1
|
Bentsen KK, Brink C, Nielsen TB, Lynggaard RB, Vinholt PJ, Schytte T, Hansen O, Jeppesen SS. Cumulative rib fracture risk after stereotactic body radiotherapy in patients with localized non-small cell lung cancer. Radiother Oncol 2024; 200:110481. [PMID: 39159679 DOI: 10.1016/j.radonc.2024.110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Rib fracture is a known complication after stereotactic body radiotherapy (SBRT). Patient-related parameters are essential to provide patient-tailored risk estimation, however, their impact on rib fracture is less documented compared to dosimetric parameters. This study aimed to predict the risk of rib fractures in patients with localized non-small cell lung cancer (NSCLC) post-SBRT based on both patient-related and dosimetric parameters with death as a competing risk. MATERIALS AND METHODS In total, 602 patients with localized NSCLC treated with SBRT between 2010-2020 at Odense University Hospital, Denmark were included. All patients received SBRT with 45-66 Gray (Gy)/3 fractions. Rib fractures were identified in CT-scans using a word embedding model. The cumulative incidence function was based on cause-specific Cox hazard models with variable selection based on cross-validation model likelihood performed using 50 bootstraps. RESULTS In total, 19 % of patients experienced a rib fracture. The cumulative risk of rib fracture increased rapidly from 6-54 months post-SBRT. Female gender, bone density, near max dose to the rib, V30 and V40 to the rib, gross tumor volume, and mean lung dose were significantly associated with rib fracture risk in univariable analysis. The final multi-variable model consisted of V20 and V30 to the rib and mean lung dose. CONCLUSION Female gender and low bone density in male patients are significant predictors of rib fracture risk. The final model predicting cumulative rib fracture risk of 19 % in patients with localized NSCLC treated with SBRT contained no patient-related parameters, suggesting that dosimetric parameters are the primary drivers.
Collapse
Affiliation(s)
- Kristian Kirkelund Bentsen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| | - Carsten Brink
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Tine Bjørn Nielsen
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Rasmus Bank Lynggaard
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Pernille Just Vinholt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Tine Schytte
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Olfred Hansen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Stefan Starup Jeppesen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
Greer MD, Koger B, Glenn M, Kang J, Rengan R, Zeng J, Ford E. Predicted Inferior Outcomes for Lung SBRT With Treatment Planning Systems That Fail Independent Phantom-Based Audits. Int J Radiat Oncol Biol Phys 2023; 115:1301-1308. [PMID: 36535431 DOI: 10.1016/j.ijrobp.2022.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE More than 15% of radiation therapy clinics fail external audits with anthropomorphic phantoms conducted by Imaging and Radiation Oncology Core-Houston (IROC-H) while passing other industry-standard quality assurance (QA) tests. We seek to evaluate the predicted effect of such failed plans on outcomes for patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. METHODS AND MATERIALS We conducted a retrospective study of 55 patients treated with SBRT for lung tumors with a prescription biologically equivalent dose (BED)10 ≥100 Gy using a treatment planning system (TPS) that passed IROC-H phantom audits. Sample linear accelerator beam models with introduced errors were commissioned by varying the multileaf collimator leaf-tip offset parameter (ie, dosimetric leaf gap) over the range ±1.0 mm relative to the validated model. These models mimic TPS that pass internal QA measures but fail IROC-H tests. Patient plans were recalculated on sample beam models. The predicted tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated based on published dose-response models. RESULTS A leaf-tip offset value of -1.0 mm decreased the fraction of plans receiving a planning treatment volume of BED10 ≥100 Gy from 95% to 27%. This translated to a significant decrease in 2-year TCP of 4.8% (95% CI: 2.0%-5.5%) with a decrease in TCP up to 21%. Conversely, a leaf-tip offset of +1.0 mm resulted in 36% of patients exceeding previously met organs at risk (OAR) constraints, including 2 instances of spinal cord and brachial plexus overdoses and a small increase in chest wall NTCP of 0.7%, (95% CI: 0.5%-0.8%). CONCLUSIONS Simulated treatment plans with modest MLC leaf offsets result in lung SBRT plans that significantly underdose tumor or exceed OAR constraints. These dosimetric endpoints translate to significant detriments in TCP. These simulated plans mimic planning systems that pass internal QA measures but fail independent phantom-based tests, underscoring the need for enhanced quality assurance including external audits of TPS.
Collapse
Affiliation(s)
- Matthew D Greer
- University of Washington Department of Radiation Oncology, Seattle, Washington; The University of Arizona Cancer Center, Tucson, Arizona.
| | - Brandon Koger
- University of Pennsylvania Department of Radiation Oncology, Philadelphia, Pennsylvania
| | - Mallory Glenn
- University of Washington Department of Radiation Oncology, Seattle, Washington
| | - John Kang
- University of Washington Department of Radiation Oncology, Seattle, Washington
| | - Ramesh Rengan
- University of Washington Department of Radiation Oncology, Seattle, Washington
| | - Jing Zeng
- University of Washington Department of Radiation Oncology, Seattle, Washington
| | - Eric Ford
- University of Washington Department of Radiation Oncology, Seattle, Washington
| |
Collapse
|
3
|
O'Keeffe S, Higgins MJ, Fleming C, Armstrong J, Thirion P, McClean B, Vintró LL. A strategy to reduce fraction number in peripheral lung stereotactic ablative body radiotherapy. Phys Imaging Radiat Oncol 2023; 26:100429. [PMID: 37007915 PMCID: PMC10060739 DOI: 10.1016/j.phro.2023.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Background and purpose Hypo-fractionated lung Stereotactic Ablative Body Radiotherapy (SABR) has often been avoided when tumours are close to the chest wall. Our strategic objective was the reduction of fraction number, while maintaining target biological effective dose coverage without increasing chest wall toxicity (CWT) predictors. Materials and methods Twenty previously treated lung SABR patients were stratified into four cohorts according to distance from PTV to the chest wall, <1 cm, <0.5 cm, overlapping up to 0.5 cm and 1.0 cm. For each patient, four plans were created; a chest wall optimised plan for 54 Gy in 3 fractions, the clinical plan re-prescribed for 55 Gy in 5, 48 Gy in 3 and 45 Gy in 3 fractions. Results For a PTV distance of 0.5-0.0 cm, a reduction of the median (range) Dmax from 55.7 (57.5-54.1) Gy to 40.0 (37.1-42.0 Gy) Gy was observed for the chest wall optimised plans. The median V30Gy decreased from 18.9 (9.7-25.6) cm3 to 3.1 (1.8-4.5) cm3. For a PTV overlap of up to 0.5 cm, the Dmax reduced from 66.5 (64.1-70) Gy to 53.2 (50.6-55.1) Gy. The V30Gy decreased from 21.5 (16.5-29.5) cm3 to 14.9 (11.3-20.2) cm3. For the cohort with up to 1.0 cm overlap, there was a reduction in Dmax values of 9.9 Gy. The V30Gy for clinical plans, at 66.8 (18.7-188.8) cm3, decreased to 55.3 (15.5-149) cm3. Conclusion When PTVs are within 0.5 cm of chest wall, lung SABR dose heterogeneity can be used to reduce fraction number without increasing CWT predictors.
