1
|
Milgrom SA, Dandapani SV, Wong J, Kalapurakal J, Smith KS, Han C, Simiele E, Hua CH, Fitzgerald TJ, Kry S, Wong K, Symons H, Kovalchuk N, Hiniker SM. Incorporating intensity modulated total body irradiation into a Children's Oncology Group trial: Rationale, techniques, and safeguards. Pediatr Blood Cancer 2024; 71:e31185. [PMID: 39118225 DOI: 10.1002/pbc.31185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 08/10/2024]
Abstract
Historically, total body irradiation (TBI) has been delivered using static, parallel opposed photon beams (2D-TBI). Recently, centers have increasingly used intensity-modulated radiation therapy (IMRT) techniques for TBI. Relative to 2D-TBI, IMRT can reduce doses to critical organs (i.e., lungs and kidneys) while delivering myeloablative doses to the rest of the body, so it may decrease the risk of toxicity while maintaining oncologic outcomes. Despite these potential benefits, delivering TBI using IMRT introduces new challenges in treatment planning and delivery. We describe the extensive experience with IMRT-based TBI at Stanford University and City of Hope Cancer Center. These groups, and others, have reported favorable clinical outcomes and have developed methods to optimize treatment planning and delivery. A critical next step is to evaluate the broader adoption of this approach. Therefore, IMRT-based TBI will be incorporated into a prospective, multi-institutional Children's Oncology Group study with careful procedures and safeguards in place.
Collapse
Affiliation(s)
- Sarah A Milgrom
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado, USA
| | | | - Jeffrey Wong
- Department of Radiation Oncology, City of Hope, Duarte, California, USA
| | - John Kalapurakal
- Department of Radiation Oncology, Northwestern Medicine, Chicago, Illinois, USA
| | - Koren S Smith
- Department of Radiation Oncology, Imaging and Radiation Oncology Core-Rhode Island, UMass Chan Medical School, Lincoln, Rhode Island, USA
| | - Chunhui Han
- Department of Radiation Oncology, City of Hope, Duarte, California, USA
| | - Eric Simiele
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas J Fitzgerald
- Department of Radiation Oncology, Imaging and Radiation Oncology Core-Rhode Island, UMass Chan Medical School, Lincoln, Rhode Island, USA
| | - Stephen Kry
- Division of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth Wong
- Department of Radiation Oncology, University of Southern California, Los Angeles, California, USA
| | - Heather Symons
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA
| | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| |
Collapse
|
2
|
Hui C, Simiele E, Lozko Y, Romero I, Skinner L, Binkley MS, Hoppe R, Kovalchuk N, Hiniker SM. Volumetric modulated arc therapy total body irradiation improves toxicity outcomes compared to 2D total body irradiation. Front Oncol 2024; 14:1459287. [PMID: 39351359 PMCID: PMC11439880 DOI: 10.3389/fonc.2024.1459287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Volumetric modulated arc therapy (VMAT) total body irradiation (TBI) allows for greater organ sparing with improved target coverage compared to 2D-TBI. However, there is limited evidence of whether improved organ sparing translates to decreases in toxicities and how its toxicities compare to those of the 2D technique. We aimed to compare differences in toxicities among patients treated with TBI utilizing VMAT and 2D techniques. Methods/materials A matched-pair single-institution retrospective analysis of 200 patients treated with TBI from 2014 to 2023 was performed. Overall survival (OS) and progression-free survival (PFS) were analyzed using the Kaplan-Meier method and compared using log-rank tests. Differences in characteristics and toxicities between the VMAT and 2D cohorts were compared using Fisher's exact test. Results Of the 200 patients analyzed, 100 underwent VMAT-TBI, and 100 underwent 2D-TBI. The median age for VMAT-TBI and 2D-TBI patients was 13.7 years and 16.2 years, respectively (p = 0.25). In each cohort, 53 patients were treated with myeloablative regimens (8-13.76 Gy), and 47 were treated with non-myeloablative regimens (2-4 Gy). For the entire VMAT-TBI cohort, lung Dmean, kidney Dmean, and lens Dmax were spared to 60.6% ± 5.0%, 71.0% ± 8.5%, and 90.1% ± 3.5% of prescription, respectively. For the non-myeloablative VMAT-TBI cohort, testis/ovary Dmax, brain, and thyroid Dmean were spared to 33.4% ± 7.3%, 75.4% ± 7.0%, and 76.1% ± 10.5%, respectively. For 2D-TBI, lungs were spared using partial-transmission lung blocks for myeloablative regimens. The VMAT-TBI cohort experienced significantly lower rates of any grade of pneumonitis (2% vs. 12%), nephrotoxicity (7% vs. 34%), nausea (68% vs. 81%), skin (16% vs. 35%), and graft versus host disease (GVHD) (42% vs. 62%) compared to 2D-TBI patients. For myeloablative regimen patients, rates of pneumonitis (0% vs. 17%) and nephrotoxicity (9% vs. 36%) were significantly lower with VMAT-TBI versus 2D-TBI (p < 0.01). Median follow-up was 14.3 months, and neither median OS nor PFS for the entire cohort was reached. In the VMAT versus 2D-TBI cohort, the 1-year OS was 86.0% versus 83.0% (p = 0.26), and the 1-year PFS was 86.6% and 80.0% (p = 0.36), respectively. Conclusion Normal tissue sparing with VMAT-TBI compared to the 2D-TBI translated to significantly lower rates of pneumonitis, renal toxicity, nausea, skin toxicity, and GVHD in patients, while maintaining excellent disease control.
Collapse
Affiliation(s)
- Caressa Hui
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, United States
| | - Eric Simiele
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuliia Lozko
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Ignacio Romero
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | | | - Richard Hoppe
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Susan M. Hiniker
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| |
Collapse
|
3
|
Nozawa Y, Yamashita H, Sawayanagi S, Katano A. First clinical experience of total body irradiation using volumetric modulated arc therapy technique in Japan. J Cancer Res Ther 2024:01363817-990000000-00099. [PMID: 39207090 DOI: 10.4103/jcrt.jcrt_1067_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/21/2023] [Indexed: 09/04/2024]
Abstract
ABSTRACT In recent years, advances in radiotherapy technology have led to the use of high-precision radiotherapy such as volumetric modulated arc therapy (VMAT). Total body irradiation using VMAT technique (VMAT-TBI) was performed for the first time in our hospital. A 56-year-old male patient diagnosed with B-cell acute lymphoblastic leukemia was performed TBI as pretreatment for haploidentical-related peripheral blood stem-cell transplantation. The prescribed dose was 4 Gy for planning target volume in two fractions. The treatment plan was divided into two plans: upper body and lower body with three and two isocenters, respectively. The overall treatment time with VMAT-TBI was approximately 55 min, and it was not significantly longer than that of moving couch techniques. VMAT-TBI is a less burdensome and more accurate treatment for patients, and it may be a useful treatment for TBI.
Collapse
Affiliation(s)
- Yuki Nozawa
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | | | | | | |
Collapse
|
4
|
Seravalli E, Bosman ME, Han C, Losert C, Pazos M, Engström PE, Engellau J, Fulcheri CPL, Zucchetti C, Saldi S, Ferrer C, Ocanto A, Hiniker SM, Clark CH, Hussein M, Misson-Yates S, Kobyzeva DA, Loginova AA, Hoeben BAW. Technical recommendations for implementation of Volumetric Modulated Arc Therapy and Helical Tomotherapy Total Body Irradiation. Radiother Oncol 2024; 197:110366. [PMID: 38830537 DOI: 10.1016/j.radonc.2024.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
As a component of myeloablative conditioning before allogeneic hematopoietic stem cell transplantation (HSCT), Total Body Irradiation (TBI) is employed in radiotherapy centers all over the world. In recent and coming years, many centers are changing their technical setup from a conventional TBI technique to multi-isocenter conformal arc therapy techniques such as Volumetric Modulated Arc Therapy (VMAT) or Helical Tomotherapy (HT). These techniques allow better homogeneity and control of the target prescription dose, and provide more freedom for individualized organ-at-risk sparing. The technical design of multi-isocenter/multi-plan conformal TBI is complex and should be developed carefully. A group of early adopters with conformal TBI experience using different treatment machines and treatment planning systems came together to develop technical recommendations and share experiences, in order to assist departments wishing to implement conformal TBI, and to provide ideas for standardization of practices.
Collapse
Affiliation(s)
- Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mirjam E Bosman
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chunhui Han
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Christoph Losert
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Montserrat Pazos
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Per E Engström
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Jacob Engellau
- Department of Radiation Oncology, Skåne University Hospital, Lund, Sweden
| | | | - Claudio Zucchetti
- Section of Medical Physics, Perugia General Hospital, Perugia, Italy
| | - Simonetta Saldi
- Section of Radiation Oncology, Perugia General Hospital, Perugia, Italy
| | - Carlos Ferrer
- Department of Medical Physics and Radiation Protection, La Paz University Hospital, Madrid, Spain
| | - Abrahams Ocanto
- Department of Radiation Oncology, San Francisco de Asís University Hospital, GenesisCare, Madrid, Spain
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Catharine H Clark
- Radiotherapy Physics, National Radiotherapy Trials Quality Assurance Group (RTTQA), Mount Vernon Cancer Centre, Northwood, UK; Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK; Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; Medical Physics and Bioengineering Department, University College London, London, UK
| | - Mohammad Hussein
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
| | - Sarah Misson-Yates
- Medical Physics Department, Guy's and St Thomas' Hospital, London, UK; UK School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; National Physical Laboratory, Metrology for Medical Physics Centre, London, UK
| | - Daria A Kobyzeva
- Deptartment of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna A Loginova
- Deptartment of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Bianca A W Hoeben
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Hanada T, Fukada J, Shiraishi Y, Yoshida K, Sakanoue N, Oguma K, Ohashi T, Shigematsu N. A rare instance of latent systematic error in volumetric-modulated arc therapy with field-extended multi-isocentre irradiation leading to a serious dose-delivery accident. BJR Case Rep 2024; 10:uaae021. [PMID: 39027402 PMCID: PMC11257714 DOI: 10.1093/bjrcr/uaae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/25/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Volumetric-modulated arc therapy (VMAT) with field-extended multi-isocentre irradiation (VMAT-FEMII) is an effective irradiation technique, particularly for large planning target volumes in the craniocaudal direction. A variety of treatment planning techniques have been reported to reduce the dosimetric impact. However, there is no guarantee that unexpected latent systematic errors would not occur. Herein, we report the experience with a rare case that could have led to a serious VMAT-FEMII-related accident. A patient with uterine cervical carcinoma was scheduled for VMAT-FEMII to the whole pelvis and the para-aortic lymph node region. A combination of the two sets of field groups with different isocentres was planned: one to cover the para-aortic lymph nodes and the other to cover the whole pelvis. Measurements based on the pretreatment dose delivery quality assurance (QA) revealed an unexpected overdose of >20% in the field overlap region. This overdose phenomenon is not reflected in the calculated dose distribution in the radiotherapy treatment planning system. Therefore, the plan was altered; a homogeneous dose distribution inside the dose junction was achieved. Several analyses were performed to elucidate the overdosing phenomenon. However, no conclusive answer was found to why non-reflection at the calculated dose distribution was found. The limitations to VMAT-FEMII are primarily related to systematic errors in the positional setup from patient-derived and/or mechanical sources. However, this report highlights a rare case of overdosing caused by inverse optimization and dose calculation. We recommend checking the aperture status of the jaw and multi-leaf collimator at each control point of the treatment plan and using a high-resolution image measurement system on a VMAT-FEMII QA to confirm the dose junction status.
