xiangsong Zhang
- The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Nicola D'Ascenzo
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Luoyu Road, Wuhan, 430074, China. .,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S, Via Dell'Elettronica, 83008, Pozzilli, Italy.
| | - Orazio Schillaci
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S, Via Dell'Elettronica, 83008, Pozzilli, Italy.,Department of Biomedicine and Prevention, University of Tor Vergata, 86100, Rome, Italy
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Luoyu Road, Wuhan, 430074, China. .,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S, Via Dell'Elettronica, 83008, Pozzilli, Italy.
| |
Collapse
|
32
|
Wu S, Li H, Dong A, Tian L, Ruan G, Liu L, Shao Y. Differences in Radiomics Signatures Between Patients with Early and Advanced T-Stage Nasopharyngeal Carcinoma Facilitate Prognostication. J Magn Reson Imaging 2021; 54:854-865. [PMID: 33830573 DOI: 10.1002/jmri.27633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Accurately predicting the risk of death, recurrence, and metastasis of patients with nasopharyngeal carcinoma (NPC) is potentially important for personalized diagnosis and treatment. Survival outcomes of patients vary greatly in distinct stages of NPC. Prognostic models of stratified patients may aid in prognostication. PURPOSE To explore the prognostic performance of MRI-based radiomics signatures in stratified patients with NPC. STUDY TYPE Retrospective. POPULATION Seven hundred and seventy-eight patients with NPC (T1-2 stage: 298, T3-4 stage: 480; training cohort: 525, validation cohort: 253). FIELD STRENGTH/SEQUENCE Fast-spin echo (FSE) axial T1-weighted images, FSE axial T2-weighted images, contrast-enhanced FSE axial T1-weighted images at 1.5 T or 3.0 T. ASSESSMENT Radiomics signatures, clinical nomograms, and radiomics nomograms combining the radiomic score (Radscore) and clinical factors for predicting progression-free survival (PFS) were constructed on T1-2 stage patient cohort (A), T3-4 stage patient cohort (B), and the entire dataset (C). STATISTICAL TESTS Least absolute shrinkage and selection operator (LASSO) method was applied for radiomics modeling. Harrell's concordance indices (C-index) were employed to evaluate the predictive power of each model. RESULTS Among 4,410 MRI-extracted features, we selected 16, 16, and 14 radiomics features most relevant to PFS for Models A, B, and C, respectively. Only 0, 1, and 4 features were found overlapped between models A/B, A/C, and B/C, respectively. Radiomics signatures constructed on T1-2 stage and T3-4 stage patients yielded C-indices of 0.820 (95% confidence interval [CI]: 0.763-0.877) and 0.726 (0.687-0.765), respectively, which were larger than those on the entire validation cohort (0.675 [0.637-0.713]). Radiomics nomograms combining Radscore and clinical factors achieved significantly better performance than clinical nomograms (P < 0.05 for all). DATA CONCLUSION The selected radiomics features and prognostic performance of radiomics signatures differed per the type of NPC patients incorporated into the models. Radiomics models based on pre-stratified tumor stages had better prognostic performance than those on unstratified dataset. LEVEL OF EVIDENCE 4 Technical Efficacy Stage: 5.
Collapse
Affiliation(s)
- Shuangshuang Wu
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, PR China
| | - Haojiang Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, PR China
| | - Annan Dong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, PR China
| | - Li Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, PR China
| | - Guangying Ruan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, PR China
| | - Lizhi Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, PR China
| | - Yuanzhi Shao
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
33
|
Tamponi M, Crivelli P, Montella R, Sanna F, Gabriele D, Poggiu A, Sanna E, Marini P, Meloni GB, Sverzellati N, Conti M. Exploring the variability of radiomic features of lung cancer lesions on unenhanced and contrast-enhanced chest CT imaging. Phys Med 2021; 82:321-331. [PMID: 33721791 DOI: 10.1016/j.ejmp.2021.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE The aim of this methods work is to explore the different behavior of radiomic features resulting by using or not the contrast medium in chest CT imaging of non-small cell lung cancer. METHODS Chest CT scans, unenhanced and contrast-enhanced, of 17 patients were selected from images collected as part of the staging process. The major T1-T3 lesion was contoured through a semi-automatic approach. These lesions formed the lesion phantoms to study features behavior. The stability of 94 features of the 3D-Slicer package Radiomics was analyzed. Feature discrimination power was quantified by means of Gini's coefficient. Correlation between distance matrices was evaluated through Mantel statistic. Heatmap, cluster and silhouette plots were applied to find well-structured partitions of lesions. RESULTS The Gini's coefficient evidenced a low discrimination power, <0.05, for four features and a large discrimination power, around 0.8, for five features. About 90% of features was affected by the contrast medium, masking tumor lesions variability; thirteen features only were found stable. On 8178 combinations of stable features, only one group of four features produced the same partition of lesions with the silhouette width greater than 0.51, both on unenhanced and contrast-enhanced images. CONCLUSIONS Gini's coefficient highlighted the features discrimination power in both CT series. Many features were sensitive to the use of the contrast medium, masking the lesions intrinsic variability. Four stable features produced, on both series, the same partition of cancer lesions with reasonable structure; this may merit being objects of further validation studies and interpretative investigations.