Collapse
|
4
|
Li W, Zhu X, Bu L, He Y, Xu J, Yao G, Lu Z, Zhao F, Yan S. Alternating Expiration and Inspiration Breath-Hold Spares the Chest Wall During Stereotactic Body Radiation Therapy for Peripheral Lung Malignancies. Pract Radiat Oncol 2023:S1879-8500(23)00045-0. [PMID: 36822550 DOI: 10.1016/j.prro.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE The proximity of tumors to the chest wall brings additional risks of chest wall pain during stereotactic body radiation therapy. Herein, we dosimetrically compared alternated breath-hold (ABH) plans with single BH plans and determined the common characteristics of eligible patients who may obtain better chest wall sparing using this technique. METHODS AND MATERIALS Twenty patients with lung lesions adjacent to the chest wall were enrolled and received respiratory training. Their half-fraction end expiration BH and deep inspiration BH plans were summed to generate the ABH plans. Dosimetric parameters of the chest wall were compared between single and alternated BH plans, and the correlation between tumor location and the outcome of chest wall sparing was quantitatively evaluated. Pretreatment cone beam computed tomography variations in eligible patients were recorded as well. RESULTS Compared with the end expiration BH and deep inspiration BH plans, the ABH plans reduced chest wall dosimetric results with median reductions of 2.0% and 3.9% (Dmax: maximum point dose), 15.4% and 14.8% (D1cc: dose to a volume of 1 cm3), and 48.8% and 63% (V30: volume receiving 30 Gy or more), respectively. Relative tumor displacements (ratio of tumor displacement in the superior-inferior direction to planning target volume diameter) were greater in the lower lobe than in the upper and middle lobes (1.17 vs 0.18). Meanwhile, better median reductions of 44% (Dmax), 46% (D1cc), and 98% (V30) were obtained in the lower lobe cohort using the ABH technique. Pretreatment variations for all BHs met the 5-mm threshold. CONCLUSIONS The ABH technique can significantly spare the adjacent chest wall without compromising planning target volume coverage in comparison with the single BH, and patients with tumors in the lower lobes can obtain better chest wall sparing than in the upper and middle lobes. Further investigation is warranted to validate these findings.
Collapse
Affiliation(s)
- Wenxiang Li
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Xinli Zhu
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Luyi Bu
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Yu He
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Jiayi Xu
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Guorong Yao
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Zhongjie Lu
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Feng Zhao
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
| | - Senxiang Yan
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Kim D, Kim K, Kim JS, Kang S, Park JM, Shin KH. Near-maximum rib dose is the most relevant risk factor for ipsilateral spontaneous rib fracture: a dosimetric analysis of breast cancer patients after radiotherapy. Strahlenther Onkol 2023; 199:38-47. [PMID: 35794206 DOI: 10.1007/s00066-022-01972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Spontaneous rib fracture (SRF) is a common late complication in treated breast cancer patients. This study evaluated the incidence and risk factors of ipsilateral SRF after radiotherapy (RT) in breast cancer patients. In addition, we identified dosimetric parameters that were significantly associated with ipsilateral SRF. METHODS We retrospectively reviewed 2204 patients with breast cancer who underwent RT between 2014 and 2016, and were followed up with bone scans. We evaluated clinical risk factors for ipsilateral SRF. Dose-volume histogram analysis was also performed for patients (n = 538) whose dosimetric data were available. All ipsilateral ribs were manually delineated, and dosimetric parameters of the ribs were converted into the equivalent dose in 2 Gy fractions (EQD2). RESULTS Most of the patients with SRF (87.3%) were asymptomatic, and the remaining symptomatic patients complained of mild tenderness or chest wall discomfort; these symptoms all resolved within 6 months without any treatment. Ipsilateral SRF occurred in 14.5% of patients 3 years after RT. The median time to develop ipsilateral SRF was 15 months. In dosimetric analysis, near-maximum rib dose (D2cc) best predicted ipsilateral SRF. The cut-off value of D2cc was EQD2 52 Gy, as determined by receiver operating characteristic analysis. In multivariate analysis including dosimetric variables, D2cc EQD2 ≥ 52 Gy was the only significant risk factor for ipsilateral SRF. CONCLUSION Our data demonstrated that near-maximum rib dose was the best dosimetric parameter to predict ipsilateral SRF in RT-treated breast cancer patients. In addition, our results suggest that patients who received RT with exceeding rib dose cut-off value and had ipsilateral SRF on bone scan be recommended routine follow-up without additional imaging tests.
Collapse
Affiliation(s)
- Dowook Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea (Republic of)
| | - Kyubo Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, Seoul, Korea (Republic of)
| | - Jae Sik Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea (Republic of).,Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, Seoul, Korea (Republic of)
| | - Seonghee Kang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea (Republic of).,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (Republic of)
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea (Republic of).,Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea (Republic of).,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (Republic of)
| | - Kyung Hwan Shin
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea (Republic of). .,Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea (Republic of). .,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (Republic of).
| |
Collapse
|
6
|
Huesa-Berral C, Juan-Cruz C, van Kranen S, Rossi M, Belderbos J, Diego Azcona J, Burguete J, Sonke JJ. Detailed dosimetric evaluation of inter-fraction and respiratory motion in lung stereotactic body radiation therapy based on daily 4D cone beam CT images. Phys Med Biol 2022; 68. [PMID: 36538287 DOI: 10.1088/1361-6560/aca94d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Objective. Periodic respiratory motion and inter-fraction variations are sources of geometric uncertainty in stereotactic body radiation therapy (SBRT) of pulmonary lesions. This study extensively evaluates and validates the separate and combined dosimetric effect of both factors using 4D-CT and daily 4D-cone beam CT (CBCT) dose accumulation scenarios.Approach. A first cohort of twenty early stage or metastatic disease lung cancer patients were retrospectively selected to evaluate each scenario. The planned-dose (3DRef) was optimized on a 3D mid-position CT. To estimate the dosimetric impact of respiratory motion (4DRef), inter-fractional variations (3DAcc) and the combined effect of both factors (4DAcc), three dose accumulation scenarios based on 4D-CT, daily mid-cone beam CT (CBCT) position and 4D-CBCT were implemented via CT-CT/CT-CBCT deformable image registration (DIR) techniques. Each scenario was compared to 3DRef.A separate cohort of ten lung SBRT patients was selected to validate DIR techniques. The distance discordance metric (DDM) was implemented per voxel and per patient for tumor and organs at risk (OARs), and the dosimetric impact for CT-CBCT DIR geometric errors was calculated.Main results.Median and interquartile range (IQR) of the dose difference per voxel were 0.05/2.69 Gy and -0.12/2.68 Gy for3DAcc-3DRefand4DAcc-3DRef.For4DRef-3DRefthe IQR was considerably smaller -0.15/0.78 Gy. These findings were confirmed by dose volume histogram parameters calculated in tumor and OARs. For CT-CT/CT-CBCT DIR validation, DDM (95th percentile) was highest for heart (6.26 mm)/spinal cord (8.00 mm), and below 3 mm for tumor and the rest of OARs. The dosimetric impact of CT-CBCT DIR errors was below 2 Gy for tumor and OARs.Significance. The dosimetric impact of inter-fraction variations were shown to dominate those of periodic respiration in SBRT for pulmonary lesions. Therefore, treatment evaluation and dose-effect studies would benefit more from dose accumulation focusing on day-to-day changes then those that focus on respiratory motion.