Collapse
Affiliation(s)
- Takashi Hanada
- Department of Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Junichi Fukada
- Department of Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yutaka Shiraishi
- Department of Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kayo Yoshida
- Department of Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Naoya Sakanoue
- Department of Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kohei Oguma
- Cancer Center (Radiotherapy Unit), Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshio Ohashi
- Department of Radiation Oncology, Tokyo Saiseikai Central Hospital, Tokyo 180-0073, Japan
| | - Naoyuki Shigematsu
- Department of Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
6
|
Liang X, Li P, Wu Q. A novel AP/PA total body irradiation technique using abutting IMRT fields at extended SSD. J Appl Clin Med Phys 2024; 25:e14213. [PMID: 38425126 PMCID: PMC11005982 DOI: 10.1002/acm2.14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 03/02/2024] Open
Abstract
PURPOSE To develop a Total Body Irradiation (TBI) technique using IMRT at extended SSD that can be performed in any size Linac room. METHODS Patients studied were placed on a platform close to the floor, directly under the gantry with cranial-caudal axis parallel to the gantry rotation plane and at SSD ∼200 cm. Two abutting fields with the same external isocenter at gantry angles of ±21˚, collimator angle of 90˚, and field size of 25 × 40 cm2 are employed for both supine and prone positions. An iterative optimization algorithm was developed to generate a uniform dose at the patient mid-plane with adequate shielding to critical organs such as lungs and kidneys. The technique was validated in both phantom and patient CT images for treatment planning, and dose measurement and QA were performed in phantom. RESULTS A uniform dose distribution in the mid-plane within ±5% of the prescription dose was reached after a few iterations. This was confirmed with ion-chamber measurements in phantom. The mean dose to lungs and kidneys can be adjusted according to clinical requirements and can be as low as ∼25% of the prescription dose. For a typical prescription dose of 200 cGy/fraction, the total MU was ∼2400/1200 for the superior/inferior field. The overall treatment time for both supine/prone positions was ∼54 min to meet the maximum absorbed dose rate criteria of 15 cGy/min. IMRT QA with portal dosimetry shows excellent agreement. CONCLUSIONS We have developed a promising TBI technique using abutting IMRT fields at extended SSD. The patient is in a comfortable recumbent position with good reproducibility and less motion during treatment. An additional benefit of this technique is that full 3D dose distribution is available from the TPS with a DVH summary for organs of interest. The technique allows precise sparing of lungs and kidneys and can be executed in any linac room.
Collapse
Affiliation(s)
- Xiaomin Liang
- Medical Physics Graduate ProgramDuke Kunshan UniversityKunshanJiangsuChina
| | - Peixiong Li
- Medical Physics Graduate ProgramDuke Kunshan UniversityKunshanJiangsuChina
| | - Qiuwen Wu
- Department of Radiation OncologyDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
7
|
Melton MK, Stanley DN, Iqbal Z, Keene KS, Simiele E, McDonald A. Acute Toxicity of Total Body Irradiation Using Volumetric Arc Therapy With a Focus on the Effect of Lung Dose Rate. Adv Radiat Oncol 2024; 9:101430. [PMID: 38406392 PMCID: PMC10882112 DOI: 10.1016/j.adro.2023.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/27/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose To report adverse effects of high dose total body irradiation (TBI) delivered using a volumetric arc therapy (VMAT) technique and to assess pulmonary toxicity at dose rates of 40 and 100 monitor units per minute (MU/min). Methods and Materials This retrospective study included patients >18 years old who received ≥8 Gy TBI using a VMAT technique. The TBI dose was prescribed to a planning target volume consisting of a 0.5 cm retraction of the body with the lungs subtracted. The objective function specified planning target volume coverage goals of D100% ≥ 90% and Dmax <130%. A lung dose control structure consisting of a 1 cm retraction of the lung volume was limited to Dmean <75%. Treatments were initially delivered with a dose rate of 40 MU/min for the thoracic isocenters and 100 MU/min for the other isocenters. Beginning in January 2021, a dose rate of 100 MU/min was used for all isocenters. All treatments were administered in 2 Gy fractions delivered twice daily. Acute toxicity was assessed for 30 days after TBI. Results A total of 29 patients were included in this analysis who received TBI between January 2019 and October 2021. Prescription dose ranged from 8 to 12 Gy. Mean lung dose was 7.9 Gy (SD, 1.4 Gy) for patients treated at 40 MU/min and for patients treated at 100 MU/min 7.1 Gy (SD, 1.3 Gy). Mucositis was the most common grade 3 toxicity and occurred in 10 (34%) patients. Only 1 instance of pneumonitis was observed and occurred in a patient who received a mean lung dose of 10.1 Gy delivered at 40 MU/min. Conclusions In this cohort of patients who received high dose TBI using a VMAT technique, the composite rate of acute toxicity was not unexpectedly high. We did not observe an increase in lung toxicity after increasing the dose rate of the thoracic isocenters from 40 MU/min to 100 MU/min.
Collapse
Affiliation(s)
- Michael Kole Melton
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Dennis N. Stanley
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Zohaib Iqbal
- Department of Radiation Oncology, The University of Texas Southwestern, Dallas, Texas
| | - Kimberly S. Keene
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Eric Simiele
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew McDonald
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
Seravalli E, Willemsen-Bosman M, Zoetelief A, Roosenboom S, Harderwijk T, Krikke L, Bol G, Kotte A, Huijboom E, van Loon K, Hoeben B. Treatment robustness of total body irradiation with volumetric modulated arc therapy. Phys Imaging Radiat Oncol 2024; 29:100537. [PMID: 38292651 PMCID: PMC10827537 DOI: 10.1016/j.phro.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
This study evaluated the robustness of multi-isocenter Volumetric Modulated Arc Therapy Total Body Irradiation dose distribution in the overlapping region between the head-first and feet-first computed tomography scans, considering the longitudinal isocenter shifts recorded during treatment delivery. For 15 out of 22 patients, the dose distribution in the overlapping region fulfilled all three the robustness criteria. The overlapping region dose distribution of the remaining 7 cases fulfilled two robustness criteria. The dose distribution was found to be robust against daily recorded longitudinal isocenter shifts, as a consequence of the patient position verification procedure, of up to 16 mm.
Collapse
Affiliation(s)
- Enrica Seravalli
- University Medical Center Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| | - Mirjam Willemsen-Bosman
- University Medical Center Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| | - Annelies Zoetelief
- University Medical Center Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| | - Sanne Roosenboom
- University Medical Center Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| | - Tessa Harderwijk
- University Medical Center Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| | - Lean Krikke
- University Medical Center Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| | - Gijsbert Bol
- University Medical Center Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| | - Alexis Kotte
- University Medical Center Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| | - Eline Huijboom
- University Medical Center Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| | - Karel van Loon
- University Medical Center Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| | - Bianca Hoeben
- University Medical Center Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| |
Collapse
|
9
|
Ngo N, Blomain ES, Simiele E, Romero I, Hoppe RT, Hiniker SM, Kovalchuk N. Improved organ sparing using auto-planned Stanford volumetric modulated arc therapy for total body irradiation technique. Pediatr Blood Cancer 2023; 70:e30589. [PMID: 37486149 DOI: 10.1002/pbc.30589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
PURPOSE/OBJECTIVES To evaluate dosimetric differences between auto-planned volumetric modulated arc therapy (VMAT) total body irradiation (TBI) technique and two-dimensional radiotherapy using anterior-posterial/posterio-anterial beams (2D AP/PA) TBI technique. METHODS Ten pediatric patients treated with VMAT-TBI on Varian c-arm linac were included in this study. VMAT-TBI plans were generated using our in-house developed and publicly shared auto-planning scripts. For each VMAT-TBI plan, a 2D AP/PA plan was created replicating the institution's clinical setup with the patient positioned at extended source to skin distance (SSD) with a compensator to account for differences in patient thickness, 50% transmission daily lung blocks, and electron chest wall boosts prescribed to 50% of the photon prescription. Clinically relevant metrics were analyzed and compared between the VMAT and 2D plans. RESULTS All VMAT-TBI plans achieved planned target volume (PTV) D90% ≥ 100% of prescription. VMAT-TBI PTV D90% significantly increased (7.1% ± 2.9%, p < .001) compared to the 2D technique, whereas no differences were observed in global Dmax (p < .2) and PTV V110% (p < .4). Compared to the 2D plans, significant decreases in the Dmean to the lungs (-25.6% ± 11.5%, p < .001) and lungs-1 cm (-34.1% ± 10.1%, p < .001) were observed with the VMAT plans. The VMAT technique also enabled decrease of dose to other organs: kidneys Dmean (-32.5% ± 5.0%, p < .001) and lenses Dmax (-5.3% ± 8.1%, p = .03); and in addition, for 2 Gy prescription: testes/ovaries Dmean (-41.5% ± 11.5%, p < .001), brain Dmean (-22.6% ± 5.4%, p = .002), and thyroid Dmean (-18.2% ± 16.0%, p = .03). CONCLUSIONS Superior lung sparing with improved target coverage and similar global Dmax were observed with the VMAT plans as compared to 2D plans. In addition, VMAT-TBI plans provided greater dose reductions in gonads, kidneys, brain, thyroid, and lenses.
Collapse
Affiliation(s)
- Nicholas Ngo
- Radiation Oncology Department, Stanford University Cancer Center, Palo Alto, California, USA
| | - Erik S Blomain
- Radiation Oncology Department, Stanford University Cancer Center, Palo Alto, California, USA
| | - Eric Simiele
- Radiation Oncology Department, Stanford University Cancer Center, Palo Alto, California, USA
| | - Ignacio Romero
- Radiation Oncology Department, Stanford University Cancer Center, Palo Alto, California, USA
| | - Richard T Hoppe
- Radiation Oncology Department, Stanford University Cancer Center, Palo Alto, California, USA
| | - Susan M Hiniker
- Radiation Oncology Department, Stanford University Cancer Center, Palo Alto, California, USA
| | - Nataliya Kovalchuk
- Radiation Oncology Department, Stanford University Cancer Center, Palo Alto, California, USA
| |
Collapse
|
10
|
Frederick R, Van Dyke L, Hudson A, Pierce G. Advanced automated treatment planning for total body irradiation: Implementation and effects on standardization. Phys Med 2023; 112:102623. [PMID: 37356420 DOI: 10.1016/j.ejmp.2023.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023] Open
Abstract
PURPOSE This work describes the automation of our volumetric modulated arc therapy (VMAT) total body irradiation (TBI) treatment planning. It also aims to determine if plan standardization is impacted by automation. METHODS We introduced automated beam placement for TBI in March 2021. For manual beam placement pre-2021, Python-modified DICOM files were imported to pre-set cumulative meterset weights, with other parameters selected by dosimetrists. Our automated planning script automates these processes and sets gantry stop angles and isocentre placement. To determine the impact of automation on plan standardization, we performed a retrospective review of a matched cohort of 168 patients. Plan parameters were compared with an external standard, and passing rates compared between patient cohorts. The dosimetric impact was investigated by comparing a Body-5 mm homogeneity index (HI = D2%/D98%) and mean lung dose (MLD) between cohorts. RESULTS Results are listed for manual and automated groups respectively. Median (range) passing rates were 97.7% (96.1-100) and 99.2% (98.3-100). Automated plans had a significantly higher passing rate (p ≪ 0.05) and smaller variance (p = 0.001). Most failures were attributed to human error. Automated plans also had more consistent parameter identifiers. After considering dimensional outliers, median (range) Body-5 mm HI were 1.18 (1.14-1.23) and 1.18 (1.15-1.26), and mean ± standard deviation MLD were 103.8 ± 1.3% and 104.1 ± 0.9%. Variances were not significantly different between Body-5 mm HI (p = 0.092) but were for MLD (p = 0.013). CONCLUSIONS Implementation of automated planning in TBI resulted in significantly improved plan standardization. The decrease in variance of the MLD for the automated planning group points towards a potential dosimetric benefit of automation.