Collapse
Affiliation(s)
- Matteo Tamponi
- Health Physics Unit, ATS Sardinia Regional Health Service, Sassari, Italy.
| | - Paola Crivelli
- Institute of Radiological Sciences, University of Sassari, Italy
| | - Rino Montella
- Institute of Radiological Sciences, University of Sassari, Italy
| | - Fabrizio Sanna
- Institute of Radiological Sciences, University of Sassari, Italy
| | | | - Angela Poggiu
- Health Physics Unit, ATS Sardinia Regional Health Service, Sassari, Italy
| | - Enrico Sanna
- Institute of Radiological Sciences, University of Sassari, Italy
| | - Piergiorgio Marini
- Health Physics Unit, ATS Sardinia Regional Health Service, Sassari, Italy
| | | | | | - Maurizio Conti
- Institute of Radiological Sciences, University of Sassari, Italy
| |
Collapse
|
34
|
Tomaszewski MR, Gillies RJ. The Biological Meaning of Radiomic Features. Radiology 2021; 298:505-516. [PMID: 33399513 PMCID: PMC7924519 DOI: 10.1148/radiol.2021202553] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
An earlier incorrect version appeared online. This article was corrected on February 10, 2021.
Collapse
Affiliation(s)
- Michal R. Tomaszewski
- From the Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612
| | - Robert J. Gillies
- From the Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612
| |
Collapse
|
35
|
Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, Mattonen SA, El Naqa I. Machine and deep learning methods for radiomics. Med Phys 2021; 47:e185-e202. [PMID: 32418336 DOI: 10.1002/mp.13678] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Radiomics is an emerging area in quantitative image analysis that aims to relate large-scale extracted imaging information to clinical and biological endpoints. The development of quantitative imaging methods along with machine learning has enabled the opportunity to move data science research towards translation for more personalized cancer treatments. Accumulating evidence has indeed demonstrated that noninvasive advanced imaging analytics, that is, radiomics, can reveal key components of tumor phenotype for multiple three-dimensional lesions at multiple time points over and beyond the course of treatment. These developments in the use of CT, PET, US, and MR imaging could augment patient stratification and prognostication buttressing emerging targeted therapeutic approaches. In recent years, deep learning architectures have demonstrated their tremendous potential for image segmentation, reconstruction, recognition, and classification. Many powerful open-source and commercial platforms are currently available to embark in new research areas of radiomics. Quantitative imaging research, however, is complex and key statistical principles should be followed to realize its full potential. The field of radiomics, in particular, requires a renewed focus on optimal study design/reporting practices and standardization of image acquisition, feature calculation, and rigorous statistical analysis for the field to move forward. In this article, the role of machine and deep learning as a major computational vehicle for advanced model building of radiomics-based signatures or classifiers, and diverse clinical applications, working principles, research opportunities, and available computational platforms for radiomics will be reviewed with examples drawn primarily from oncology. We also address issues related to common applications in medical physics, such as standardization, feature extraction, model building, and validation.
Collapse
Affiliation(s)
- Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, 33081, Italy
| | - Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA
| | | | - Martin Vallières
- Medical Physics Unit, McGill University, Montreal, QC, Canada.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Arvind Rao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA.,Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48103, USA
| | - Olivier Morin
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sarah A Mattonen
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA
| |
Collapse
|
36
|
Park YW, Choi D, Park JE, Ahn SS, Kim H, Chang JH, Kim SH, Kim HS, Lee SK. Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation. Sci Rep 2021; 11:2913. [PMID: 33536499 PMCID: PMC7858615 DOI: 10.1038/s41598-021-82467-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to establish a high-performing radiomics strategy with machine learning from conventional and diffusion MRI to differentiate recurrent glioblastoma (GBM) from radiation necrosis (RN) after concurrent chemoradiotherapy (CCRT) or radiotherapy. Eighty-six patients with GBM were enrolled in the training set after they underwent CCRT or radiotherapy and presented with new or enlarging contrast enhancement within the radiation field on follow-up MRI. A diagnosis was established either pathologically or clinicoradiologically (63 recurrent GBM and 23 RN). Another 41 patients (23 recurrent GBM and 18 RN) from a different institution were enrolled in the test set. Conventional MRI sequences (T2-weighted and postcontrast T1-weighted images) and ADC were analyzed to extract 263 radiomic features. After feature selection, various machine learning models with oversampling methods were trained with combinations of MRI sequences and subsequently validated in the test set. In the independent test set, the model using ADC sequence showed the best diagnostic performance, with an AUC, accuracy, sensitivity, specificity of 0.80, 78%, 66.7%, and 87%, respectively. In conclusion, the radiomics models models using other MRI sequences showed AUCs ranging from 0.65 to 0.66 in the test set. The diffusion radiomics may be helpful in differentiating recurrent GBM from RN..