Collapse
Affiliation(s)
- Carlos Huesa-Berral
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Physics and Applied Mathematics, School of Science, University of Navarra, E-31008 Pamplona, Navarra, Spain.,Service of Radiation Physics and Radiation Protection, University of Navarra Clinic, E-31008 Pamplona, Navarra, Spain
| | - Celia Juan-Cruz
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Simon van Kranen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maddalena Rossi
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - José Belderbos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Juan Diego Azcona
- Service of Radiation Physics and Radiation Protection, University of Navarra Clinic, E-31008 Pamplona, Navarra, Spain
| | - Javier Burguete
- Physics and Applied Mathematics, School of Science, University of Navarra, E-31008 Pamplona, Navarra, Spain
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
7
|
Normal tissue complication probabilities of lung SABR patients from a UK centre and its implication on personalised radiotherapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022. [DOI: 10.1017/s1460396922000024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Introduction:
This work reports on the normal tissue complication probabilities (NTCP) from a UK cohort of previously treated peripheral lung SABR patients (n = 198) supplementing our previous publication on tumour control probabilities (TCP). Each patient was recalculated for alternative schedules.
Materials and Methods:
NTCP for 3 (54 Gy), 5 (55 and 60 Gy) and 8 (50 Gy) fraction (#) schemes were calculated with the Lyman Kutcher Burman (LKB) model in the software platform ‘Biosuite’ (Version 12·01) for lung and chest wall. Patients treated with 5 # or 8 # were then recomputed for alternative fractionations and doses (3 # and 5 #, for both 55 Gy and 60 Gy).
Results:
The mean lung NTCP (NTCPLUNG, for the outcome of radiation pneumonitis) was 2·8% (range 0·6 – 10·6). The mean chest wall NTCP (NTCPCW, for the outcome of rib fracture) was 1·4% (range 0·0–55·9). There were no statistically significant differences observed between male and female, tumour status or fractionation groups except for the NTCPLUNG between 5 # and 3 #. When recalculating NTCP and TCP individually, for 8 # patients, no differences were observed between mean TCP, NTCPLUNG or NTCPCW compared with 3 # or 5 # indicating that fractionation reduction is possible. Parity was observed between the 60 Gy group when recalculated for 55 Gy. For the 60 Gy in 5 # group, the NTCPCW increased significantly when recalculated for 3 #.
Conclusion:
NTCPs achievable with current UK planning techniques have been presented indicating SABR Consortium compliant centres are likely to have low complication population risks (< 3 %). 5 # schedules could be justified for 8 # patients, thereby reducing the number of treatment visits. Where there is a large overlap of PTV and chest wall, this indicates an NTCP/TCP calculation is required to investigate if fractionation reduction is individually appropriate.
Collapse
|
8
|
Puglisi C, Giuffrida R, Borzì G, Illari S, Caronia F, Di Mattia P, Colarossi C, Ferini G, Martorana E, Sette G, Eramo A, Lorico A, Di Grazia A, Forte S. Ex Vivo Irradiation of Lung Cancer Stem Cells Identifies the Lowest Therapeutic Dose Needed for Tumor Growth Arrest and Mass Reduction In Vivo. Front Oncol 2022; 12:837400. [PMID: 35646627 PMCID: PMC9133629 DOI: 10.3389/fonc.2022.837400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy represents a first-line treatment for many inoperable lung tumors. New technologies offer novel opportunities for the treatment of lung cancer with the administration of higher doses of radiation in smaller volumes. Because both therapeutic and toxic treatment effects are dose-dependent, it is important to identify a minimal dose protocol for each individual patient that maintains efficacy while decreasing toxicity. Cancer stem cells sustain tumor growth, promote metastatic dissemination, and may give rise to secondary resistance. The identification of effective protocols targeting these cells may improve disease-free survival of treated patients. In this work, we evaluated the existence of individual profiles of sensitivity to radiotherapy in patient-derived cancer stem cells (CSCs) using both in vitro and in vivo models. Both CSCs in vitro and mice implanted with CSCs were treated with radiotherapy at different dose intensities and rates. CSC response to different radiation doses greatly varied among patients. In vitro radiation sensitivity of CSCs corresponded to the therapeutic outcome in the corresponding mouse tumor model. On the other side, the dose administration rate did not affect the response. These findings suggest that in vitro evaluation of CSCs may potentially predict patients’ response, thus guiding clinical decision.
Collapse
Affiliation(s)
- Caterina Puglisi
- Genomics and Experimental oncology unit, IOM Ricerca, Viagrande, Italy
| | | | - Giuseppina Borzì
- Operative Unit of Radiotherapy, Rem Radioterapia, Viagrande, Italy
| | | | - Francesco Paolo Caronia
- Unit of Thoracic Surgery, Azienda di Rilievo Nazionale ad Alta Specializzazione (ARNAS) Civico, Palermo, Italy
| | - Paolo Di Mattia
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Italy
| | - Gianluca Ferini
- Operative Unit of Radiotherapy, Rem Radioterapia, Viagrande, Italy
| | | | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Aurelio Lorico
- Genomics and Experimental oncology unit, IOM Ricerca, Viagrande, Italy
- Department of Basic Sciences, Touro University Nevada College of Medicine, Henderson, NV, United States
| | - Alfio Di Grazia
- Operative Unit of Radiotherapy, Rem Radioterapia, Viagrande, Italy
| | - Stefano Forte
- Genomics and Experimental oncology unit, IOM Ricerca, Viagrande, Italy
- *Correspondence: Stefano Forte,
| |
Collapse
|
9
|
Doupnik NP, Hirmiz K, Hussein AA, Agapito J, Pan M. Early-Stage Non-Small Cell Lung Cancer Stereotactic Body Radiation Therapy Outcomes in a Single Institution. Cureus 2022; 14:e21878. [PMID: 35273848 PMCID: PMC8901134 DOI: 10.7759/cureus.21878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction The gold standard treatment of stage I non-small cell lung cancer (NSCLC) is surgical resection. For medically inoperable patients, stereotactic body radiation therapy (SBRT) can provide comparable local control (LC) and overall survival (OS). The objectives of this study are to determine the three-year LC and OS for SBRT compared to early-stage NSCLC patients treated with alternative radiation modalities at our institution. Materials and methods This retrospective study included a total of 139 consecutive patients who were diagnosed with stage I (T1-2 N0 M0) NSCLC and treated with radiation therapy at our institution between 2015 and 2020. Patient demographics and clinical data were obtained from chart reviews. Treatment subgroups were: SBRT (48Gy/4 or 60Gy/8), hypofractionation (60Gy/15), conventional fractionation (60Gy/30 or 50Gy/20), and palliative radiation (20Gy/5, 30Gy/10, or 40Gy/15). Kaplan-Meier curves were plotted for LC and OS. We also performed Cox’s proportional hazard regression analysis. Results The median patient age was 74 (range 52-91). The numbers of patients in each treatment subgroup were: SBRT (44), hypofractionation (78), conventional fractionation (8), and palliative (9). Differences in age, gender, and histopathological cell type between subgroups were not statistically significant. Metastatic progression was the most common outcome amongst treatment failures, followed by local recurrence and regional spread. Median post-treatment follow-up in months for each subgroup was: SBRT (20.2), hypofractionated (20.7), conventional fractionation (13.9), and palliative (14.4). Post-treatment three-year LC was found to be significantly better with SBRT (94%) versus hypofractionation (71%), conventional fractionation (80%), and palliative (71%). OS at three years were SBRT (67%), hypofractionation (59%), conventional fractionation (66%), and palliative (44%). As a whole, 72% (100/139) of patients had biopsy-proven NSCLC. Analysis showed biopsy status had no statistical significance with regards to LC or OS. Every 20 years of age had a 3.2x risk of death (95% CI: 1.425-7.268). Concerning the treatment modalities, there were significant differences for the hazard of death compared to SBRT: hypofractionation had 2.58x increased risk while palliative had 5.83x increased risk. The proportion of patients who experienced post-treatment radiation pneumonitis or dermatitis were: SBRT (7%, 2%), hypofractionation (8%, 3%), conventional fractionation (13%, 25%), and palliative (0%, 0%), respectively. No patients who experienced grade III or higher toxicities were observed as defined by Common Terminology Criteria for Adverse Events (CTCAE). Conclusion Our experience confirms SBRT can provide durable three-year local control with a comparable rate of post-treatment complications versus other radiation modalities for early-stage NSCLC. SBRT appears to be non-inferior to hypofractionation with regards to three-year LC.