Collapse
Affiliation(s)
- Rebecca Frederick
- Department of Medical Physics, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, Alberta T2N 4N2, Canada; Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Lukas Van Dyke
- Department of Medical Physics, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, Alberta T2N 4N2, Canada
| | - Alana Hudson
- Department of Medical Physics, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, Alberta T2N 4N2, Canada; Department of Oncology, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Greg Pierce
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Department of Oncology, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Varian Medical Systems, Inc., 3100 Hansen Way, Palo Alto, CA 94304, United States
| |
Collapse
|
11
|
Hao C, Ladbury C, Wong J, Dandapani S. Modern Radiation for Hematologic Stem Cell Transplantation: Total Marrow and Lymphoid Irradiation or Intensity-Modulated Radiation Therapy Total Body Irradiation. Surg Oncol Clin N Am 2023; 32:475-495. [PMID: 37182988 DOI: 10.1016/j.soc.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The development of large-field intensity-modulated radiation therapy (IMRT) has enabled the implementation of total marrow irradiation (TMI), total marrow and lymphoid irradiation (TMLI), and IMRT total body irradiation (TBI). IMRT TBI limits doses to organs at risk, primarily the lungs and in some cases the kidneys and lenses, which may mitigate complications. TMI/TMLI allows for dose escalation above TBI radiation therapy doses to malignant sites while still sparing organs at risk. Although still sparingly used, these techniques have established feasibility and demonstrated promise in reducing the adverse effects of TBI while maintaining and potentially improving survival outcomes.
Collapse
Affiliation(s)
- Claire Hao
- Department of Radiation Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Colton Ladbury
- Department of Radiation Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jeffrey Wong
- Department of Radiation Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Savita Dandapani
- Department of Radiation Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
12
|
Reilly M, Dandapani SV, Kumar KA, Constine L, Fogh SE, Roberts KB, Small W, Schechter NR. ACR-ARS Practice Parameter for the Performance of Total Body Irradiation. Am J Clin Oncol 2023; 46:185-192. [PMID: 36907934 DOI: 10.1097/coc.0000000000000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
OBJECTIVES This practice parameter was revised collaboratively by the American College of Radiology (ACR) and the American Radium Society (ARS). This practice parameter provides updated reference literature regarding both clinical-based conventional total body irradiation and evolving volumetric modulated total body irradiation. METHODS This practice parameter was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website ( https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards ) by the Committee on Practice Parameters-Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with the ARS. RESULTS This practice parameter provides a comprehensive update to the reference literature regarding conventional total body irradiation and modulated total body irradiation. Dependence on dose rate remains an active area of ongoing investigation in both the conventional setting (where instantaneous dose rate can be varied) and in more modern rotational techniques, in which average dose rate is the relevant variable. The role of imaging during patient setup and the role of inhomogeneity corrections due to computer-based treatment planning systems are included as evolving areas of clinical interest notably surrounding the overall dose inhomogeneity. There is increasing emphasis on the importance of evaluating mean lung dose as it relates to toxicity during high-dose total body irradiation regimens. CONCLUSIONS This practice parameter can be used as an effective tool in designing and evaluating a total body irradiation program that successfully incorporates the close interaction and coordination among the radiation oncologists, medical physicists, dosimetrists, nurses, and radiation therapists.
Collapse
Affiliation(s)
| | | | - Kiran A Kumar
- UT Southwestern Medical Center 5323 Harry Hines Blvd, Dallas, TX
| | - Louis Constine
- University of Rochester Medical Center 601 Elmwood Ave, Rochester, NY
| | - Shannon E Fogh
- Department of Radiation Oncology, University of California San Francisco, CA
| | | | - William Small
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago Loyola University Medical Center Department of Radiation Oncology Maguire Center - Room 2944 2160 S. 1st Ave. Maywood, IL
| | - Naomi R Schechter
- South Florida Proton Therapy Institute and Rakuten-Medical, Inc., Delray Beach, FL
| |
Collapse
|
13
|
Misson-Yates S, Cunningham R, Gonzalez R, Diez P, Clark CH. Optimised conformal total body irradiation: a heterogeneous practice, so where next? Br J Radiol 2023; 96:20220650. [PMID: 36475820 PMCID: PMC10078861 DOI: 10.1259/bjr.20220650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of volumetric arc therapy and inverse planning has been in routine use in radiotherapy for two decades. However, use in total body irradiation (TBI) has been more recent and few guidelines exist as to how to plan or verify. This has led to heterogeneous approaches. The goal of this review is to provide an overview of current advanced planning and dosimetry verification protocols used in optimised conformal TBI as a basis for investigating the need for greater standardisation in TBI.
Collapse
Affiliation(s)
- Sarah Misson-Yates
- Department of Medical Physics, Guy's Cancer Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Rissa Cunningham
- Department of Medical Physics, Guy's Cancer Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Regina Gonzalez
- Department of Medical Physics, Guy's Cancer Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Patricia Diez
- Radiotherapy Physics, National Radiotherapy Trials Quality Assurance Group (RTTQA), Mount Vernon Cancer Centre, Northwood, UK
| | - Catharine H Clark
- Radiotherapy Physics, National Radiotherapy Trials Quality Assurance Group (RTTQA), Mount Vernon Cancer Centre, Northwood, UK
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
- Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
- Medical Physics and Bioengineering Department, University College London, London, UK
| |
Collapse
|
14
|
Pandu B, Khanna D, Mohandass P, Elavarasan R, Ninan H, Vivek TR, Jacob S. A Phantom Study on Feasibility of Manual Field-in-Field Clinical Implementation for Total Body Irradiation and Comparison of Midplane Dose with Different Bilateral TBI Techniques. J Med Phys 2023; 48:59-67. [PMID: 37342604 PMCID: PMC10277292 DOI: 10.4103/jmp.jmp_103_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 06/23/2023] Open
Abstract
Objective The aim of this study is to implement a new treatment technique in total body irradiation (TBI) using the manual field-in-field-TBI (MFIF-TBI) technique and dosimetrically verifying its results with respect to compensator-based TBI (CB-TBI) and open field TBI technique. Materials and Methods A rice flour phantom (RFP) was placed on TBI couch with knee bent position at 385 cm source to surface distance. Midplane depth (MPD) was calculated for skull, umbilicus, and calf regions by measuring separations. Three subfields were opened manually for different regions using the multi-leaf collimator and jaws. The treatment Monitor unit (MU) was calculated based on each subfield size. In the CB-TBI technique, Perspex was used as a compensator. Treatment MU was calculated using MPD of umbilicus region and the required compensator thickness was calculated. For open field TBI, treatment MU was calculated using MPD of umbilicus region, and the treatment was executed without placing compensator. The diodes were placed on the surface of RFP to measure the delivered dose and the results were compared. Results The MFIF-TBI results showed that the deviation was within ± 3.0% for the different regions, except for the neck for which the deviation was 8.72%. In the CB-TBI delivery, the dose deviation was ± 3.0% for different regions in the RFP. The open field TBI results showed that the dose deviation was not within the limit ± 10.0%. Conclusion The MFIF-TBI technique can be implemented for TBI treatment as no TPS is required, and laborious process of making a compensator can be avoided while ensuring that the dose uniformity in all the regions within the tolerance limit.
Collapse
Affiliation(s)
- Bharath Pandu
- Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
- Department of Radiotherapy, Bangalore Baptist Hospital, Bengaluru, Karnataka, India
| | - D. Khanna
- Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - P. Mohandass
- Department of Radiation Oncology, Fortis Hospital, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Rajadurai Elavarasan
- Department of Radiotherapy, Bangalore Baptist Hospital, Bengaluru, Karnataka, India
| | - Hima Ninan
- Department of Radiotherapy, Bangalore Baptist Hospital, Bengaluru, Karnataka, India
| | - T. R. Vivek
- Department of Radiation Oncology, Tawam Hospital, Abu Dhabi, UAE
| | - Saro Jacob
- Department of Radiotherapy, Bangalore Baptist Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
15
|
Dinikina YV, Mikhailov AV, Rusina MA, Smirnova AY, Vorob’ov NA, Kataev NA, Kubasov AV. First experience of total body irradiation in conditioning regimes for allogenic hematopoietic stem cells transplantation in children with acute lymphoblastic leukemia in Saint Petersburg. ONCOHEMATOLOGY 2022. [DOI: 10.17650/1818-8346-2022-17-4-126-137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment method of refractory and recurrent forms of acute leukemia in children, while the question of choosing a conditioning regimen in order to achieve the best treatment results remains debatable. Conditioning based on total body irradiation (TbI) was confirmed to be most effective in some trials, but there are still issues of overcoming early and late toxicity, as well as difficulties in planning and routing patients.Aim. To share the experience of interdisciplinary patient management during the conditioning period with TbI inclusion in Saint petersburg, to evaluate the feasibility, toxicity and effectiveness of the method.Materials and methods. patients undergoing allo-HSCT for high risk acute lymphoblastic leukemia conditioned either with TbI (n = 12) or chemotherapy (n = 10) were included. Medical data were retrospectively analyzed with an assessment of the following transplant outcomes: HSCT-associated toxicity, the frequency and severity of infectious complications, graft versus host disease, as well as overall and event-free survival rates. we have evaluated radiotherapy plans in order to assess the compliance of radiation exposure with acceptable values for critical organs.Results. All patients with acute lymphoblastic leukemia in both groups received appropriate myeloablative conditioning. According to the study results, despite the lack of significance, we obtained differences in HSCT-associated mortality (8.3 and 30 %; p = 0.151), 2-years overall and event-free survival (66 ± 13.6 and 36 ± 16.1 %; p = 0.122) in group with TbI and HdCT respectively. It should be noted that there was a trend towards a decrease of toxic reactions frequency in case of TbI-containing regimens; however we didn’t reveal any significant differences in the number of infectious complications during post-transplant period. The median follow-up was 24.2 months and there were no signs of delayed toxicity.Conclusion. TbI-based conditioning was well tolerated with a low incidence of early and delayed toxicity, better overall and event-free survival. based on feasibility of TbI in Saint petersburg hospitals it is possible to recommend the method in routine practice, taking into account clinical indications.
