1
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
2
|
Ando K, Yoshida Y, Hirayama R, Koike S, Matsufuji N. Dose- and LET-dependent changes in mouse skin contracture up to a year after either single dose or fractionated doses of carbon ion or gamma rays. JOURNAL OF RADIATION RESEARCH 2022; 63:221-229. [PMID: 35021226 PMCID: PMC8944303 DOI: 10.1093/jrr/rrab123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Time dependence of relative biological effectiveness (RBE) of carbon ions for skin damage was investigated to answer the question of whether the flat distribution of biological doses within a Spread-Out Bragg peak (SOBP) which is designed based on in vitro cell kill could also be flat for in vivo late responding tissue. Two spots of Indian ink intracutaneously injected into the legs of C3H mice were measured by calipers. An equieffective dose to produce 30% skin contraction was calculated from a dose-response curve and used to calculate the RBE of carbon ion beams. We discovered skin contraction progressed after irradiation and then reached a stable/slow progression phase. Equieffective doses decreased with time and the decrease was most prominent for gamma rays and least prominent for 100 keV/μm carbon ions. Survival parameter of alpha but not beta in the linear-quadratic model is closely related to the RBE of carbon ions. Biological doses within the SOBP increased with time but their distribution was still flat up to 1 year after irradiation. The outcomes of skin contraction studies suggest that (i) despite the higher RBE for skin contracture after carbon ions compared to gamma rays, gamma rays can result in a more severe late effect of skin contracture. This is due to the carbon effect saturating at a lower dose than gamma rays, and (ii) the biological dose distribution throughout the SOBP remains approximately the same even one year after exposure.
Collapse
Affiliation(s)
- Koichi Ando
- Corresponding author. Gunma University Heavy Ion Medical Center, Showa-machi 3-39-22, Maebashi0shi, Gunma, Japan 371-8511, Email address:
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Showa-machi 3-39-22, Maebashi-shi, Gunma, Japan 371-8511
| | - Ryoichi Hirayama
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Chiba, Japan 263-8555
| | - Sachiko Koike
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Chiba, Japan 263-8555
| | - Naruhiro Matsufuji
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Chiba, Japan 263-8555
| |
Collapse
|
3
|
Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. NATURE REVIEWS. PHYSICS 2021; 3:777-790. [PMID: 34870097 PMCID: PMC7612063 DOI: 10.1038/s42254-021-00368-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Radiotherapy should have low toxicity in the entrance channel (normal tissue) and be very effective in cell killing in the target region (tumour). In this regard, ions heavier than protons have both physical and radiobiological advantages over conventional X-rays. Carbon ions represent an excellent combination of physical and biological advantages. There are a dozen carbon-ion clinical centres in Europe and Asia, and more under construction or at the planning stage, including the first in the USA. Clinical results from Japan and Germany are promising, but a heated debate on the cost-effectiveness is ongoing in the clinical community, owing to the larger footprint and greater expense of heavy ion facilities compared with proton therapy centres. We review here the physical basis and the clinical data with carbon ions and the use of different ions, such as helium and oxygen. Research towards smaller and cheaper machines with more effective beam delivery is necessary to make particle therapy affordable. The potential of heavy ions has not been fully exploited in clinics and, rather than there being a single 'silver bullet', different particles and their combination can provide a breakthrough in radiotherapy treatments in specific cases.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jay S. Loeffler
- Departments of Radiation Oncology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
5
|