Collapse
|
10
|
Ito K, Nakajima Y, Ogawa H, Taguchi K. Fracture risk following stereotactic body radiotherapy for long bone metastases. Jpn J Clin Oncol 2021; 52:47-52. [PMID: 34648002 DOI: 10.1093/jjco/hyab164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Stereotactic body radiotherapy is a new treatment modality for long bone metastasis and has not been discussed in literature. We aimed to clarify stereotactic body radiotherapy outcomes for long bone metastases. METHODS Data of patients receiving stereotactic body radiotherapy for long bone metastases (July 2016-November 2020) were retrospectively reviewed. The prescribed dose was 30 or 35 Gy in five fractions. The endpoints were local failure and adverse effects. Local failure was defined as radiological tumor growth within the irradiation field. Adverse effects were evaluated according to the National Cancer Institute Common Terminology Criteria for Adverse Events, version 5. RESULTS Nineteen osseous lesions in 17 patients were assessed. The target lesions included 13 femoral, 4 humeral and 2 radial lesions. The median follow-up duration was 14 (range, 3-62) months. The 12- and 18-month local failure rates were 0 and 11%, respectively. Following 2 and 46 months of stereotactic body radiotherapy, two lesions (11%) resulted in painful femoral fractures (grade 3). Both patients underwent bipolar hip arthroplasty and could walk normally after surgery. In the late phase, one patient developed radiculopathy (almost complete paralysis of grasp) and another developed grade 2 limb edema. Other grade 2 or more severe acute and late toxicities were not observed during the follow-up period. CONCLUSIONS Stereotactic body radiotherapy for long bone metastases achieved excellent local control and caused two femoral fractures. We argue that stereotactic body radiotherapy for curative intent should not be contraindicated in long bone oligometastasis because fractures do not directly contribute to life expectancy.
Collapse
Affiliation(s)
- Kei Ito
- Division of Radiation Oncology, Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yujiro Nakajima
- Division of Radiation Oncology, Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan.,Department of Radiological Sciences, Komazawa University, Tokyo, Japan
| | - Hiroaki Ogawa
- Division of Radiation Oncology, Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kentaro Taguchi
- Division of Radiation Oncology, Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
11
|
Juan-Cruz C, Stam B, Belderbos J, Sonke JJ. Delivered dose-effect analysis of radiation induced rib fractures after thoracic SBRT. Radiother Oncol 2021; 162:18-25. [PMID: 34166718 DOI: 10.1016/j.radonc.2021.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Anatomical changes during the stereotactic body radiation therapy (SBRT) of early stage non-small cell lung cancer (NSCLC) may cause the delivered dose to deviate from the planned dose. We investigate if normal tissue complication probability (NTCP) models based on the delivered dose predict radiation-induced rib fractures better than models based on the planned dose. MATERIAL AND METHODS 437 NSCLC patients treated to a median dose of 3x18 Gy were included. Delivered dose was estimated by accumulating EQD2-corrected fraction doses after being deformed with daily CBCT-to-planning CT deformable image registration. Dosimetric parameters Dx (dose to a relative volume x) were extracted for each rib included in the CBCTs field-of-view. An NTCP model was constructed for both planned and delivered dose, optimizing the parameters TD50 (dose with 50% toxicity risk), m (steepness of the curve) and x, using maximum likelihood estimation. Best NTCP model was determined using Akaike weights (Aw). Differences between the models were tested for significance using the Vuong's test. RESULTS Median time to fracture of 110 fractured ribs was 22.5 months. The maximum rib dose, D0, best predicted fractures for both planned and delivered dose. The average delivered D0 was significantly lower than planned (p < 0.001). NTCP model based on the delivered D0 was the best, with Aw = 0.95. The models were not significantly different. CONCLUSION Delivered maximum dose to the ribs was significantly lower than planned. The NTCP model based on delivered dose improved predictions of radiation-induced rib fractures but did not reach statistical significance.
Collapse
Affiliation(s)
- Celia Juan-Cruz
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Barbara Stam
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - José Belderbos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Strange CD, Shroff GS, Truong MT, Nguyen QN, Vlahos I, Erasmus JJ. Imaging of the post-radiation chest in lung cancer. Clin Radiol 2021; 77:19-30. [PMID: 34090709 DOI: 10.1016/j.crad.2021.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022]
Abstract
Radiation therapy using conventional fractionated external-beam or high-precision dose techniques including three-dimensional conformal radiotherapy, stereotactic body radiation therapy, intensity-modulated radiation therapy, and proton therapy, is a key component in the treatment of patients with lung cancer. Knowledge of the radiation technique used, radiation treatment plan, expected temporal evolution of radiation-induced lung injury and patient-specific parameters, such as previous radiotherapy, concurrent chemoradiotherapy, and/or immunotherapy, is important in imaging interpretation. This review discusses factors that affect the development and severity of radiation-induced lung injury and its radiological manifestations with emphasis on the differences between conventional radiation and high-precision dose radiotherapy techniques.