Collapse
Affiliation(s)
- Yu. V. Dinikina
- V.A. Almazov National Medical Research Centre, Ministry of Health of Russia
| | - A. V. Mikhailov
- Diagnostic and Treatment Center, International Institute of Biological Systems named after Sergey Berezin; I.I. Mechnikov North-West State Medical University, Ministry of Health of Russia
| | - M. A. Rusina
- V.A. Almazov National Medical Research Centre, Ministry of Health of Russia
| | - A. Yu. Smirnova
- V.A. Almazov National Medical Research Centre, Ministry of Health of Russia
| | - N. A. Vorob’ov
- Diagnostic and Treatment Center, International Institute of Biological Systems named after Sergey Berezin; Saint Petersburg State University
| | - N. A. Kataev
- Diagnostic and Treatment Center, International Institute of Biological Systems named after Sergey Berezin
| | - A. V. Kubasov
- Diagnostic and Treatment Center, International Institute of Biological Systems named after Sergey Berezin
| |
Collapse
|
16
|
Total body irradiation using volumetric modulated arc therapy, experience of a cancer hospital in Pakistan. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022. [DOI: 10.1017/s1460396922000097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Introduction:
To report the planning parameters, efficacy and toxicity of total body irradiation using volumetric modulated arc therapy (VMAT).
Methods:
From July 2019 till May 2021, nine patients treated with VMAT-based total body irradiation as a part of the myeloablative regimen for homologous stem cell transplant were evaluated. The CT acquisition, planning parameters, doses to target volume and critical structures were evaluated retrospectively.
Results:
Median age was 24 with median height 172 cm. Average Mean Lung dose was 9·5 Gy, mean dose to kidney was kidney dose 8·4 Gy, planning target volume (PTV) 95% was 98 % and mean heterogeneity index of PTV was 1·2 all patients. Total fraction delivery time including setup was 3·1 h while beam on time was 23 min. Main toxicity observed was mucositis and fatigue, while no Grade 3 or more acute radiation toxicity was observed.
Conclusion:
At our institution, high dose TBI performed with multi-isocentric VMAT is now a standard procedure. Though it is cumbersome and time-consuming process but VMAT offers an advantage of increased dose homogeneity in the target volume with reduction in doses to critical organs especially lungs and kidneys in comparison to standard source to skin distance technique, longer follow-up time is necessary to evaluate our method and long-term toxicity.
Collapse
|
17
|
Marquez C, Hui C, Simiele E, Blomain E, Oh J, Bertaina A, Klein O, Shyr D, Jiang A, Hoppe RT, Kovalchuk N, Hiniker SM. Volumetric modulated arc therapy total body irradiation in pediatric and adolescent/young adult patients undergoing stem cell transplantation: Early outcomes and toxicities. Pediatr Blood Cancer 2022; 69:e29689. [PMID: 35373904 DOI: 10.1002/pbc.29689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Total body irradiation (TBI) is an important component of many conditioning regimens for hematopoietic stem cell transplantation (HSCT), most commonly used in pediatric and adolescent/young adult (AYA) patients. We aimed to evaluate outcomes and toxicities among pediatric and AYA patients treated with TBI utilizing volumetric modulated arc therapy total body irradiation (VMAT-TBI). METHODS We reviewed pediatric and AYA patients treated with VMAT-TBI at our institution from 2019 to 2021. Data on patient and disease characteristics, treatment details, outcomes and toxicities were collected. Overall survival (OS) and relapse-free survival (RFS) were analyzed using the Kaplan-Meier method. RESULTS Among 38 patients, 16 (42.1%) were treated with myeloablative regimens and 22 (57.9%) with nonmyeloablative regimens. Median age was 7.2 years (range: 1-27) and median follow-up was 8.7 months (range: 1-21). Lungs Dmean was 7.3 ± 0.3 Gy for myeloablative regimens (range: 6.8-7.8). Kidneys were spared to average mean dose of 71.4 ± 4.8% of prescription dose. Gonadal sparing was achieved for patients treated for nonmalignant diseases to Dmean of 0.7 ± 0.1 Gy. No patient experienced primary graft failure; one (2.6%) experienced secondary graft failure. The most common grade 1-2 acute toxicities were nausea (68.4%) and fatigue (55.3%). Mucositis was the most common grade 3-4 acute toxicity, affecting 39.5% of patients. There were no cases of pneumonitis or nephrotoxicity attributable to TBI. CONCLUSION VMAT-TBI offers increased ability to spare organs at risk in pediatric and AYA patients undergoing HSCT, with a favorable acute/subacute toxicity profile and excellent disease control.
Collapse
Affiliation(s)
- Cesar Marquez
- Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Caressa Hui
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Eric Simiele
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Erik Blomain
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Justin Oh
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford, California, USA
| | - Orly Klein
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford, California, USA
| | - David Shyr
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford, California, USA
| | - Alice Jiang
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Richard T Hoppe
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| |
Collapse
|
18
|
Hoeben BAW, Pazos M, Seravalli E, Bosman ME, Losert C, Albert MH, Boterberg T, Ospovat I, Mico Milla S, Demiroz Abakay C, Engellau J, Jóhannesson V, Kos G, Supiot S, Llagostera C, Bierings M, Scarzello G, Seiersen K, Smith E, Ocanto A, Ferrer C, Bentzen SM, Kobyzeva DA, Loginova AA, Janssens GO. ESTRO ACROP and SIOPE recommendations for myeloablative Total Body Irradiation in children. Radiother Oncol 2022; 173:119-133. [PMID: 35661674 DOI: 10.1016/j.radonc.2022.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE Myeloablative Total Body Irradiation (TBI) is an important modality in conditioning for allogeneic hematopoietic stem cell transplantation (HSCT), especially in children with high-risk acute lymphoblastic leukemia (ALL). TBI practices are heterogeneous and institution-specific. Since TBI is associated with multiple late adverse effects, recommendations may help to standardize practices and improve the outcome versus toxicity ratio for children. MATERIAL AND METHODS The European Society for Paediatric Oncology (SIOPE) Radiotherapy TBI Working Group together with ESTRO experts conducted a literature search and evaluation regarding myeloablative TBI techniques and toxicities in children. Findings were discussed in bimonthly virtual meetings and consensus recommendations were established. RESULTS Myeloablative TBI in HSCT conditioning is mostly performed for high-risk ALL patients or patients with recurring hematologic malignancies. TBI is discouraged in children <3-4 years old because of increased toxicity risk. Publications regarding TBI are mostly retrospective studies with level III-IV evidence. Preferential TBI dose in children is 12-14.4 Gy in 1.6-2 Gy fractions b.i.d. Dose reduction should be considered for the lungs to <8 Gy, for the kidneys to ≤10 Gy, and for the lenses to <12 Gy, for dose rates ≥6 cGy/min. Highly conformal techniques i.e. TomoTherapy and VMAT TBI or Total Marrow (and/or Lymphoid) Irradiation as implemented in several centers, improve dose homogeneity and organ sparing, and should be evaluated in studies. CONCLUSIONS These ESTRO ACROP SIOPE recommendations provide expert consensus for conventional and highly conformal myeloablative TBI in children, as well as a supporting literature overview of TBI techniques and toxicities.
Collapse
Affiliation(s)
- Bianca A W Hoeben
- Dept. of Radiation Oncology, University Medical Center Utrecht, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Montserrat Pazos
- Dept. of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Enrica Seravalli
- Dept. of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Mirjam E Bosman
- Dept. of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Christoph Losert
- Dept. of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Michael H Albert
- Dept. of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Tom Boterberg
- Dept. of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Inna Ospovat
- Dept. of Radiation Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Soraya Mico Milla
- Dept. of Radiation Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Candan Demiroz Abakay
- Dept. of Radiation Oncology, Uludag University Faculty of Medicine Hospital, Bursa, Turkey
| | - Jacob Engellau
- Dept. of Radiation Oncology, Skåne University Hospital, Lund, Sweden
| | | | - Gregor Kos
- Dept. of Radiation Oncology, Institute of Oncology Ljubljana, Slovenia
| | - Stéphane Supiot
- Dept. of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes St. Herblain, France
| | - Camille Llagostera
- Dept. of Medical Physics, Institut de Cancérologie de l'Ouest, Nantes St. Herblain, France
| | - Marc Bierings
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Giovanni Scarzello
- Dept. of Radiation Oncology, Veneto Institute of Oncology-IRCCS, Padua, Italy
| | | | - Ed Smith
- Dept. of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Abrahams Ocanto
- Dept. of Radiation Oncology, La Paz University Hospital, Madrid, Spain
| | - Carlos Ferrer
- Dept. of Medical Physics and Radiation Protection, La Paz University Hospital, Madrid, Spain
| | - Søren M Bentzen
- Dept. of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine, Baltimore, United States
| | - Daria A Kobyzeva
- Dept. of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna A Loginova
- Dept. of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Geert O Janssens
- Dept. of Radiation Oncology, University Medical Center Utrecht, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
19
|
Modrek AS, Karp JM, Byun D, Gerber NK, Abdul-Hay M, Al-Homsi AS, Galavis P, Teruel J, Yuan Y. Pulmonary toxicity following myeloablative conditioning with total body irradiation delivered via volumetric modulated arc therapy with fludarabine. Pract Radiat Oncol 2022; 12:e476-e480. [DOI: 10.1016/j.prro.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
20
|
Maerz M, Treutwein M, Nabo J, Dobler B. Three-dimensional printers applied for the production of beam blocks in total body irradiation treatment. J Appl Clin Med Phys 2022; 23:e13592. [PMID: 35290701 PMCID: PMC9121048 DOI: 10.1002/acm2.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Total body irradiation (TBI) in extended source surface distance (SSD) is a common treatment technique before hematopoietic stem cell transplant. The lungs are organs at risk, which often are treated with a lower dose than the whole body. Methods This can be achieved by the application of blocks. Three‐dimensional (3D) printers are a modern tool to be used in the production process of these blocks. Results We demonstrate the applicability of a specific printer and printing material, describe the process, and evaluate the accuracy of the product. Conclusion The blocks and apertures were found to be applicable in clinical routine.