Scholz M. State-of-the-Art and Future Prospects of Ion Beam Therapy: Physical and Radiobiological Aspects. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2935240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Shibuya K, Ohno T, Terashima K, Toyama S, Yasuda S, Tsuji H, Okimoto T, Shioyama Y, Nemoto K, Kamada T, Nakano T. Short-course carbon-ion radiotherapy for hepatocellular carcinoma: A multi-institutional retrospective study. Liver Int 2018; 38:2239-2247. [PMID: 30240527 DOI: 10.1111/liv.13969] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Carbon-ion radiation therapy has shown encouraging results in hepatocellular carcinoma patients in single-centre studies. We evaluated the effectiveness and safety of short-course carbon-ion radiation therapy for hepatocellular carcinoma in a multicentre study conducted by the Japan Carbon Ion Radiation Oncology Study Group. METHODS Consecutive hepatocellular carcinoma patients who were treated with carbon-ion radiation therapy in four or fewer fractions at four Japanese institutions between April 2005 and November 2014 were analysed retrospectively. The primary outcome was overall survival; secondary outcomes were local control rate, treatment-related toxicity and radiation-induced liver disease. RESULTS A total of 174 patients were included in this study. Prescribed carbon-ion radiation therapy doses were (relative biological effectiveness): 48.0 Gy in two fractions (n = 46), and 52.8 Gy (n = 108) and 60.0 Gy (n = 20) in four fractions. The median follow-up period was 20.3 (range, 2.9-103.5) months. The overall survival and local control rates at 1, 2 and 3 years were 95.4%, 82.5% and 73.3%; and 94.6%, 87.7% and 81.0% respectively. Multivariate analysis revealed that Eastern Cooperative Oncology Group performance status 1-2, Child-Pugh class B, maximum tumour diameter ≥3 cm, multiple tumours and serum alpha foetoprotein level >50 ng/mL were significant prognostic factors of overall survival. No treatment-related death occurred during the follow-up period. Grades 3 or 4 treatment-related toxicities were observed in 10 patients (5.7%); radiation-induced liver disease was observed in three patients (1.7%). CONCLUSIONS Short-course carbon-ion radiation therapy is a safe, effective and potentially curative therapy for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kei Shibuya
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Kazuki Terashima
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Shingo Toyama
- Ion Beam Therapy Center, SAGA-HIMAT Foundation, Tosu, Japan
| | - Shigeo Yasuda
- National Institute of Radiological Science Hospital, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- National Institute of Radiological Science Hospital, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | | | - Kenji Nemoto
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tadashi Kamada
- National Institute of Radiological Science Hospital, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Takashi Nakano
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | | |
Collapse
|
7
|
Kanematsu N, Inaniwa T. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation. Phys Med Biol 2017; 62:1062-1075. [DOI: 10.1088/1361-6560/62/3/1062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Oike T, Sato H, Noda SE, Nakano T. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University. Front Oncol 2016; 6:139. [PMID: 27376029 PMCID: PMC4899433 DOI: 10.3389/fonc.2016.00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/23/2016] [Indexed: 11/13/2022] Open
Abstract
Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by combining it with cancer immunotherapy. Clinical validation of preclinical findings is necessary to further improve the treatment efficacy of carbon ion radiotherapy.
Collapse
Affiliation(s)
- Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine , Gunma , Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine , Gunma , Japan
| | - Shin-Ei Noda
- Department of Radiation Oncology, Gunma University Graduate School of Medicine , Gunma , Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan
| |
Collapse
|
9
|
Houweling AC, Fukata K, Kubota Y, Shimada H, Rasch CR, Ohno T, Bel A, van der Horst A. The impact of interfractional anatomical changes on the accumulated dose in carbon ion therapy of pancreatic cancer patients. Radiother Oncol 2016; 119:319-25. [DOI: 10.1016/j.radonc.2016.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 02/23/2016] [Accepted: 03/04/2016] [Indexed: 01/17/2023]
|
10
|
Held KD, Kawamura H, Kaminuma T, Paz AES, Yoshida Y, Liu Q, Willers H, Takahashi A. Effects of Charged Particles on Human Tumor Cells. Front Oncol 2016; 6:23. [PMID: 26904502 PMCID: PMC4751258 DOI: 10.3389/fonc.2016.00023] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/21/2016] [Indexed: 12/22/2022] Open
Abstract
The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takuya Kaminuma
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center , Gunma , Japan
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | | |
Collapse
|