Collapse
Affiliation(s)
- C D Strange
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030-4009, USA
| | - G S Shroff
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030-4009, USA
| | - M T Truong
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030-4009, USA
| | - Q-N Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030-4009, USA
| | - I Vlahos
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030-4009, USA
| | - J J Erasmus
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030-4009, USA.
| |
Collapse
|
13
|
Almendros-Abellán VM, Castro-García M, Canales-Vázquez J, Berenguel-Herraiz P, Sabater S. Alterations in femoral neck strength following pelvic irradiation. A finite element analysis of simulated eccentric forces using bone density data derived from CT. Bone 2021; 145:115865. [PMID: 33513450 DOI: 10.1016/j.bone.2021.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND PURPOSE Radiotherapy is known to produce long-term skeletal complications. We aim to evaluate the biomechanical effect on femoral neck bone from hypothetical eccentric loads on pre- and post-radiotherapy CT-images for patients treated for rectal cancer. MATERIAL AND METHODS Pre- and post-radiotherapy CT-images of rectal cancer from 10 patients were selected randomly. The cortical and trabecular bone was segmented by hand. The biomechanical simulations of 4 eccentric loads and one load aligned with the femoral neck axis were completed using finite element analysis (FEA) in both pre- and post-patient models. RESULTS A comparative statistical study was completed of pre- and post-radiotherapy patient models of stress and displacement factors. Significant differences were found in eccentric loads in both factors. Natural load has a significant difference in stress, but no differences were found for displacements. The absolute difference in eccentric load applied to the anterior area location on the same patient implies from 5.3% to 40.5% of the stress yield values reported in previous studies. CONCLUSIONS Loads applied to the anterior area of the femoral head must be considered in fracture simulations because the percentage of yield stress of pre- and post-irradiated bones shows a significant biomechanical change.
Collapse
Affiliation(s)
- Víctor M Almendros-Abellán
- D-ENERMAT, Instituto de Energías Renovables, University of Castilla-La Mancha, Paseo Investigación 1, Building 3, 02071 Albacete, Spain; CADE Engineered Technologies, Albacete, Spain
| | - Miguel Castro-García
- D-ENERMAT, Instituto de Energías Renovables, University of Castilla-La Mancha, Paseo Investigación 1, Building 3, 02071 Albacete, Spain
| | - Jesús Canales-Vázquez
- D-ENERMAT, Instituto de Energías Renovables, University of Castilla-La Mancha, Paseo Investigación 1, Building 3, 02071 Albacete, Spain
| | | | - Sebastià Sabater
- Dept. of Radiation Oncology, Complejo Hospitalario Universitario de Albacete, Spain.
| |
Collapse
|
14
|
Abstract
Abstract
Aims:
The aim of this work is to report on the tumour control probability (TCP) of a UK cohort of lung stereotactic ablative radiotherapy patients (n = 198) for a range of dose and fractionations common in the UK.
Materials and methods:
TCP values for 3 (54 Gy), 5 (55 and 60 Gy) and 8 (50 Gy) fraction (#) schemes were calculated with the linear-quadratic Marsden TCP model using the Biosuite software.
Results:
TCP values of 100% were computed for the 3 # and for 5 # (α/β = 10 Gy) cohorts; reduced to 99% (range 97–100) for the 5 # cohort only when an α/β of 20 Gy was used. The average TCP value for the 50 Gy in 8 # regime was 97% (range 92–99, α/β = 10 Gy) and 64% (range 48–79, α/β = 20 Gy). Statistical significant differences were observed between the α/β of 10 Gy versus 20 Gy groups and between all data grouped by fraction.
Conclusion:
TCPs achievable with current planning techniques in the UK have been presented. The ultra-conservative 50 Gy in 8 # scheme returns a significantly lower TCP than the other regimes.
Collapse
|
15
|
Voruganti IS, Donovan E, Walker-Dilks C, Swaminath A. Chest wall toxicity after stereotactic radiation in early lung cancer: a systematic review. Curr Oncol 2020; 27:179-189. [PMID: 32905234 PMCID: PMC7467794 DOI: 10.3747/co.27.5959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Radiation-induced chest wall pain (cwp) and rib fracture (rf) are late adverse effects after stereotactic body radiation therapy (sbrt) for stage i non-small-cell lung cancer (nsclc); however, the literature about their incidence and risk factors shows variability. We performed a systematic review to determine the pooled incidence of cwp and rf in the relevant population. Methods A literature search using the prisma (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines considered English publications in medline and embase from January 1996 to August 2017. Abstracts were screened, followed by full-text review and data extraction. Results The database searches identified 547 records. Twenty-eight publications comprising 3892 patients met the inclusion criteria. Median reported ages and follow-up durations fell into the ranges 67-82 years and 12-84 months. Prescriptions fell into the range of 40-70 Gy in 3-10 fractions. Despite study heterogeneity, the pooled incidences of cwp and rf were estimated to be 8.94% and 5.27% respectively. Nineteen studies reported cwp grade: 58 of 308 patients (18.8%) experienced grades 3-4 cwp (no grade 5 events reported). Thirteen studies reported rf grade: grades 3-4 rf were observed in 9 of 113 patients (7.96%). A high chest wall V30 was an important predictor of cwp and rf. Conclusions In patients with stage i nsclc, rates of cwp and rf after sbrt are low; however, tumour location, accurate toxicity reporting, and dose-fractionation schemes might alter those rates. Prospective correlation with dosimetry and quality of life assessment will further improve the understanding of cwp and rf after sbrt.
Collapse
Affiliation(s)
- I S Voruganti
- Department of Radiation Oncology, University of Toronto, Toronto
| | - E Donovan
- Department of Radiation Oncology, University of Toronto, Toronto
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto
| | - C Walker-Dilks
- Program in Evidence-Based Care, McMaster University, Hamilton
| | - A Swaminath
- Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton
- Department of Oncology, McMaster University, Hamilton, ON
| |
Collapse
|
16
|
Li W, Zhang L, Li W, Zhang R. The Value of 99mTc-Methylene Diphosphonate Single-Photon Emission Computed Tomography/Computed Tomography in Detecting Atraumatic Costal Cartilage Fracture in Malignant Tumor Patients. Front Oncol 2020; 10:138. [PMID: 32195167 PMCID: PMC7062865 DOI: 10.3389/fonc.2020.00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
|
17
|
Abstract
Conventional approaches to the treatment of early-stage lung cancer have focused on the use of surgical methods to remove the tumor. Recent progress in radiation therapy techniques and in the field of interventional oncology has seen the development of several novel ablative therapies that have gained widespread acceptance as alternatives to conventional surgical options in appropriately selected patients. Local control rates with stereotactic body radiation therapy for early-stage lung cancer now approach those of surgical resection, while percutaneous ablation is in widespread use for the treatment of lung cancer and oligometastatic disease for selected other malignancies. Tumors treated with targeted medical and ablative therapies can respond to treatment differently when compared with conventional therapies. For example, after stereotactic body radiation therapy, radiologic patterns of posttreatment change can mimic disease progression, and, following percutaneous ablation, the expected initial increase in the size of a treated lesion limits the utility of conventional size-based response assessment criteria. In addition, numerous treatment-related side effects have been described that are important to recognize, both to ensure appropriate treatment and to avoid misclassification as worsening tumor. Imaging plays a vital role in the assessment of patients receiving targeted ablative therapy, and it is essential that thoracic radiologists become familiar with these findings.