Collapse
Affiliation(s)
- Manuel Maerz
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Marius Treutwein
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Jan Nabo
- Department for Mathematics and Computer Science, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Barbara Dobler
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| |
Collapse
|
21
|
Loginova AA, Tovmasian DA, Lisovskaya AO, Kobyzeva DA, Maschan MA, Chernyaev AP, Egorov OB, Nechesnyuk AV. Optimized Conformal Total Body Irradiation methods with Helical TomoTherapy and Elekta VMAT: Implementation, Imaging, Planning and Dose Delivery for Pediatric Patients. Front Oncol 2022; 12:785917. [PMID: 35359412 PMCID: PMC8960917 DOI: 10.3389/fonc.2022.785917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Optimized conformal total body irradiation (OC-TBI) is a highly conformal image guided method for irradiating the whole human body while sparing the selected organs at risk (OARs) (lungs, kidneys, lens). This study investigated the safety and feasibility of pediatric OC-TBI with the helical TomoTherapy (TomoTherapy) and volumetric modulated arc (VMAT) modalities and their implementation in routine clinical practice. This is the first study comparing the TomoTherapy and VMAT modalities in terms of treatment planning, dose delivery accuracy, and toxicity for OC-TBI in a single-center setting. The OC-TBI method with standardized dosimetric criteria was developed and implemented with TomoTherapy. The same OC-TBI approach was applied for VMAT. Standardized treatment steps, namely, positioning and immobilization, contouring, treatment planning strategy, plan evaluation, quality assurance, visualization and treatment delivery procedure were implemented for 157 patients treated with TomoTherapy and 52 patients treated with VMAT. Both modalities showed acceptable quality of the planned target volume dose coverage with simultaneous OARs sparing. The homogeneity of target irradiation was superior for TomoTherapy. Overall assessment of the OC-TBI dose delivery was performed for 30 patients treated with VMAT and 30 patients treated with TomoTherapy. The planned and delivered (sum of doses for all fractions) doses were compared for the two modalities in groups of patients with different heights. The near maximum dose values of the lungs and kidneys showed the most significant variation between the planned and delivered doses for both modalities. Differences in the patient size did not result in statistically significant differences for most of the investigated parameters in either the TomoTherapy or VMAT modality. TomoTherapy-based OC-TBI showed lower variations between planned and delivered doses, was less time-consuming and was easier to implement in routine practice than VMAT. We did not observe significant differences in acute and subacute toxicity between TomoTherapy and VMAT groups. The late toxicity from kidneys and lungs was not found during the 2.3 years follow up period. The study demonstrates that both modalities are feasible, safe and show acceptable toxicity. The standardized approaches allowed us to implement pediatric OC-TBI in routine clinical practice.
Collapse
Affiliation(s)
- Anna Anzorovna Loginova
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- *Correspondence: Anna Anzorovna Loginova,
| | - Diana Anatolievna Tovmasian
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Physics, Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Daria Alexeevna Kobyzeva
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Alexander Petrovich Chernyaev
- Faculty of Physics, Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
22
|
Kovalchuk N, Simiele E, Skinner L, Yang Y, Howell N, Lewis J, Hui C, Blomain ES, Hoppe RT, Hiniker SM. The Stanford VMAT TBI Technique. Pract Radiat Oncol 2022; 12:245-258. [PMID: 35182803 DOI: 10.1016/j.prro.2021.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE In this work, we describe the technical aspects of the XXX VMAT TBI technique, compare it to other VMAT TBI techniques, and share our initial experience. METHODS From September 2019 to August 2021, 35 patients were treated with VMAT TBI at our institution. Treatment planning was performed using in-house developed automated planning scripts. Organ sparing depended on the regimen: myeloablative (lungs, kidneys, and lenses); non-myeloablative with benign disease (lungs, kidneys, lenses, gonads, brain, and thyroid). Quality assurance was performed using EPID portal dosimetry and Mobius3D. Robustness was evaluated for the first ten patients by performing local and global isocenter shifts of 5 mm. Treatment was delivered using IGRT for every isocenter and every fraction. In-vivo measurements were performed on the matchline between the VMAT and AP/PA fields and on the testes for the first fraction. RESULTS The lungs, lungs-1cm, and kidneys Dmean were consistently spared to 57.6±4.4%, 40.7±5.5%, and 70.0±9.9% of the prescription dose, respectively. Gonadal sparing (Dmean=0.69±0.13 Gy) was performed for all patients with benign disease. The average PTV D1cc was 120.7±6.4% for all patients. The average Gamma passing rate for the VMAT plans was 98.1±1.6% (criteria of 3%/2mm). Minimal differences were observed between Mobius3D- and EclipseAAA-calculated PTV Dmean (0.0±0.3%) and lungs Dmean (-2.5±1.2%). Robustness evaluation showed that the PTV Dmax and lungs Dmean are insensitive to small positioning deviations between the VMAT isocenters (1.1±2.4% and 1.2±1.0%, respectively). The average matchline dose measurement indicated patient setup was reproducible (96.1±4.5% relative to prescription dose). Treatment time, including patient setup and beam-on, was 47.5±9.5 min. CONCLUSIONS The XXX VMAT TBI technique, from simulation to treatment delivery, was presented and compared to other VMAT TBI techniques. Together with publicly shared autoplanning scripts, our technique may provide the gateway for wider adaptation of this technology and the possibility of multi-institutional studies in the cooperative group setting.
Collapse
Affiliation(s)
- Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Eric Simiele
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Yong Yang
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Nicole Howell
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Jonathan Lewis
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Caressa Hui
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Erik S Blomain
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Richard T Hoppe
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States.
| |
Collapse
|
23
|
Uehara T, Monzen H, Tamura M, Inada M, Otsuka M, Doi H, Matsumoto K, Nishimura Y. Feasibility study of volumetric modulated arc therapy with Halcyon™ linac for total body irradiation. Radiat Oncol 2021; 16:236. [PMID: 34906180 PMCID: PMC8670260 DOI: 10.1186/s13014-021-01959-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023] Open
Abstract
Background The use of total body irradiation (TBI) with linac-based volumetric modulated arc therapy (VMAT) has been steadily increasing. Helical tomotherapy has been applied in TBI and total marrow irradiation to reduce the dose to critical organs, especially the lungs. However, the methodology of TBI with Halcyon™ linac remains unclear. This study aimed to evaluate whether VMAT with Halcyon™ linac can be clinically used for TBI. Methods VMAT planning with Halcyon™ linac was conducted using a whole-body computed tomography data set. The planning target volume (PTV) included the body cropped 3 mm from the source. A dose of 12 Gy in six fractions was prescribed for 50% of the PTV. The organs at risk (OARs) included the lens, lungs, kidneys, and testes. Results The PTV D98%, D95%, D50%, and D2% were 8.9 (74.2%), 10.1 (84.2%), 12.6 (105%), and 14.2 Gy (118%), respectively. The homogeneity index was 0.42. For OARs, the Dmean of the lungs, kidneys, lens, and testes were 9.6, 8.5, 8.9, and 4.4 Gy, respectively. The V12Gy of the lungs and kidneys were 4.5% and 0%, respectively. The Dmax of the testes was 5.8 Gy. Contouring took 1–2 h. Dose calculation and optimization was performed for 3–4 h. Quality assurance (QA) took 2–3 h. The treatment duration was 23 min. Conclusions A planning study of TBI with Halcyon™ to set up VMAT-TBI, dosimetric evaluation, and pretreatment QA, was established. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01959-3.
Collapse
Affiliation(s)
- Takuya Uehara
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Mikoto Tamura
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masahiro Inada
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masakazu Otsuka
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hiroshi Doi
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kenji Matsumoto
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
24
|
Hansen AT, Rose HK, Yates ES, Hansen J, Petersen JB. Two compound techniques for total body irradiation. Tech Innov Patient Support Radiat Oncol 2021; 21:1-7. [PMID: 34977366 PMCID: PMC8683645 DOI: 10.1016/j.tipsro.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Total body irradiation (TBI) is an important treatment modality that is used in combination with chemotherapy in many stem cell transplantation protocols. Therefore, the quality of the irradiation is important. Two techniques for planning and delivering TBI are presented and compared. METHODS AND MATERIALS The technique named ExIMRT is a combination of manually shaped conventional fields from an extended SSD and isocentric IMRT fields. The technique named ExVMAT is a combination of conventional and IMRT fields from an extended SSD and isocentric VMAT fields. Dosimetric data from 32 patients who were planned and treated according to one of the two techniques were compared. RESULTS When comparing the two techniques, it is determined that the ExVMAT technique is able to significantly reduce the mean total volume overdosed by 120% from 408 to 12 cm3. The dose covering 98% of the total lung volume is significantly increased by this technique from a mean of 9.7 Gy to 10.3 Gy. Additionally, the dose covering 2% of the total kidney volume is significantly decreased from a mean of 12.8 to 12.5 Gy. Furthermore, the population-based variance of the median dose to the total lung volume, the heart and the volume of the body prescribed to 12.5 Gy is significantly reduced. The results are obtained without compromising overall treatment quality as treatment time or dose rate to the lungs. CONCLUSION Using the ExVMAT technique, a superior dose distribution can be delivered both from a patient and a population perspective compared to the ExIMRT technique.
Collapse
Affiliation(s)
- Anders T. Hansen
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark,Corresponding author at: Department of Medical Physics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| | - Hanne K. Rose
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Esben S. Yates
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Jolanta Hansen
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
25
|
Hoeben BAW, Wong JYC, Fog LS, Losert C, Filippi AR, Bentzen SM, Balduzzi A, Specht L. Total Body Irradiation in Haematopoietic Stem Cell Transplantation for Paediatric Acute Lymphoblastic Leukaemia: Review of the Literature and Future Directions. Front Pediatr 2021; 9:774348. [PMID: 34926349 PMCID: PMC8678472 DOI: 10.3389/fped.2021.774348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Total body irradiation (TBI) has been a pivotal component of the conditioning regimen for allogeneic myeloablative haematopoietic stem cell transplantation (HSCT) in very-high-risk acute lymphoblastic leukaemia (ALL) for decades, especially in children and young adults. The myeloablative conditioning regimen has two aims: (1) to eradicate leukaemic cells, and (2) to prevent rejection of the graft through suppression of the recipient's immune system. Radiotherapy has the advantage of achieving an adequate dose effect in sanctuary sites and in areas with poor blood supply. However, radiotherapy is subject to radiobiological trade-offs between ALL cell destruction, immune and haematopoietic stem cell survival, and various adverse effects in normal tissue. To diminish toxicity, a shift from single-fraction to fractionated TBI has taken place. However, HSCT and TBI are still associated with multiple late sequelae, leaving room for improvement. This review discusses the past developments of TBI and considerations for dose, fractionation and dose-rate, as well as issues regarding TBI setup performance, limitations and possibilities for improvement. TBI is typically delivered using conventional irradiation techniques and centres have locally developed heterogeneous treatment methods and ways to achieve reduced doses in several organs. There are, however, limitations in options to shield organs at risk without compromising the anti-leukaemic and immunosuppressive effects of conventional TBI. Technological improvements in radiotherapy planning and delivery with highly conformal TBI or total marrow irradiation (TMI), and total marrow and lymphoid irradiation (TMLI) have opened the way to investigate the potential reduction of radiotherapy-related toxicities without jeopardising efficacy. The demonstration of the superiority of TBI compared with chemotherapy-only conditioning regimens for event-free and overall survival in the randomised For Omitting Radiation Under Majority age (FORUM) trial in children with high-risk ALL makes exploration of the optimal use of TBI delivery mandatory. Standardisation and comprehensive reporting of conventional TBI techniques as well as cooperation between radiotherapy centres may help to increase the ratio between treatment outcomes and toxicity, and future studies must determine potential added benefit of innovative conformal techniques to ultimately improve quality of life for paediatric ALL patients receiving TBI-conditioned HSCT.