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Dongmin Choi
- Department of Computer Science, Yonsei University, Seoul, South Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| | - Hwiyoung Kim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| |
Collapse
|
37
|
Ou J, Wu L, Li R, Wu CQ, Liu J, Chen TW, Zhang XM, Tang S, Wu YP, Yang LQ, Tan BG, Lu FL. CT radiomics features to predict lymph node metastasis in advanced esophageal squamous cell carcinoma and to discriminate between regional and non-regional lymph node metastasis: a case control study. Quant Imaging Med Surg 2021; 11:628-640. [PMID: 33532263 DOI: 10.21037/qims-20-241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Prediction of lymph node status in esophageal squamous cell carcinoma (ESCC) is critical for clinical decision making. In clinical practice, computed tomography (CT) has been frequently used to assist in the preoperative staging of ESCC. Texture analysis can provide more information to reflect potential biological heterogeneity based on CT. A nomogram for the preoperative diagnosis of lymph node metastasis in patients with resectable ESCC has been previously developed. However, to the best of our knowledge, no reports focus on developing CT radiomics features to discriminate ESCC patients with regional lymph node metastasis (RLNM) and non-regional lymph node metastasis (NRLNM). We, therefore, aimed to develop CT radiomics models to predict lymph node metastasis (LNM) in advanced ESCC and to discriminate ESCC between RLNM and NRLNM. Methods This study enrolled 334 patients with pathologically confirmed advanced ESCC, including 152 patients without LNM and 182 patients with LNM, and 103 patients with RLNM and 79 patients NRLNM. Radiomics features were extracted from CT data for each patient. The least absolute shrinkage and selection operator (LASSO) model and independent samples t-tests or Mann-Whitney U tests were exploited for dimension reduction and selection of radiomics features. Optimal radiomics features were chosen using multivariable logistic regression analysis. The discriminating performance was assessed by area under the receiver operating characteristic curve (AUC) and accuracy. Results The radiomics features were developed based on multivariable logistic regression and were significantly associated with LNM status in both the training and validation cohorts (P<0.001). The radiomics models could differentiate between patients with and without LNM (AUC =0.79 and 0.75, and accuracy =0.75 and 0.71 in the training and validation cohorts, respectively). In patients with LNM, the radiomics features could effectively differentiate between RLNM and NRLNM (AUC =0.98 and 0.95, and accuracy =0.94 and 0.83 in the training and validation cohorts, respectively). Conclusions CT radiomics features could help predict the LNM status of advanced ESCC patients and effectively discriminate ESCC between RLNM and NRLNM.
Collapse
Affiliation(s)
- Jing Ou
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lan Wu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Li
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chang-Qiang Wu
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jun Liu
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tian-Wu Chen
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Sun Tang
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu-Ping Wu
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Li-Qin Yang
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bang-Guo Tan
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fu-Lin Lu
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
38
|
Feasibility of MRI Radiomics for Predicting KRAS Mutation in Rectal Cancer. Curr Med Sci 2021; 40:1156-1160. [PMID: 33428144 DOI: 10.1007/s11596-020-2298-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
The mutation status of KRAS is a significant biomarker in the prognosis of rectal cancer. This study investigated the feasibility of MRI-based radiomics in predicting the mutation status of KRAS with a composite index which could be an important criterion for KRAS mutation in clinical practice. In this retrospective study, a total of 127 patients with rectal cancer were enrolled. The 3D Slicer was used to extract the radiomics features from the MRI images, and sparse support vector machine (SVM) with linear kernel was applied for feature reduction. The radiomics classifier for predicting the KRAS status was then constructed by Linear Discriminant Analysis (LDA) and its performance was evaluated. The composite index was determined with LDA model. Out of 127 rectal cancer subjects, there were 44 KRAS mutation cases and 83 wild cases. A total of 104 radiomics features were extracted, 54 features were filtered by linear SVM with L1-norm regularization and 6 features that had no significant correlations within them were finally selected. The radiomics classifier constructed using the 6 features featured an AUC value of 0.669 (specificity: 0.506; sensitivity: 0.773) with LDA. Furthermore, the composite index (Radscore) had statistically significant difference between the KRAS mutation and wild groups. It is suggested that the MRI-based radiomics has the potential in predicting the KRAS status in patients with rectal cancer, which may enhance the diagnostic value of MRI in rectal cancer.
Collapse
|
39
|
Liu Q, Li J, Liu F, Yang W, Ding J, Chen W, Wei Y, Li B, Zheng L. A radiomics nomogram for the prediction of overall survival in patients with hepatocellular carcinoma after hepatectomy. Cancer Imaging 2020; 20:82. [PMID: 33198809 PMCID: PMC7667801 DOI: 10.1186/s40644-020-00360-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is associated with a dismal prognosis, and prediction of the prognosis of HCC can assist in therapeutic decision-makings. An increasing number of studies have shown that the texture parameters of images can reflect the heterogeneity of tumors, and may have the potential to predict the prognosis of patients with HCC after surgical resection. The aim of this study was to investigate the prognostic value of computed tomography (CT) texture parameters in patients with HCC after hepatectomy and to develop a radiomics nomogram by combining clinicopathological factors and the radiomics signature. Methods In all, 544 eligible patients were enrolled in this retrospective study and were randomly divided into the training cohort (n = 381) and the validation cohort (n = 163). The tumor regions of interest (ROIs) were delineated, and the corresponding texture parameters were extracted. The texture parameters were selected by using the least absolute shrinkage and selection operator (LASSO) Cox model in the training cohort, and a radiomics signature was established. Then, the radiomics signature was further validated as an independent risk factor for overall survival (OS). The radiomics nomogram was established based on the Cox regression model. The concordance index (C-index), calibration plot and decision curve analysis (DCA) were used to evaluate the performance of the radiomics nomogram. Results The radiomics signature was formulated based on 7 OS-related texture parameters, which were selected in the training cohort. In addition, the radiomics nomogram was developed based on the following five variables: α-fetoprotein (AFP), platelet-to-lymphocyte ratio (PLR), largest tumor size, microvascular invasion (MVI) and radiomics score (Rad-score). The nomogram displayed good accuracy in predicting OS (C-index = 0.747) in the training cohort and was confirmed in the validation cohort (C-index = 0.777). The calibration plots also showed excellent agreement between the actual and predicted survival probabilities. The DCA indicated that the radiomics nomogram showed better clinical utility than the clinicopathologic nomogram. Conclusion The radiomics signature is a potential prognostic biomarker of HCC after hepatectomy. The radiomics nomogram that integrated the radiomics signature can provide a more accurate estimation of OS than the clinicopathologic nomogram for HCC patients after hepatectomy. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-020-00360-9.