Collapse
|
18
|
Lu JY, Lin PX, Huang BT. Calculating the individualized fraction regime in stereotactic body radiotherapy for non-small cell lung cancer based on uncomplicated tumor control probability function. Radiat Oncol 2019; 14:111. [PMID: 31221159 PMCID: PMC6587287 DOI: 10.1186/s13014-019-1318-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/06/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND To calculate the individualized fraction regime (IFR) in stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC) patients using the uncomplicated tumor control probability (UTCP, P+) function. METHODS Thirty-three patients with peripheral lung cancer or lung metastases who had undergone SBRT were analyzed. Treatment planning was performed using the dose regime of 48 Gy in 4 fractions. Dose volume histogram (DVH) data for the gross tumor volume (GTV), lung, chest wall (CW) and rib were exported and the dose bin was multiplied by a certain percentage of the dose in that bin which ranged from 1 to 200% in steps of 1%. For each dose fraction, P+ values were calculated by considering the tumor control probability (TCP), radiation-induced pneumonitis (RIP), chest wall pain (CWP) and radiation-induced rib fracture (RIRF). UTCP values as a function of physical dose were plotted and the maximum P+ values corresponded to the optimal therapeutic gain. The IFR in 3 fractions was also calculated with the same method by converting the dose using the linear quadratic (LQ) model. RESULTS Thirty-three patients attained an IFR using the introduced methods. All the patients achieved a TCP value higher than 92.0%. The IFR ranged from 3 × 10.8 Gy to 3 × 12.5 Gy for 3 fraction regimes and from 4 × 9.2 Gy to 4 × 10.7 Gy for 4 fraction regimes. Four patients with typical tumor characteristics demonstrated that the IFR was patient-specific and could maximize the therapeutic gain. Patients with a large tumor had a lower TCP and UTCP and a smaller fractional dose than patients with a small tumor. Patients with a tumor adjacent to the organ at risk (OAR) or at a high risk of RIP had a lower UTCP and a smaller fractional dose compared with patients with a tumor located distant from the OAR. CONCLUSIONS The proposed method is capable of predicting the IFR for NSCLC patients undergoing SBRT. Further validation in clinical samples is required.
Collapse
Affiliation(s)
- Jia-Yang Lu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, 515031 China
| | - Pei-Xian Lin
- Department of Nosocomial Infection Management, The Second Affiliated Hospital of Shantou University Medical College, 69 North Dongxia Road, Shantou, 515041 China
| | - Bao-Tian Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, 515031 China
| |
Collapse
|
19
|
Chipko C, Ojwang J, Gharai LR, Deng X, Mukhopadhyay N, Weiss E. Characterization of Chest Wall Toxicity During Long-term Follow Up After Thoracic Stereotactic Body Radiation Therapy. Pract Radiat Oncol 2019; 9:e338-e346. [PMID: 30731275 DOI: 10.1016/j.prro.2019.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/28/2018] [Accepted: 01/27/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Chest wall (CW) pain and rib fractures are frequently diagnosed after stereotactic body radiation therapy (SBRT) for malignant lung tumors. We hypothesize that multiple risk factors, including bone mineral density (BMD), are associated with CW toxicity, and that CW pain and rib fractures often evolve into chronic clinical problems. METHODS AND MATERIALS A total of 118 lung tumors treated with SBRT in 100 patients with a minimum follow-up period of 2 years were retrospectively analyzed. The incidence, clinical course, and related demographic, clinical, and dosimetric factors of CW pain and rib fractures were analyzed. In addition, BMD was assessed, and the radiographic appearance of radiation-induced rib fractures and their healing process were characterized. RESULTS The median follow-up was 49 months (range, 24-106 months). CW pain developed in 33 of 118 treatments (28%) after, on average, 12.5 months (range, 0-50 months), and was more common in women (P = .04). The mean duration of CW pain was 25 months (range, 2-63 months), and 36% of patients never had resolution of CW pain. A total of 34 of 118 treatments (29%) resulted in rib fractures at a mean time of 22 months (range, 3-46 months); rib fractures were more common in women, African Americans, upper/middle lobe tumors, and patients with lower BMD (P < .05). The mean duration of rib fractures was 25 months (range, 5-41 months), and only 16 rib fractures (47%) healed. Shorter CW planning target volume distance resulted in a higher risk for both rib fractures and CW pain (P = .01). Sixty-seven percent of fractures developed surrounding soft tissue fibrosis, and 62% (21 of 34 fractures) heterotopic ossification. Diabetes, body mass index, and steroid use were not associated with CW pain or rib fracture. CONCLUSIONS Several factors were associated with a higher risk of SBRT-related CW toxicity. Optimal CW sparing (eg, volumetric modulated arc therapy, lower dose per fraction) should be considered in this patient group without compromising tumor control. SBRT-induced rib fractures commonly heal abnormally and result in potential chronic CW pain.
Collapse
Affiliation(s)
- Christopher Chipko
- Department of Radiation Oncology, Virginia Commonwealth University Health Systems, Richmond, Virginia.
| | - Julius Ojwang
- Department of Radiation Oncology, Virginia Commonwealth University Health Systems, Richmond, Virginia
| | - Leila Rezai Gharai
- Department of Diagnostic Radiology, Virginia Commonwealth University Health Systems, Richmond, Virginia
| | - Xiaoyan Deng
- Department of Biostatistics, Virginia Commonwealth University Health Systems, Richmond, Virginia
| | - Nitai Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University Health Systems, Richmond, Virginia
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University Health Systems, Richmond, Virginia
| |
Collapse
|
20
|
Thompson M, Rosenzweig KE. The evolving toxicity profile of SBRT for lung cancer. Transl Lung Cancer Res 2019; 8:48-57. [PMID: 30788234 PMCID: PMC6351399 DOI: 10.21037/tlcr.2018.10.06] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiation therapy (SBRT) is an effective and well tolerated treatment for early stage non-small cell lung cancer (NSCLC). The high doses used in thoracic SBRT can sometimes cause adverse effects ranging from mild fatigue and transient esophagitis to fatal events such as pneumonitis or hemorrhage. Efforts continue to expand in both the utility of this technique as well as our understanding of the mechanisms of the adverse effects it can cause. In this review, we discuss the current literature regarding the potential mechanisms, dosimetric constraints and toxicities associated with SBRT alone and in conjunction with definitive chemoradiotherapy and immunotherapy. As the use of SBRT expands to these spheres, we examine the available recommendations for mitigating potential associated treatment related toxicities.
Collapse
Affiliation(s)
- Marcher Thompson
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth E Rosenzweig
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Yaprak G, Gemici C, Temizkan S, Ozdemir S, Dogan BC, Seseogullari OO. Osteoporosis development and vertebral fractures after abdominal irradiation in patients with gastric cancer. BMC Cancer 2018; 18:972. [PMID: 30309324 PMCID: PMC6182865 DOI: 10.1186/s12885-018-4899-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/03/2018] [Indexed: 11/18/2022] Open
Abstract
Background Decrease in bone mineral density, osteoporosis development, bone toxicity and resulting insufficiency fractures as late effect of radiotherapy are not well known. Osteoporosis development related to radiotherapy has not been investigated properly and insufficiency fractures are rarely reported for vertebral bones. Methods Ninety-seven patients with gastric adenocarcinoma were evaluated for adjuvant treatment after surgery. While 73 out of 97 patients treated with adjuvant chemoradiotherapy comprised the study group, 24 out of 97 patients with early stage disease without need of adjuvant treatment comprised the control group. Bone mineral densities (BMD) of lumbar spine and femoral neck were measured by dual energy x-ray absorptiometry after surgery, and one year later in both groups. Results There was statistically significant decline in BMDs after one year in each group itself, however the decline in BMDs of the patients in the irradiated group was more pronounced when compared with the patients in the control group; p values were 0.02 for the decline in BMDs of lumbar spine, and 0.01 for femoral neck respectively. Insufficiency fractures were observed only in the irradiated patients (7 out of 73 patients) with a cumulative incidence of 9.6%. Conclusions Abdominal irradiation as in the adjuvant treatment of gastric cancer results in decrease in BMD and osteoporosis. Insufficiency fracture risk in the radiation exposed vertabral bones is increased. Calcium and vitamin D replacement and other measures for prevention of osteoporosis and insufficiency fractures should be considered after abdominal irradiation.