Collapse
Affiliation(s)
- Bianca A. W. Hoeben
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jeffrey Y. C. Wong
- Department of Radiation Oncology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, United States
| | - Lotte S. Fog
- Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Christoph Losert
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andrea R. Filippi
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Søren M. Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Adriana Balduzzi
- Stem Cell Transplantation Unit, Clinica Paediatrica Università degli Studi di Milano Bicocca, Monza, Italy
| | - Lena Specht
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Volumetric Modulated Arc Therapy Enabled Total Body Irradiation (VMAT-TBI): Six-year Clinical Experience and Treatment Outcomes. Transplant Cell Ther 2021; 28:113.e1-113.e8. [PMID: 34775145 DOI: 10.1016/j.jtct.2021.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
Total body irradiation is an important part of the conditioning regimens frequently used to prepare patients for allogeneic hematopoietic stem cell transplantation (SCT). Volumetric-modulated arc therapy enabled total body irradiation (VMAT-TBI), an alternative to conventional TBI (cTBI), is a novel radiotherapy treatment technique that has been implemented and investigated in our institution. The purpose of this study is to (1) report our six-year clinical experience in terms of treatment planning strategy and delivery time and (2) evaluate the clinical outcomes and toxicities in our cohort of patients treated with VMAT-TBI. This is a retrospective single center study. Forty-four patients at our institution received VMAT-TBI and chemotherapy conditioning followed by allogeneic SCT between 2014 and 2020. Thirty-two patients (73%) received standard-dose TBI (12-13.2 Gy in 6-8 fractions twice daily), whereas 12 (27%) received low-dose TBI (2-4 Gy in one fraction). Treatment planning, delivery, and treatment outcome data including overall survival (OS), relapse-free survival (RFS), and toxicities were analyzed. The developed VMAT-TBI planning strategy consistently generated plans satisfying our dose constraints, with planning target volume coverage >90%, mean lung dose ∼50% to 75% of prescription dose, and minimal hotspots in critical organs. Most of the treatment deliveries were <100 minutes (range 33-147, mean 72). The median follow-up was 26 months. At the last follow-up, 34 of 44 (77%) of patients were alive, with 1- and 2-year OS of 90% and 79% and RFS of 88% and 71%, respectively. The most common grade 3+ toxicities observed were mucositis (31 patients [71%]) and nephrotoxicity (6 patients [13%]), both of which were deemed multifactorial in cause. Four patients (9%) in standard-dose cohort developed grade 3+ pneumonitis, with 3 cases in the setting of documented respiratory infection and only 1 (2%) deemed likely related to radiation alone. VMAT-TBI provides a safe alternative to cTBI. The dose modulation capability of VMAT-TBI may lead to new treatment strategies, such as simultaneous boost and further critical organ sparing, for better malignant cell eradication, immune suppression, and lower toxicities.
Collapse
|
27
|
Guo B, Sheen C, Murphy E, Magnelli A, Lu L, Cho Y, Qi P, Majhail NS, Xia P. Image-guided volumetric-modulated arc therapy of total body irradiation: An efficient workflow from simulation to delivery. J Appl Clin Med Phys 2021; 22:169-177. [PMID: 34480829 PMCID: PMC8504588 DOI: 10.1002/acm2.13412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/10/2021] [Accepted: 08/22/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Using multi‐isocenter volumetric‐modulated arc therapy (VMAT) for total body irradiation (TBI) may improve dose uniformity and vulnerable tissue protection compared with classical whole‐body field technique. Two drawbacks limit its application: (1) VMAT‐TBI planning is time consuming; (2) VMAT‐TBI plans are sensitive to patient positioning uncertainties due to beam matching. This study presents a robust planning technique with image‐guided delivery to improve dose delivery accuracy. In addition, a streamlined sim‐to‐treat workflow with automatic scripts is proposed to reduce planning time. Materials Twenty‐five patients were included in this study. Patients were scanned in supine head‐first and feet‐first directions. An automatic workflow was used to (1) create a whole‐body CT by registering two CT scans, (2) contour lungs, kidneys, and planning target volume (PTV), (3) divide PTV into multiple sub‐targets for planning, and (4) place isocenters. Treatment planning included feathered AP/PA beams for legs/feet and VMAT for the body. VMAT‐TBI was evaluated for plan quality, planning/delivery time, and setup accuracy using image guidance. Results VMAT‐TBI planning time can be reduced to a day with automatic scripts. Treatment time took around an hour per fraction. VMAT‐TBI improved dose coverage (PTV V100 increased from 76.8 ± 10.5 to 88.5 ± 2.6; p < 0.001) and reduced lung dose (lung mean dose reduced from 10.8 ± 0.7 Gy to 9.4 ± 0.8 Gy, p < 0.001) compared with classic AP/PA technique. Conclusion A VMAT‐TBI sim‐to‐treat workflow with robust planning and image‐guided delivery was proposed. VMAT‐TBI improved the plan quality compared with classical whole‐body field techniques.
Collapse
Affiliation(s)
- Bingqi Guo
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cherian Sheen
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erin Murphy
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anthony Magnelli
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lan Lu
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - YoungBin Cho
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peng Qi
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Navneet S Majhail
- Department of Hematology Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ping Xia
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Yaray K, Damulira E. Evaluation of volumetric modulated arc therapy (VMAT) - based total body irradiation (TBI) in pediatric patients. Rep Pract Oncol Radiother 2021; 26:518-527. [PMID: 34434567 DOI: 10.5603/rpor.a2021.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Background The dosimetric characterization of volumetric modulated arc therapy (VMAT)-based total-body irradiation (TBI) in pediatric patients is evaluated. Materials and methods Twenty-two patients between the ages of 2 and 12 years were enrolled for VMAT-based TBI from 2018 to 2020. Three isocenters were irradiated over three overlapping arcs. While prescribing 90% of the TBI dose to the planning treatment volume (PTV), two fractions (2 Gy each) were delivered each day; hence 12 Gy was delivered in six fractions. During treatment optimization, the mean lung and kidney doses were set not to exceed 7 Gy and 7.5 Gy, respectively. The maximum lens dose was also set to less than 4 Gy. Patient quality assurance was carried out by comparing treatment planning system doses to the 3-dimensional measured doses by the ArcCHECK® detector. The electronic portal imaging device (EPID) gamma indices were also obtained. Results The average mean lung dose was 7.75 ± 0.18 Gy, mean kidney dose 7.63 ± 0.26 Gy, maximum lens dose 4.41 ± 0.39 Gy, and the mean PTV dose 12.69 ± 0.16 Gy. The average PTV heterogeneity index was 1.15 ± 0.03. Average differences in mean kidney dose, mean lung dose, and mean target dose were 2.79% ± 0.88, 0.84% ± 0.45 and 0.93% ± 0.47, respectively; when comparing planned and ArcCHECK® measured doses. Only grade 1-2 radiation toxicities were recorded, based on CTCAE v5.0 scoring criteria. Conclusions VMAT-TBI was characterized with good PTV coverage, homogeneous dose distribution, planned and measured dose agreement, and low toxicity.
Collapse
Affiliation(s)
- Kadir Yaray
- Department of Radiation Oncology, M.K. Dedeman Oncology Hospital, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Edrine Damulira
- Department of Radiation Oncology, M.K. Dedeman Oncology Hospital, School of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
29
|
Naessig M, Hernandez S, Astorga NR, McCulloch J, Saenz D, Myers P, Rasmussen K, Stathakis S, Ha CS, Papanikolaou N, Ford J, Kirby N. A customizable aluminum compensator system for total body irradiation. J Appl Clin Med Phys 2021; 22:36-44. [PMID: 34432944 PMCID: PMC8504611 DOI: 10.1002/acm2.13393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose To develop a simplified aluminum compensator system for total body irradiation (TBI) that is easy to assemble and modify in a short period of time for customized patient treatments. Methods The compensator is composed of a combination of 0.3 cm thick aluminum bars, two aluminum T‐tracks, spacers, and metal bolts. The system is mounted onto a plexiglass block tray. The design consists of 11 fixed sectors spanning from the patient's head to feet. The outermost sectors utilize 7.6 cm wide aluminum bars, while the remaining sectors use 2.5 cm wide aluminum bars. There is a magnification factor of 5 from the compensator to the patient treatment plane. Each bar of aluminum is interconnected at each adjacent sector with a tongue and groove arrangement and fastened to the T‐track using a metal washer, bolt, and nut. Inter‐bar leakage of the compensator was tested using a water tank and diode. End‐to‐end measurements were performed with an ion chamber in a solid water phantom and also with a RANDO phantom using internal and external optically stimulated luminescent detectors (OSLDs). In‐vivo patient measurements from the first 20 patients treated with this aluminum compensator were compared to those from 20 patients treated with our previously used lead compensator system. Results The compensator assembly time was reduced to 20–30 min compared to the 2–4 h it would take with the previous lead design. All end‐to‐end measurements were within 10% of that expected. The median absolute in‐vivo error for the aluminum compensator was 3.7%, with 93.8% of measurements being within 10% of that expected. The median error for the lead compensator system was 5.3%, with 85.1% being within 10% of that expected. Conclusion This design has become the standard compensator at our clinic. It allows for quick assembly and customization along with meeting the Task Group 29 recommendations for dose uniformity.
Collapse
Affiliation(s)
- Madison Naessig
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Department of Nuclear Engineering, Texas A&M University, College Station, Texas, USA
| | - Soleil Hernandez
- Department of Nuclear Engineering, Texas A&M University, College Station, Texas, USA
| | - Nestor Rodrigo Astorga
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - James McCulloch
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Daniel Saenz
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Pamela Myers
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Karl Rasmussen
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sotirios Stathakis
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Chul S Ha
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Niko Papanikolaou
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - John Ford
- Department of Nuclear Engineering, Texas A&M University, College Station, Texas, USA
| | - Neil Kirby
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
30
|
Rassiah P, Esiashvili N, Olch AJ, Hua CH, Ulin K, Molineu A, Marcus K, Gopalakrishnan M, Pillai S, Kovalchuk N, Liu A, Niyazov G, Peñagarícano JA, Cheung F, Olson AC, Wu CC, Malhotra H, MacEwan IJ, Faught J, Breneman JC, Followill DS, FitzGerald TJ, Kalapurakal JA. Practice patterns of pediatric total body irradiation techniques: A Children's Oncology Group survey. Int J Radiat Oncol Biol Phys 2021; 111:1155-1164. [PMID: 34352289 DOI: 10.1016/j.ijrobp.2021.07.1715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this study was to examine current practice patterns in pediatric total body irradiation (TBI) techniques among xxx member institutions. METHODS AND MATERIALS Between Nov 2019 and Feb 2020 a questionnaire, containing 52 questions related to the technical aspects of TBI was sent to medical physicists at 152 xxx institutions. The questions were designed to obtain technical information on commonly used TBI treatment techniques. Another set of 9 questions related to the clinical management of patients undergoing TBI was sent to 152 xxx member radiation oncologists at the same institutions. RESULTS Twelve institutions were excluded because TBI was not performed in their institutions. A total of 88 physicists from 88 institutions (63% response rate) and 96 radiation oncologists from 96 institutions responded (69% response rate). The AP/PA technique was the most common (49 institutions - 56%); 44 institutions (50%) used the lateral technique and 14 institutions (16%) used volumetric modulated arc therapy (VMAT)/Tomotherapy. Mid-plane dose rates of 6-15 cGy/min were most commonly used. The most common specification for lung dose was the mid lung dose for both AP/PA (71%) and lateral (63%) techniques. All physician responders agreed with the need to refine current TBI techniques and 79% supported the investigation of new TBI techniques to further lower the lung dose. CONCLUSION There is no consistency in the practice patterns, methods for dose measurement and reporting of TBI doses among xxx institutions. The lack of a standardization precludes meaningful correlation between TBI doses and clinical outcomes including disease control and normal tissue toxicity. The xxx radiation oncology discipline is currently undertaking several steps to standardize the practice and dose reporting of pediatric TBI using detailed questionnaires and phantom-based credentialing for all xxx centers.