Collapse
Affiliation(s)
- Qinqin Liu
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China.,Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao High Street, Shapingba District, Chongqing, 400037, China.,The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jing Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao High Street, Shapingba District, Chongqing, 400037, China
| | - Fei Liu
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Weilin Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Ding
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weixia Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Wei
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Bo Li
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China.
| | - Lu Zheng
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao High Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
40
|
Leech M, Osman S, Jain S, Marignol L. Mini review: Personalization of the radiation therapy management of prostate cancer using MRI-based radiomics. Cancer Lett 2020; 498:210-216. [PMID: 33160001 DOI: 10.1016/j.canlet.2020.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
Decisions on how to treat prostate cancer with radiation therapy are guideline-based but as such guidelines have been developed for populations of patients, this invariably leads to overly aggressive treatment in some patients and insufficient treatment in others. Heterogeneity within prostate tumors and in metastatic sites, even within the same patient, is believed to be a major cause of treatment failure. Radiomics biomarkers, more commonly referred to as radiomics 'features", provide readily available, cost-effective, non-invasive tools for screening, detecting tumors and serial monitoring of patients, including assessments of response to therapy and identification of therapeutic complications. Radiomics offers the potential to analyse whole tumors in 3D, as well as sub-regions or 'habitats' within tumors. Combining quantitative information from imaging with pathology, demographic details and other biomarkers will pave the way for personalised treatment selection and monitoring in prostate cancer. The aim of this review is to consider if MRI-based radiomics can bridge the gap between population-based management and personalised management of prostate cancer.
Collapse
Affiliation(s)
- Michelle Leech
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College, Dublin, Ireland.
| | - Sarah Osman
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, United Kingdom
| | - Suneil Jain
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, United Kingdom
| | - Laure Marignol
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
41
|
O’Farrell AC, Jarzabek MA, Lindner AU, Carberry S, Conroy E, Miller IS, Connor K, Shiels L, Zanella ER, Lucantoni F, Lafferty A, White K, Meyer Villamandos M, Dicker P, Gallagher WM, Keek SA, Sanduleanu S, Lambin P, Woodruff HC, Bertotti A, Trusolino L, Byrne AT, Prehn JHM. Implementing Systems Modelling and Molecular Imaging to Predict the Efficacy of BCL-2 Inhibition in Colorectal Cancer Patient-Derived Xenograft Models. Cancers (Basel) 2020; 12:cancers12102978. [PMID: 33066609 PMCID: PMC7602510 DOI: 10.3390/cancers12102978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Resistance to chemotherapy often results from dysfunctional apoptosis, however multiple proteins with overlapping functions regulate this pathway. We sought to determine whether an extensively validated, deterministic apoptosis systems model, 'DR_MOMP', could be used as a stratification tool for the apoptosis sensitiser and BCL-2 antagonist, ABT-199 in patient-derived xenograft (PDX) models of colorectal cancer (CRC). Through quantitative profiling of BCL-2 family proteins, we identified two PDX models which were predicted by DR_MOMP to be sufficiently sensitive to 5-fluorouracil (5-FU)-based chemotherapy (CRC0344), or less responsive to chemotherapy but sensitised by ABT-199 (CRC0076). Treatment with ABT-199 significantly improved responses of CRC0076 PDXs to 5-FU-based chemotherapy, but showed no sensitisation in CRC0344 PDXs, as predicted from systems modelling. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) scans were performed to investigate possible early biomarkers of response. In CRC0076, a significant post-treatment decrease in mean standard uptake value was indeed evident only in the combination treatment group. Radiomic CT feature analysis of pre-treatment images in CRC0076 and CRC0344 PDXs identified features which could phenotypically discriminate between models, but were not predictive of treatment responses. Collectively our data indicate that systems modelling may identify metastatic (m)CRC patients benefitting from ABT-199, and that 18F-FDG-PET could independently support such predictions.