Collapse
Affiliation(s)
- Gokhan Yaprak
- Department of Radiation Oncology, Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Cengiz Gemici
- Department of Radiation Oncology, Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey.
| | - Sule Temizkan
- Department Endocrinology, Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Sevim Ozdemir
- Department of Radiation Oncology, Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Berfu Cinkit Dogan
- Department of Family Physician, Dr. Lutfi Kirdar Education and Research Hospital, Istanbul, Turkey
| | - Ozgur Ozan Seseogullari
- Department of Radiation Oncology, Biruni University Medicana International Hospital, Istanbul, Turkey
| |
Collapse
|
22
|
Chao HH, Valdes G, Luna JM, Heskel M, Berman AT, Solberg TD, Simone CB. Exploratory analysis using machine learning to predict for chest wall pain in patients with stage I non-small-cell lung cancer treated with stereotactic body radiation therapy. J Appl Clin Med Phys 2018; 19:539-546. [PMID: 29992732 PMCID: PMC6123157 DOI: 10.1002/acm2.12415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/24/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022] Open
Abstract
Background and purpose Chest wall toxicity is observed after stereotactic body radiation therapy (SBRT) for peripherally located lung tumors. We utilize machine learning algorithms to identify toxicity predictors to develop dose–volume constraints. Materials and methods Twenty‐five patient, tumor, and dosimetric features were recorded for 197 consecutive patients with Stage I NSCLC treated with SBRT, 11 of whom (5.6%) developed CTCAEv4 grade ≥2 chest wall pain. Decision tree modeling was used to determine chest wall syndrome (CWS) thresholds for individual features. Significant features were determined using independent multivariate methods. These methods incorporate out‐of‐bag estimation using Random forests (RF) and bootstrapping (100 iterations) using decision trees. Results Univariate analysis identified rib dose to 1 cc < 4000 cGy (P = 0.01), chest wall dose to 30 cc < 1900 cGy (P = 0.035), rib Dmax < 5100 cGy (P = 0.05) and lung dose to 1000 cc < 70 cGy (P = 0.039) to be statistically significant thresholds for avoiding CWS. Subsequent multivariate analysis confirmed the importance of rib dose to 1 cc, chest wall dose to 30 cc, and rib Dmax. Using learning‐curve experiments, the dataset proved to be self‐consistent and provides a realistic model for CWS analysis. Conclusions Using machine learning algorithms in this first of its kind study, we identify robust features and cutoffs predictive for the rare clinical event of CWS. Additional data in planned subsequent multicenter studies will help increase the accuracy of multivariate analysis.
Collapse
Affiliation(s)
- Hann-Hsiang Chao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gilmer Valdes
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiation Oncology, University of California - San Francisco, San Francisco, CA, USA
| | - Jose M Luna
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Heskel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail T Berman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy D Solberg
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiation Oncology, University of California - San Francisco, San Francisco, CA, USA
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Baumann R, Chan MKH, Pyschny F, Stera S, Malzkuhn B, Wurster S, Huttenlocher S, Szücs M, Imhoff D, Keller C, Balermpas P, Rades D, Rödel C, Dunst J, Hildebrandt G, Blanck O. Clinical Results of Mean GTV Dose Optimized Robotic-Guided Stereotactic Body Radiation Therapy for Lung Tumors. Front Oncol 2018; 8:171. [PMID: 29868486 PMCID: PMC5966546 DOI: 10.3389/fonc.2018.00171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022] Open
Abstract
Introduction We retrospectively evaluated the efficacy and toxicity of gross tumor volume (GTV) mean dose optimized stereotactic body radiation therapy (SBRT) for primary and secondary lung tumors with and without robotic real-time motion compensation. Materials and methods Between 2011 and 2017, 208 patients were treated with SBRT for 111 primary lung tumors and 163 lung metastases with a median GTV of 8.2 cc (0.3–174.0 cc). Monte Carlo dose optimization was performed prioritizing GTV mean dose at the potential cost of planning target volume (PTV) coverage reduction while adhering to safe normal tissue constraints. The median GTV mean biological effective dose (BED)10 was 162.0 Gy10 (34.2–253.6 Gy10) and the prescribed PTV BED10 ranged 23.6–151.2 Gy10 (median, 100.8 Gy10). Motion compensation was realized through direct tracking (44.9%), fiducial tracking (4.4%), and internal target volume (ITV) concepts with small (≤5 mm, 33.2%) or large (>5 mm, 17.5%) motion. The local control (LC), progression-free survival (PFS), overall survival (OS), and toxicity were analyzed. Results Median follow-up was 14.5 months (1–72 months). The 2-year actuarial LC, PFS, and OS rates were 93.1, 43.2, and 62.4%, and the median PFS and OS were 18.0 and 39.8 months, respectively. In univariate analysis, prior local irradiation (hazard ratio (HR) 0.18, confidence interval (CI) 0.05–0.63, p = 0.01), GTV/PTV (HR 1.01–1.02, CI 1.01–1.04, p < 0.02), and PTV prescription, mean GTV, and maximum plan BED10 (HR 0.97–0.99, CI 0.96–0.99, p < 0.01) were predictive for LC while the tracking method was not (p = 0.97). For PFS and OS, multivariate analysis showed Karnofsky Index (p < 0.01) and tumor stage (p ≤ 0.02) to be significant factors for outcome prediction. Late radiation pneumonitis or chronic rip fractures grade 1–2 were observed in 5.3% of the patients. Grade ≥3 side effects did not occur. Conclusion Robotic SBRT is a safe and effective treatment for lung tumors. Reducing the PTV prescription and keeping high GTV mean doses allowed the reduction of toxicity while maintaining high local tumor control. The use of real-time motion compensation is strongly advised, however, well-performed ITV motion compensation may be used alternatively when direct tracking is not feasible.