Collapse
Affiliation(s)
- P Rassiah
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT.
| | - N Esiashvili
- Department of Radiation Oncology, Emory University, Atlanta, GA
| | - A J Olch
- Department of Radiation Oncology, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA
| | - C H Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - K Ulin
- Imaging and Radiation Oncology Core, Rhode Island QA Center, University of Massachusetts Medical School, Lincoln, RI
| | - A Molineu
- Imaging and Radiation Oncology Core, Houston QA Center, MD Anderson Cancer Center, Houston, TX
| | - K Marcus
- Department of Radiation Oncology, Harvard Medical School, Boston, MA
| | - M Gopalakrishnan
- Department of Radiation Oncology, Northwestern University, Chicago, IL
| | - S Pillai
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR
| | - N Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - A Liu
- Department of Radiation Oncology, City of Hope, Los Angeles, CA
| | - G Niyazov
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - J A Peñagarícano
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - F Cheung
- Medical Physics division, Princess Margaret Cancer Center, Toronto, Canada
| | - A C Olson
- Department of Radiation Oncology, Children's Hospital of Pittsburgh, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine Pittsburgh, PA
| | - C C Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY
| | - H Malhotra
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - I J MacEwan
- Department of Radiation Medicine and Applied Sciences, UC San Diego, La Jolla, CA
| | - J Faught
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - J C Breneman
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH
| | - D S Followill
- Imaging and Radiation Oncology Core, Houston QA Center, MD Anderson Cancer Center, Houston, TX
| | - T J FitzGerald
- Department of Radiation Oncology, University of Massachusetts, Worcester, MA
| | - J A Kalapurakal
- Department of Radiation Oncology, Northwestern University, Chicago, IL
| |
Collapse
|
31
|
Stanley D, McConnell K, Iqbal Z, Everett A, Dodson J, Keene K, McDonald A. Dosimetric Evaluation Between the Conventional Volumetrically Modulated Arc Therapy (VMAT) Total Body Irradiation (TBI) and the Novel Simultaneous Integrated Total Marrow Approach (SIMBa) VMAT TBI. Cureus 2021; 13:e15646. [PMID: 34306856 PMCID: PMC8279336 DOI: 10.7759/cureus.15646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2021] [Indexed: 11/05/2022] Open
Abstract
Purpose The purpose of this study was to assess the treatment planning feasibility of volumetrically modulated arc therapy total body irradiation (VMAT TBI) using a simultaneous integrated marrow and body approach (SIMBa). We also aimed to compare SIMBa TBI with the more conventional VMAT TBI approach using the entire body as the target. The goal of using an integrated approach like SIMBa is to balance the known clinical benefit of TBI with the toxicity decrease of Total Marrow Irradiation (TMI) using two prescription volumes. In anticipation of a clinical trial to investigate a novel conditioning regimen that uses SIMBa, our institution retrospectively analyzed the dosimetric differences between 20 clinical VMAT TBI which were re-planned using SIMBa. Methods Twenty patients who previously received conventional VMAT TBI at our institution with a dose of 12 Gy in six fractions were re-planned using SIMBa with a planning aim of delivering a uniform dose of 12 Gy to at least 90% of the PTV_BodyEval. The planning aims of SIMBa were to deliver a uniform dose of 12 Gy to at least 90% of the PTV_Marrow and 8 Gy to at least 90% of the PTV_TotalBody while limiting the mean lung dose to less than 8 Gy. The plans were normalized so that 100% of the PTV_Marrow received at least 90% of the dose with the PTV_TotalBody optimized to stay as close to 100% at 90% as possible. Results All 20 patient plans achieved 12 Gy/8 Gy to at least 90% of the PTV_Marrow and PTV_TotalBody, respectively, with max doses of <16 Gy (130%). As compared with the delivered TBI, the following reductions in mean dose were notable: small bowel 21.3±4.2%, lung 16.3±7.9%, heart 25.3±8.6%, and kidney 16.4±6.2%. Coverage of the sanctuary sites was maintained despite a significant reduction to sensitive organs at risk (OARs). Conclusion This study supports that VMAT TBI treatment planning with SIMBa is feasible. In this sample, SIMBa provided dosimetrically similar doses to marrow and sanctuary site doses as TBI while achieving lower doses to OARs. A clinical trial is needed to investigate the clinical implications of VMAT TBI with SIMBa.
Collapse
Affiliation(s)
- Dennis Stanley
- Radiation Oncology, The University of Alabama at Birmingham, Birmingham, USA
| | - Kristen McConnell
- Radiation Oncology/Medical Physics, The University of Alabama at Birmingham, Birmingham, USA
| | - Zohaib Iqbal
- Radiation Oncology/Medical Physics, The University of Alabama at Birmingham, Birmingham, USA
| | - Ashlyn Everett
- Radiation Oncology, The University of Alabama at Birmingham, Birmingham, USA
| | - Jonathan Dodson
- Radiation Oncology, The University of Alabama at Birmingham, Birmingham, USA
| | - Kimberly Keene
- Radiation Oncology, The University of Alabama at Birmingham, Birmingham, USA
| | - Andrew McDonald
- Radiation Oncology, The University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
32
|
Hua CH, Mascia AE, Servalli E, Lomax AJ, Seiersen K, Ulin K. Advances in radiotherapy technology for pediatric cancer patients and roles of medical physicists: COG and SIOP Europe perspectives. Pediatr Blood Cancer 2021; 68 Suppl 2:e28344. [PMID: 33818892 PMCID: PMC8030241 DOI: 10.1002/pbc.28344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 11/11/2022]
Abstract
Over the last two decades, rapid technological advances have dramatically changed radiation delivery to children with cancer, enabling improved normal-tissue sparing. This article describes recent advances in photon and proton therapy technologies, image-guided patient positioning, motion management, and adaptive therapy that are relevant to pediatric cancer patients. For medical physicists who are at the forefront of realizing the promise of technology, challenges remain with respect to ensuring patient safety as new technologies are implemented with increasing treatment complexity. The contributions of medical physicists to meeting these challenges in daily practice, in the conduct of clinical trials, and in pediatric oncology cooperative groups are highlighted. Representing the perspective of the physics committees of the Children's Oncology Group (COG) and the European Society for Paediatric Oncology (SIOP Europe), this paper provides recommendations regarding the safe delivery of pediatric radiotherapy. Emerging innovations are highlighted to encourage pediatric applications with a view to maximizing the therapeutic ratio.
Collapse
Affiliation(s)
- Chia-ho Hua
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Anthony E. Mascia
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Enrica Servalli
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | - Antony J. Lomax
- Center for Proton Therapy, Paul Scherrer Institute, PSI Villigen, Switzerland
| | | | - Kenneth Ulin
- Department of Radiation Oncology, University of Massachusetts, Worcester, Massachusetts, USA
| |
Collapse
|
33
|
Simiele E, Skinner L, Yang Y, Blomain ES, Hoppe RT, Hiniker SM, Kovalchuk N. A Step Toward Making VMAT TBI More Prevalent: Automating the Treatment Planning Process. Pract Radiat Oncol 2021; 11:415-423. [PMID: 33711488 DOI: 10.1016/j.prro.2021.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE Our purpose was to automate the treatment planning process for total body irradiation (TBI) with volumetric modulated arc therapy (VMAT). METHODS AND MATERIALS Two scripts were developed to facilitate autoplanning: the binary plug-in script automating the creation of optimization structures, plan generation, beam placement, and setting of the optimization constraints and the stand-alone executable performing successive optimizations. Ten patients previously treated in our clinic with VMAT TBI were used to evaluate the efficacy of the proposed autoplanning process. Paired t tests were used to compare the dosimetric indices of the produced auto plans to the manually generated clinical plans. In addition, 3 physicians were asked to evaluate the manual and autoplans for each patient in a blinded retrospective review. RESULTS No significant differences were observed between the manual and autoplan global Dmax (P < .893), planning target volume V110% (P < .734), kidneys Dmean (P < .351), and bowel Dmax (P < .473). Significant decreases in the Dmean to the lungs and lungs-1cm (ie, lungs with 1-cm inner margin) volumes of 5.4% ± 6.4% (P < .024) and 6.8% ± 7.4% (P < .017), respectively, were obtained with the autoplans compared with the manual plans. The autoplans were selected 77% of the time by the reviewing physicians as equivalent or superior to the manual plans. The required time for treatment planning was estimated to be 2 to 3 days for the manual plans compared with approximately 3 to 5 hours for the autoplans. CONCLUSIONS Large reductions in planning time without sacrificing plan quality were obtained using the developed autoplanning process compared with manual planning, thus reducing the required effort of the treatment planning team. Superior lung sparing with the same target coverage and similar global Dmax were observed with the autoplans as compared with the manual treatment plans. The developed scripts have been made open-source to improve access to VMAT TBI at other institutions and clinics.
Collapse
Affiliation(s)
- E Simiele
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - L Skinner
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Y Yang
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - E S Blomain
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - R T Hoppe
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - S M Hiniker
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - N Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, California.
| |
Collapse
|
34
|
Teruel JR, Taneja S, Galavis PE, Osterman KS, McCarthy A, Malin M, Gerber NK, Hitchen C, Barbee DL. Automatic treatment planning for VMAT-based total body irradiation using Eclipse scripting. J Appl Clin Med Phys 2021; 22:119-130. [PMID: 33565214 PMCID: PMC7984467 DOI: 10.1002/acm2.13189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/15/2020] [Accepted: 01/09/2021] [Indexed: 11/25/2022] Open
Abstract
The purpose of this work is to establish an automated approach for a multiple isocenter volumetric arc therapy (VMAT)‐based TBI treatment planning approach. Five anonymized full‐body CT imaging sets were used. A script was developed to automate and standardize the treatment planning process using the Varian Eclipse v15.6 Scripting API. The script generates two treatment plans: a head‐first VMAT‐based plan for upper body coverage using four isocenters and a total of eight full arcs; and a feet‐first AP/PA plan with three isocenters that covers the lower extremities of the patient. PTV was the entire body cropped 5 mm from the patient surface and extended 3 mm into the lungs and kidneys. Two plans were generated for each case: one to a total dose of 1200 cGy in 8 fractions and a second one to a total dose of 1320 cGy in 8 fractions. Plans were calculated using the AAA algorithm and 6 MV photon energy. One plan was created and delivered to an anthropomorphic phantom containing 12 OSLDs for in‐vivo dose verification. For the plans prescribed to 1200 cGy total dose the following dosimetric results were achieved: median PTV V100% = 94.5%; median PTV D98% = 89.9%; median lungs Dmean = 763 cGy; median left kidney Dmean = 1058 cGy; and median right kidney Dmean = 1051 cGy. For the plans prescribed to 1320 cGy total dose the following dosimetric results were achieved: median PTV V100% = 95.0%; median PTV D98% = 88.7%; median lungs Dmean = 798 cGy; median left kidney Dmean = 1059 cGy; and median right kidney Dmean = 1064 cGy. Maximum dose objective was met for all cases. The dose deviation between the treatment planning dose and the dose measured by the OSLDs was within ±4%. In summary, we have demonstrated that scripting can produce high‐quality plans based on predefined dose objectives and can decrease planning time by automatic target and optimization contours generation, plan creation, field and isocenter placement, and optimization objectives setup.