Collapse
Affiliation(s)
- Alice C. O’Farrell
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Monika A. Jarzabek
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Andreas U. Lindner
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Steven Carberry
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Emer Conroy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (W.M.G.)
| | - Ian S. Miller
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Kate Connor
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Liam Shiels
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Eugenia R. Zanella
- Candiolo Cancer Institute—FPO IRCCS, Candiolo, 10060 Torino, Italy; (E.R.Z.); (A.B.); (L.T.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Federico Lucantoni
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Adam Lafferty
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Kieron White
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Mariangela Meyer Villamandos
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Patrick Dicker
- Department of Epidemiology and Public Health Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (W.M.G.)
| | - Simon A. Keek
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
| | - Sebastian Sanduleanu
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
- Department of Radiology and Nuclear Imaging, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
- Department of Radiology and Nuclear Imaging, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Andrea Bertotti
- Candiolo Cancer Institute—FPO IRCCS, Candiolo, 10060 Torino, Italy; (E.R.Z.); (A.B.); (L.T.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute—FPO IRCCS, Candiolo, 10060 Torino, Italy; (E.R.Z.); (A.B.); (L.T.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Annette T. Byrne
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (W.M.G.)
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
- Correspondence: ; Tel.: +353-1-402-2255
| |
Collapse
|
42
|
Shan YN, Xu W, Wang R, Wang W, Pang PP, Shen QJ. A Nomogram Combined Radiomics and Kinetic Curve Pattern as Imaging Biomarker for Detecting Metastatic Axillary Lymph Node in Invasive Breast Cancer. Front Oncol 2020; 10:1463. [PMID: 32983979 PMCID: PMC7483545 DOI: 10.3389/fonc.2020.01463] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
Objective: To construct and validate a nomogram model integrating the magnetic resonance imaging (MRI) radiomic features and the kinetic curve pattern for detecting metastatic axillary lymph node (ALN) in invasive breast cancer preoperatively. Materials and Methods: A total of 145 ALNs from two institutions were classified into negative and positive groups according to the pathologic or surgical results. One hundred one ALNs from institution I were taken as the training cohort, and the other 44 ALNs from institution II were taken as the external validation cohort. The kinetic curve was computed using dynamic contrast-enhanced MRI software. The preprocessed images were used for radiomic feature extraction. The LASSO regression was applied to identify optimal radiomic features and construct the Radscore. A nomogram model was constructed combining the Radscore and the kinetic curve pattern. The discriminative performance was evaluated by receiver operating characteristic analysis and calibration curve. Results: Five optimal features were ultimately selected and contributed to the Radscore construction. The kinetic curve pattern was significantly different between negative and positive lymph nodes. The nomogram model showed a better performance in both training cohort [area under the curve (AUC) = 0.91, 95% CI = 0.83–0.96] and external validation cohort (AUC = 0.86, 95% CI = 0.72–0.94); the calibration curve indicated a better accuracy of the nomogram model for detecting metastatic ALN than either Radscore or kinetic curve pattern alone. Conclusion: A nomogram model integrated the Radscore and the kinetic curve pattern could serve as a biomarker for detecting metastatic ALN in patients with invasive breast cancer.
Collapse
Affiliation(s)
- Yan-Na Shan
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xu
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wang
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Qi-Jun Shen
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Marcu LG, Forster JC, Bezak E. The Potential Role of Radiomics and Radiogenomics in Patient Stratification by Tumor Hypoxia Status. J Am Coll Radiol 2020; 16:1329-1337. [PMID: 31492411 DOI: 10.1016/j.jacr.2019.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Despite the clinical knowledge accumulated over a century about tumor hypoxia, this biologic parameter remains a major challenge in cancer treatment. Patients presenting with hypoxic tumors are more resistant to radiotherapy and often poor responders to chemotherapy. Treatment failure because of hypoxia is, therefore, very common. Several methods have been trialed to measure and quantify tumor hypoxia, with varied success. Over the last couple of decades, hypoxia-specific functional imaging has started to play an important role in personalized treatment planning and delivery. Yet, there are no gold standards in place, owing to inter- and intrapatient phenotypic variations that further complicate the overall picture. The aim of the current article is to analyze, through the review of the literature, the potential role of radiomics and radiogenomics in patient stratification by tumor hypoxia status. METHODS Search of literature published in English since 2000 was conducted using Medline. Additional articles were retrieved via pearling of identified literature. Publications were reviewed and summarized in text and in a tabulated format. RESULTS Although still an immature area of science, radiomics has shown its potential in the quantification of hypoxia within the heterogeneous tumor, quantification of changes regarding the degree of hypoxia after radiotherapy and drug delivery, monitoring tumor response to anti-angiogenic therapy, and assisting with patient stratification and outcome prediction based on the hypoxic status. CONCLUSIONS The lack of technique standardization to measure and quantify tumor hypoxia presents an opportunity for data mining and machine learning in radiogenomics.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Science, University of Oradea, Oradea, Romania; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, Australia.