Collapse
Affiliation(s)
- Rene Baumann
- Department of Radiation Oncology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.,Saphir Radiochirurgie Zentrum Frankfurt und Norddeutschland, Güstrow, Germany
| | - Mark K H Chan
- Department of Radiation Oncology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Florian Pyschny
- Department of Radiation Oncology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Susanne Stera
- Department of Radiation Oncology, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Bettina Malzkuhn
- Department of Radiation Oncology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Stefan Wurster
- Saphir Radiochirurgie Zentrum Frankfurt und Norddeutschland, Güstrow, Germany.,Department of Radiation Oncology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Stefan Huttenlocher
- Saphir Radiochirurgie Zentrum Frankfurt und Norddeutschland, Güstrow, Germany
| | - Marcella Szücs
- Department of Radiation Oncology, Universitätsmedizin Rostock, Rostock, Germany
| | - Detlef Imhoff
- Department of Radiation Oncology, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Christian Keller
- Saphir Radiochirurgie Zentrum Frankfurt und Norddeutschland, Güstrow, Germany.,Department of Radiation Oncology, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Panagiotis Balermpas
- Saphir Radiochirurgie Zentrum Frankfurt und Norddeutschland, Güstrow, Germany.,Department of Radiation Oncology, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Dirk Rades
- Department of Radiation Oncology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Claus Rödel
- Department of Radiation Oncology, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.,Department of Radiation Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Guido Hildebrandt
- Department of Radiation Oncology, Universitätsmedizin Rostock, Rostock, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.,Saphir Radiochirurgie Zentrum Frankfurt und Norddeutschland, Güstrow, Germany
| |
Collapse
|
24
|
Mitsuyoshi T, Matsuo Y, Shintani T, Iizuka Y, Ueki N, Nakamura M, Mizowaki T. Pilot Study of the Safety and Efficacy of Dose Escalation in Stereotactic Body Radiotherapy for Peripheral Lung Tumors. Clin Lung Cancer 2018; 19:e287-e296. [DOI: 10.1016/j.cllc.2017.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022]
|
25
|
D'Andrea M, Strolin S, Ungania S, Cacciatore A, Bruzzaniti V, Marconi R, Benassi M, Strigari L. Radiobiological Optimization in Lung Stereotactic Body Radiation Therapy: Are We Ready to Apply Radiobiological Models? Front Oncol 2018; 7:321. [PMID: 29359121 PMCID: PMC5766682 DOI: 10.3389/fonc.2017.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Lung tumors are often associated with a poor prognosis although different schedules and treatment modalities have been extensively tested in the clinical practice. The complexity of this disease and the use of combined therapeutic approaches have been investigated and the use of high dose-rates is emerging as effective strategy. Technological improvements of clinical linear accelerators allow combining high dose-rate and a more conformal dose delivery with accurate imaging modalities pre- and during therapy. This paper aims at reporting the state of the art and future direction in the use of radiobiological models and radiobiological-based optimizations in the clinical practice for the treatment of lung cancer. To address this issue, a search was carried out on PubMed database to identify potential papers reporting tumor control probability and normal tissue complication probability for lung tumors. Full articles were retrieved when the abstract was considered relevant, and only papers published in English language were considered. The bibliographies of retrieved papers were also searched and relevant articles included. At the state of the art, dose–response relationships have been reported in literature for local tumor control and survival in stage III non-small cell lung cancer. Due to the lack of published radiobiological models for SBRT, several authors used dose constraints and models derived for conventional fractionation schemes. Recently, several radiobiological models and parameters for SBRT have been published and could be used in prospective trials although external validations are recommended to improve the robustness of model predictive capability. Moreover, radiobiological-based functions have been used within treatment planning systems for plan optimization but the advantages of using this strategy in the clinical practice are still under discussion. Future research should be directed toward combined regimens, in order to potentially improve both local tumor control and survival. Indeed, accurate knowledge of the relevant parameters describing tumor biology and normal tissue response is mandatory to correctly address this issue. In this context, the role of medical physicists and the AAPM in the development of radiobiological models is crucial for the progress of developing specific tool for radiobiological-based optimization treatment planning.
Collapse
Affiliation(s)
- Marco D'Andrea
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Strolin
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Ungania
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Cacciatore
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Vicente Bruzzaniti
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Raffaella Marconi
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Benassi
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
26
|
De Ruysscher D, Lambrecht M, van Baardwijk A, Peeters S, Reymen B, Verhoeven K, Wanders R, Öllers M, van Elmpt W, van Loon J. Standard of care in high-dose radiotherapy for localized non-small cell lung cancer. Acta Oncol 2017; 56:1610-1613. [PMID: 28840754 DOI: 10.1080/0284186x.2017.1349337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
- Radiation Oncology, KU Leuven, Leuven, Belgium
| | - Maarten Lambrecht
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Angela van Baardwijk
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Stéphanie Peeters
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bart Reymen
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Karolien Verhoeven
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rinus Wanders
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Michel Öllers
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Judith van Loon
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
27
|
Schernberg A, Hennequin C. [Normal tissue tolerance to external beam radiation therapy: Bone marrow and cortical bone structures]. Cancer Radiother 2017; 21:619-625. [PMID: 28774489 DOI: 10.1016/j.canrad.2017.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 06/16/2017] [Indexed: 12/25/2022]
Abstract
In patients undergoing external radiation therapy, bone marrow and cortical bone structures are all often neglected as organs at risk. Still, from increased febrile neutropenia risk in patients undergoing chemoradiation for a pelvic tumour to increased risk of vertebral fracture when undergoing hypofractioned stereotactic radiotherapy of a spinal metastasis, adverse effects are frequent and sometimes serious. This literature review first defines the rules for contouring these structures, then the dose constraints currently recommended. This article focuses first on conventional irradiation or intensity modulation radiotherapy considering classical fractionation. Secondly, it focuses on stereotactic radiotherapy. The considered organs will be haematopoietic structures, and bone cortical structures. Current recommendations are summarised in a table.
Collapse
Affiliation(s)
- A Schernberg
- Service de radiothérapie, hôpital Tenon, hôpitaux universitaires Est parisien, 4, rue de la Chine, 75020 Paris, France.
| | - C Hennequin
- Service de cancérologie-radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75475 Paris, France
| |
Collapse
|
28
|
De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Péchoux C, Belderbos J, Guckenberger M, Senan S. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 2017; 124:1-10. [PMID: 28666551 DOI: 10.1016/j.radonc.2017.06.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE To update literature-based recommendations for techniques used in high-precision thoracic radiotherapy for lung cancer, in both routine practice and clinical trials. METHODS A literature search was performed to identify published articles that were considered clinically relevant and practical to use. Recommendations were categorised under the following headings: patient positioning and immobilisation, Tumour and nodal changes, CT and FDG-PET imaging, target volumes definition, radiotherapy treatment planning and treatment delivery. An adapted grading of evidence from the Infectious Disease Society of America, and for models the TRIPOD criteria, were used. RESULTS Recommendations were identified for each of the above categories. CONCLUSION Recommendations for the clinical implementation of high-precision conformal radiotherapy and stereotactic body radiotherapy for lung tumours were identified from the literature. Techniques that were considered investigational at present are highlighted.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Maastricht University Medical Center+, Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, The Netherlands; KU Leuven, Radiation Oncology, Belgium.
| | - Corinne Faivre-Finn
- Division of Cancer Sciences University of Manchester, Christie NHS Foundation Trust, UK
| | - Ditte Moeller
- Aarhus University Hospital, Department of Oncology, Denmark
| | - Ursula Nestle
- Freiburg University Medical Center (DKTK partner site), Department of Radiation Oncology, Germany; Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Coen W Hurkmans
- Catharina Hospital, Department of Radiation Oncology, Eindhoven, The Netherlands
| | | | - José Belderbos
- Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam, The Netherlands
| | | | - Suresh Senan
- VU University Medical Center, Department of Radiation Oncology, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Wijsman R, Braam PM, Bussink J. Radiation-induced rib fractures after stereotactic body radiation therapy: Predict to prevent? Radiother Oncol 2017; 123:173-175. [DOI: 10.1016/j.radonc.2017.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/23/2022]
|