| | - Jake C Forster
- Department of Physics, University of Adelaide, North Terrace, Adelaide, Australia; SA Medical Imaging, Department of Nuclear Medicine, The Queen Elizabeth Hospital, Woodville South, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, Australia; Department of Physics, University of Adelaide, North Terrace, Adelaide, Australia
| |
Collapse
|
44
|
Discovery and Validation of a CT-Based Radiomic Signature for Preoperative Prediction of Early Recurrence in Hypopharyngeal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4340521. [PMID: 32851071 PMCID: PMC7436349 DOI: 10.1155/2020/4340521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/28/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Purpose In the clinical management of hypopharyngeal squamous cell carcinoma (HSCC), preoperative identification of early recurrence (≤2 years) after curative resection is essential. Thus, we aimed to develop a CT-based radiomic signature to predict early recurrence in HSCC patients preoperatively. Methods In total, 167 HSCC patients who underwent partial surgery were enrolled in this retrospective study and divided into two groups, i.e., the training cohort (n = 133) and the validation cohort (n = 34). Each individual was followed up for at least for 2 years. Radiomic features were extracted from CT images, and the radiomic signature was built with the least absolute shrinkage and selection operator (LASSO) logistic regression (LR) model. The associations of preoperative clinical factors with early recurrence were evaluated. A radiomic signature-combined model was built, and the area under the curve (AUC) was used to explore their performance in discriminating early recurrence. Results Among the 1415 features, 335 of them were selected using the variance threshold method. Then, the SelectKBest method was further used for the selection of 31 candidate features. Finally, 11 out of 31 optimal features were identified with the LASSO algorithm. In the LR classifier, the AUCs of the training and validation sets in discriminating early recurrence were 0.83 (95% CI: 0.76-0.90) (sensitivity 0.8 and specificity 0.83) and 0.83 (95% CI: 0.67-0.99) (sensitivity 0.69 and specificity 0.71), respectively. Conclusions Using the radiomic signature, we developed a radiomic signature to preoperatively predict early recurrence in patients with HSCC, which may serve as a potential noninvasive tool to guide personalized treatment.
Collapse
|
45
|
S P S, I S, A H K, R H, S K, H G, A SZ. Predicting Lung Cancer Patients' Survival Time via Logistic Regression-based Models in a Quantitative Radiomic Framework. J Biomed Phys Eng 2020; 10:479-492. [PMID: 32802796 PMCID: PMC7416103 DOI: 10.31661/jbpe.v0i0.1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/19/2018] [Indexed: 06/11/2023]
Abstract
BACKGROUND Selection of the best treatment modalities for lung cancer depends on many factors, like survival time, which are usually determined by imaging. OBJECTIVES To predict the survival time of lung cancer patients using the advantages of both radiomics and logistic regression-based classification models. MATERIAL AND METHODS Fifty-nine patients with primary lung adenocarcinoma were included in this retrospective study and pre-treatment contrast-enhanced CT images were acquired. The patients lived more than 2 years were classified as the 'Alive' class and otherwise as the 'Dead' class. In our proposed quantitative radiomic framework, we first extracted the associated regions of each lung lesion from pre-treatment CT images for each patient via grow cut segmentation algorithm. Then, 40 radiomic features were extracted from the segmented lung lesions. In order to enhance the generalizability of the classification models, the mutual information-based feature selection method was applied to each feature vector. We investigated the performance of six logistic regression-based classification models. RESULTS It was observed that the mutual information feature selection method can help the classifier to achieve better predictive results. In our study, the Logistic regression (LR) and Dual Coordinate Descent method for Logistic Regression (DCD-LR) models achieved the best results indicating that these classification models have strong potential for classifying the more important class (i.e., the 'Alive' class). CONCLUSION The proposed quantitative radiomic framework yielded promising results, which can guide physicians to make better and more precise decisions and increase the chance of treatment success.
Collapse
Affiliation(s)
- Shayesteh S P
- PhD, Department of Physiology, Pharmacology and medical physics, Faculty of Medicine, Alborz University of Medical Sciences, Karaj. Iran
- PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shiri I
- MSc, Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Karami A H
- PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hashemian R
- MD, PhD, US oncology Inc, Cincinnati, OH, USA
| | - Kooranifar S
- MD, Department of Pulmonary Sciences, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ghaznavi H
- MD, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran
| | - Shakeri-Zadeh A
- PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
46
|
Katsoulakis E, Yu Y, Apte AP, Leeman JE, Katabi N, Morris L, Deasy JO, Chan TA, Lee NY, Riaz N, Hatzoglou V, Oh JH. Radiomic analysis identifies tumor subtypes associated with distinct molecular and microenvironmental factors in head and neck squamous cell carcinoma. Oral Oncol 2020; 110:104877. [PMID: 32619927 DOI: 10.1016/j.oraloncology.2020.104877] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE To identify whether radiomic features from pre-treatment computed tomography (CT) scans can predict molecular differences between head and neck squamous cell carcinoma (HNSCC) using The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). METHODS 77 patients from the TCIA with HNSCC had imaging suitable for analysis. Radiomic features were extracted and unsupervised consensus clustering was performed to identify subtypes. Genomic data was extracted from the matched patients in the TCGA database. We explored relationships between radiomic features and molecular profiles of tumors, including the tumor immune microenvironment. A machine learning method was used to build a model predictive of CD8 + T-cells. An independent cohort of 83 HNSCC patients was used to validate the radiomic clusters. RESULTS We initially extracted 104 two-dimensional radiomic features, and after feature stability tests and removal of volume dependent features, reduced this to 67 features for subsequent analysis. Consensus clustering based on these features resulted in two distinct clusters. The radiomic clusters differed by primary tumor subsite (p = 0.0096), HPV status (p = 0.0127), methylation-based clustering results (p = 0.0025), and tumor immune microenvironment. A random forest model using radiomic features predicted CD8 + T-cells independent of HPV status with R2 = 0.30 (p < 0.0001) on cross validation. Consensus clustering on the validation cohort resulted in two distinct clusters that differ in tumor subsite (p = 1.3 × 10-7) and HPV status (p = 4.0 × 10-7). CONCLUSION Radiomic analysis can identify biologic features of tumors such as HPV status and T-cell infiltration and may be able to provide other information in the near future to help with patient stratification.
Collapse
Affiliation(s)
- Evangelia Katsoulakis
- Department of Radiation Oncology, Veterans Affairs, James A Haley, Tampa, FL 33612, USA
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aditya P Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan E Leeman
- Department of Radiation Oncology, Dana Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA 02189, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luc Morris
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
47
|
Radiomics Applications in Renal Tumor Assessment: A Comprehensive Review of the Literature. Cancers (Basel) 2020; 12:cancers12061387. [PMID: 32481542 PMCID: PMC7352711 DOI: 10.3390/cancers12061387] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Radiomics texture analysis offers objective image information that could otherwise not be obtained by radiologists′ subjective radiological interpretation. We investigated radiomics applications in renal tumor assessment and provide a comprehensive review. A detailed search of original articles was performed using the PubMed-MEDLINE database until 20 March 2020 to identify English literature relevant to radiomics applications in renal tumor assessment. In total, 42 articles were included in the analysis and divided into four main categories: renal mass differentiation, nuclear grade prediction, gene expression-based molecular signatures, and patient outcome prediction. The main area of research involves accurately differentiating benign and malignant renal masses, specifically between renal cell carcinoma (RCC) subtypes and from angiomyolipoma without visible fat and oncocytoma. Nuclear grade prediction may enhance proper patient selection for risk-stratified treatment. Radiomics-predicted gene mutations may serve as surrogate biomarkers for high-risk disease, while predicting patients’ responses to targeted therapies and their outcomes will help develop personalized treatment algorithms. Studies generally reported the superiority of radiomics over expert radiological interpretation. Radiomics provides an alternative to subjective image interpretation for improving renal tumor diagnostic accuracy. Further incorporation of clinical and imaging data into radiomics algorithms will augment tumor prediction accuracy and enhance individualized medicine.
Collapse
|
48
|
Chen H, Shi L, Nguyen KNB, Monjazeb AM, Matsukuma KE, Loehfelm TW, Huang H, Qiu J, Rong Y. MRI Radiomics for Prediction of Tumor Response and Downstaging in Rectal Cancer Patients after Preoperative Chemoradiation. Adv Radiat Oncol 2020; 5:1286-1295. [PMID: 33305090 PMCID: PMC7718560 DOI: 10.1016/j.adro.2020.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose This study aimed to investigate radiomic features extracted from magnetic resonance imaging (MRI) scans performed before and after neoadjuvant chemoradiotherapy (nCRT) in predicting response of locally advanced rectal cancer (LARC). Methods and Materials Thirty-nine patients who underwent nCRT for LARC were included, with 294 radiomic features extracted from MRI that was performed before (pre-CRT) and 6 to 8 weeks after completing nCRT (post-CRT). Based on tumor regression grade (TRG), 26 patients were classified as having a histopathologic good response (GR; TRG 0-1) and 13 as non-GR (TRG 2-3). Tumor downstaging (T-downstaging) occurred in 25 patients. Univariate analyses were performed to assess potential radiomic and delta-radiomic predictors for TRG in pathologic complete response (pCR) versus non-pCR, GR versus non-GR, and T-downstaging. The support vector machine-based multivariate model was used to select the best predictors for TRG and T-downstaging. Results We identified 13 predictive features for pCR versus non-pCR, 14 for GR versus non-GR, and 16 for T-downstaging. Pre-CRT gray-level run length matrix nonuniformity, pre-CRT neighborhood intensity difference matrix (NIDM) texture strength, and post-CRT NIDM busyness predicted all 3 treatment responses. The best predictor for GR versus non-GR was pre-CRT global minimum combined with clinical N stage in the multivariate analysis. The best predictor for T-downstaging was the combination of pre-CRT gray-level co-occurrence matrix correlation, NIDM-texture strength, and gray-level co-occurrence matrix variance. The pre-CRT, post-CRT, and delta radiomic-based models had no significant difference in predicting all 3 responses. Conclusions Pre-CRT MRI, post-CRT MRI, and delta radiomic-based models have the potential to predict tumor response after nCRT in LARC. These data, if validated in larger cohorts, can provide important predictive information to aid in clinical decision making.
Collapse
Affiliation(s)
- Haihui Chen
- Department of Medical Oncology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China.,Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Liting Shi
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California.,Medical Engineering and Technology Research Center, Imaging-X Joint Laboratory, Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ky Nam Bao Nguyen
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Karen E Matsukuma
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Thomas W Loehfelm
- Department of Radiology, University of California Davis School of Medicine, Sacramento, California
| | - Haixin Huang
- Department of Medical Oncology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jianfeng Qiu
- Medical Engineering and Technology Research Center, Imaging-X Joint Laboratory, Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yi Rong
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
49
|
Qi Y, Cui X, Han M, Li R, Zhang T, Geng B, Xiu J, Liu J, Liu Z, Han M. Radiomics analysis of lung CT image for the early detection of metastases in patients with breast cancer: preliminary findings from a retrospective cohort study. Eur Radiol 2020; 30:4545-4556. [PMID: 32166487 DOI: 10.1007/s00330-020-06745-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate whether subtle changes in radiomics features are present in lung CT images prior to the development of CT-detectable lung metastases in patients with breast cancer. METHODS Thirty-three radiomics features were measured in the metastasis region (MR) and in matched contralateral tissues (non-metastasis region, NMR) of 29 breast cancer patients at the last CT scan, as well as in the corresponding regions of the patients' pre-metastasis scan (pre-MR and pre-NMR). We also compared them with normal lung tissues (control group, CG) from 29 healthy volunteers. Then, 8 patients from the 29 patients with lung metastases and 8 patients who did not develop lung metastases were chosen for further study of the correlation between radiomics parameters and tumor growth. RESULTS In the MR vs. NMR and MR vs. CG groups, almost all radiomics features were significantly different. Twenty-six parameters showed significant differences between the pre-MRs and pre-NMRs. Linear fitting demonstrated a significant correlation between 5 features and tumor growth in the metastasis group, but not in the non-metastasis group. Among them, run percentage was the most representative feature. The calculated area under curves (AUCs), based on run percentage for the classification of metastasis and pre-metastasis, were 0.954 and 0.852, respectively. CONCLUSIONS Radiomics features may allow early detection of lung metastases before they become visually detectable, and the feature run percentage may be a promising image surrogate marker for the microinvasion of tumor cells into the lung tissue. KEY POINTS • The significant differences in radiomics features between pre-MR and pre-NMR are critical for the early detection of lung metastases. • Five radiomics features show a correlation with tumor growth. • The radiomics feature run percentage may be a potential imaging biomarker for the early detection of lung metastases.
Collapse
Affiliation(s)
- Yana Qi
- Cancer Therapy and Research Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, People's Republic of China
| | - Xiaoxiao Cui
- School of Information Science and Engineering, Shandong University, Jinan, People's Republic of China
| | - Meng Han
- School of Basic Medical Sciences, Shandong First Medical University, Jinan, People's Republic of China
| | - Ranran Li
- Cancer Therapy and Research Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, People's Republic of China
| | - Tiehong Zhang
- Cancer Therapy and Research Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, People's Republic of China
| | - Baocheng Geng
- Cancer Therapy and Research Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, People's Republic of China
| | - Jianjun Xiu
- Cancer Therapy and Research Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, People's Republic of China
| | - Jing Liu
- School of Public Health, Shandong University, Jinan, People's Republic of China
| | - Zhi Liu
- School of Information Science and Engineering, Shandong University, Jinan, People's Republic of China.
| | - Mingyong Han
- Cancer Therapy and Research Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
50
|
Rogers W, Thulasi Seetha S, Refaee TAG, Lieverse RIY, Granzier RWY, Ibrahim A, Keek SA, Sanduleanu S, Primakov SP, Beuque MPL, Marcus D, van der Wiel AMA, Zerka F, Oberije CJG, van Timmeren JE, Woodruff HC, Lambin P. Radiomics: from qualitative to quantitative imaging. Br J Radiol 2020; 93:20190948. [PMID: 32101448 DOI: 10.1259/bjr.20190948] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Historically, medical imaging has been a qualitative or semi-quantitative modality. It is difficult to quantify what can be seen in an image, and to turn it into valuable predictive outcomes. As a result of advances in both computational hardware and machine learning algorithms, computers are making great strides in obtaining quantitative information from imaging and correlating it with outcomes. Radiomics, in its two forms "handcrafted and deep," is an emerging field that translates medical images into quantitative data to yield biological information and enable radiologic phenotypic profiling for diagnosis, theragnosis, decision support, and monitoring. Handcrafted radiomics is a multistage process in which features based on shape, pixel intensities, and texture are extracted from radiographs. Within this review, we describe the steps: starting with quantitative imaging data, how it can be extracted, how to correlate it with clinical and biological outcomes, resulting in models that can be used to make predictions, such as survival, or for detection and classification used in diagnostics. The application of deep learning, the second arm of radiomics, and its place in the radiomics workflow is discussed, along with its advantages and disadvantages. To better illustrate the technologies being used, we provide real-world clinical applications of radiomics in oncology, showcasing research on the applications of radiomics, as well as covering its limitations and its future direction.
Collapse
Affiliation(s)
- William Rogers
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Thoracic Oncology, IRCCS Foundation National Cancer Institute, Milan, Italy
| | - Sithin Thulasi Seetha
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Thoracic Oncology, IRCCS Foundation National Cancer Institute, Milan, Italy
| | - Turkey A G Refaee
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Relinde I Y Lieverse
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Renée W Y Granzier
- Department of Radiology and Nuclear Imaging, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre, Grow-School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Abdalla Ibrahim
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiology and Nuclear Imaging, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Nuclear Medicine and Comprehensive diagnostic center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany.,Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Hospital Center Universitaire De Liege, Liege, Belgium
| | - Simon A Keek
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sebastian Sanduleanu
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sergey P Primakov
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Manon P L Beuque
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Damiënne Marcus
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alexander M A van der Wiel
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Fadila Zerka
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Cary J G Oberije
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Janita E van Timmeren
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland.,University of Zürich, Zürich, Switzerland
| | - Henry C Woodruff
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiology and Nuclear Imaging, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiology and Nuclear Imaging, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|