Collapse
Affiliation(s)
- Jose R Teruel
- Department of Radiation Oncology, NYU Langone Health, New York, NY, USA
| | - Sameer Taneja
- Department of Radiation Oncology, NYU Langone Health, New York, NY, USA
| | - Paulina E Galavis
- Department of Radiation Oncology, NYU Langone Health, New York, NY, USA
| | | | - Allison McCarthy
- Department of Radiation Oncology, NYU Langone Health, New York, NY, USA
| | - Martha Malin
- Department of Radiation Oncology, NYU Langone Health, New York, NY, USA
| | - Naamit K Gerber
- Department of Radiation Oncology, NYU Langone Health, New York, NY, USA
| | - Christine Hitchen
- Department of Radiation Oncology, NYU Langone Health, New York, NY, USA
| | - David L Barbee
- Department of Radiation Oncology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
35
|
Hoeben BA, Pazos M, Albert MH, Seravalli E, Bosman ME, Losert C, Boterberg T, Manapov F, Ospovat I, Milla SM, Abakay CD, Engellau J, Kos G, Supiot S, Bierings M, Janssens GO. Towards homogenization of total body irradiation practices in pediatric patients across SIOPE affiliated centers. A survey by the SIOPE radiation oncology working group. Radiother Oncol 2021; 155:113-119. [DOI: 10.1016/j.radonc.2020.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
|
36
|
van Leeuwen RG, Verwegen D, van Kollenburg PG, Swinkels M, van der Maazen RW. Early clinical experience with a total body irradiation technique using field-in-field beams and on-line image guidance. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 16:12-17. [PMID: 33458337 PMCID: PMC7807619 DOI: 10.1016/j.phro.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023]
Abstract
Background and purpose Total body irradiation (TBI) is a treatment used in the conditioning of patients prior to hematopoietic stem cell transplantation. We developed an extended-distance TBI technique using a conventional linac with multi-leaf collimator to deliver a homogeneous dose, and spare critical organs. Materials and methods Patients were treated either in lateral recumbent or in supine position depending on the dose level. A conventional linac was used with the patient midline at 350 cm from the beam source. A series of beams was prepared manually using a 3D treatment planning system (TPS) aiming to improve dose homogeneity, spare the organs at risk and facilitate accurate patient positioning. An optimized dose calculation model for extended-distance treatments was developed using phantom measurements. During treatment, in-vivo dosimetry was performed using electronic dosimeters, and accurate positioning was verified using a mobile megavoltage imager. We analyzed dose volume histogram parameters for 19 patients, and in-vivo measurements for 46 delivered treatment fractions. Results Optimization of the dose calculation model for TBI improved dose calculation by 2.1% at the beam axis, and 17% at the field edge. Treatment planning dose objectives and constraints were met for 16 of 19 patients. Results of in-vivo dosimetry were within the set limitations (±10%) with mean deviations of 3.7% posterior of the lungs and 0.6% for the abdomen. Conclusions We developed a TBI treatment technique using a conventional linac and TPS that can reliably be used in the conditioning regimen of patients prior to stem cell transplantation.
Collapse
|
37
|
Cleuziou JP, Desgranges C, Henry I, Jaumot M, Chartier P, Sihanath R, Carré M, Bulabois CE, Cahn JY, Pasteris C, Balosso J, Gabelle-Flandin I, Verry C, Giraud JY. Total body irradiation using helical tomotherapy: Set-up experience and in-vivo dosimetric evaluation. Cancer Radiother 2021; 25:213-221. [PMID: 33402290 DOI: 10.1016/j.canrad.2020.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Helical Tomotherapy (HT) appears as a valuable technique for total body irradiation (TBI) to create highly homogeneous and conformal dose distributions with more precise repositioning than conventional TBI techniques. The aim of this work is to describe the technique implementation, including treatment preparation, planning and dosimetric monitoring of TBI delivered in our institution from October 2016 to March 2019. MATERIAL AND METHOD Prior to patient care, irradiation protocol was set up using physical phantoms. Gafchromic films were used to assess dose distribution homogeneity and evaluate imprecise patient positioning impact. Sixteen patients' irradiations with a prescribed dose of 12Gy were delivered in 6 fractions of 2Gy over 3 days. Pre-treatment quality assurance (QA) was performed for the verification of dose distributions at selected positions. In addition, in-vivo dosimetry was carried out using optically stimulated luminescence dosimeters (OSLD). RESULTS Planning evaluation, as well as results of pre-treatment verifications, are presented. In-vivo dosimetry showed the strong consistency of OSLD measured doses. OSLD mean relative dose differences between measurement and calculation were respectively +0,96% and -2% for armpit and hands locations, suggesting better reliability for armpit OSLD positioning. Repercussion of both longitudinal and transversal positioning inaccuracies on phantoms is depicted up to 2cm shifts. CONCLUSION The full methodology to set up TBI protocol, as well as dosimetric evaluation and pre-treatment QA, were presented. Our investigations reveal strong correspondence between planned and delivered doses shedding light on the dose reliability of OSLD for HT based TBI in-vivo dosimetry.
Collapse
Affiliation(s)
- J-P Cleuziou
- Service de radiothérapie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - C Desgranges
- Service de radiothérapie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - I Henry
- Service de radiothérapie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - M Jaumot
- Service de radiothérapie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - P Chartier
- Service de radiothérapie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - R Sihanath
- Service de radiothérapie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - M Carré
- Service d'hématologie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - C E Bulabois
- Service d'hématologie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - J-Y Cahn
- Service d'hématologie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - C Pasteris
- Service de radiothérapie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - J Balosso
- Service de radiothérapie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - I Gabelle-Flandin
- Service de radiothérapie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - C Verry
- Service de radiothérapie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France
| | - J-Y Giraud
- Service de radiothérapie, centre hospitalier universitaire Grenoble-Alpes (CHUGA), CS 10217, Grenoble cedex 9, France.
| |
Collapse
|
38
|
Akino Y, Maruoka S, Yano K, Abe H, Isohashi F, Seo Y, Tamari K, Hirata T, Kawakami M, Nakae Y, Tanaka Y, Ogawa K. Commissioning of total body irradiation using plastic bead bags. JOURNAL OF RADIATION RESEARCH 2020; 61:959-968. [PMID: 32876686 PMCID: PMC7674696 DOI: 10.1093/jrr/rraa072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/11/2020] [Indexed: 06/11/2023]
Abstract
The goal of total body irradiation (TBI) is to deliver a dose to the whole body with uniformity within ±10%. The purpose of this study was to establish the technique of TBI using plastic bead bags. A lifting TBI bed, Model ORP-TBI-MN, was used. The space between the patient's body and the acrylic walls of the bed was filled with polyacetal bead bags. Patients were irradiated by a 10 MV photon beam with a source to mid-plane distance of 400 cm. The monitor unit (MU) was calculated by dose-per-MU, tissue-phantom-ratio and a spoiler factor measured in solid water using an ionization chamber. The phantom-scatter correction factor, off-center ratio and the effective density of the beads were also measured. Diode detectors were used for in vivo dosimetry (IVD). The effective density of the beads was 0.90 ± 0.09. The point doses calculated in an I'mRT phantom with and without heterogeneity material showed good agreement, with measurements within 3%. An end-to-end test was performed using a RANDO phantom. The mean ± SD (range) of the differences between the calculated and IVD-measured mid-plane doses was 1.1 ± 4.8% (-5.9 to 5.0%). The differences between the IVD-measured doses and the doses calculated with Acuros XB of the Eclipse treatment planning system (TPS) were within 5%. For two patients treated with this method, the differences between the calculated and IVD-measured doses were within ±6% when excluding the chest region. We have established the technique of TBI using plastic bead bags. The TPS may be useful to roughly estimate patient dose.
Collapse
Affiliation(s)
- Yuichi Akino
- Oncology Center, Osaka University Hospital, Suita, Osaka 565-0871, Japan
- Nippon Life Hospital, Nishi-ku, Osaka 550-0006, Japan
| | | | | | - Hiroshi Abe
- Nippon Life Hospital, Nishi-ku, Osaka 550-0006, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takero Hirata
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | - Yoshiki Nakae
- Nippon Life Hospital, Nishi-ku, Osaka 550-0006, Japan
| | - Yoshihiro Tanaka
- Department of Radiation Therapy, Japanese Red Cross Society Kyoto Daiichi Hospital, Kyoto 605-0981, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Jang JK, Reilly M, Yaghmour G, Rashid F, Ballas LK. Acute Respiratory Events and Dosimetry of Total Body Irradiation Patients Using In Vivo Lung Dose Monitoring and Custom Lung Block Adaptation. Pract Radiat Oncol 2020; 10:e397-e405. [DOI: 10.1016/j.prro.2020.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/26/2020] [Accepted: 03/14/2020] [Indexed: 01/01/2023]
|
40
|
Blomain ES, Kovalchuk N, Neilsen BK, Skinner L, Hoppe RT, Hiniker SM. A Preliminary Report of Gonadal-Sparing TBI Using a VMAT Technique. Pract Radiat Oncol 2020; 11:e134-e138. [PMID: 32795616 DOI: 10.1016/j.prro.2020.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/19/2020] [Accepted: 07/24/2020] [Indexed: 01/28/2023]
Abstract
Reproductive toxicity is common after total body irradiation (TBI) and has major quality of life implications for patients. In that context, this is the first report of gonadal-sparing volumetric-modulated arc therapy (VMAT) TBI, successfully delivered in a boy and a girl with aplastic anemia. Both patients' VMAT TBI plans demonstrated improved gonadal sparing versus simulated conventional 2-dimensional (2D) approach (mean testes dose, 0.45 Gy VMAT vs 0.72 Gy 2D; mean ovary dose, 0.64 Gy VMAT vs 1.47 Gy 2D). Planning target volume coverage was also improved for both cases with the VMAT plan versus conventional 2D plan (2 Gy D90% vs 1.9 Gy D90%, respectively). Given these dosimetric advantages, the present study can serve as a proof-of-concept for further prospective studies evaluating this technique for wider applications in populations receiving TBI.
Collapse
Affiliation(s)
- Erik S Blomain
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Beth K Neilsen
- College of Medicine, University of Nebraska, Omaha, Nebraska
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Richard T Hoppe
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University, Stanford, California.
| |
Collapse
|
41
|
Frederick R, Hudson A, Balogh A, Cao JQ, Pierce G. Standardized flattening filter free volumetric modulated arc therapy plans based on anteroposterior width for total body irradiation. J Appl Clin Med Phys 2020; 21:75-86. [PMID: 32043760 PMCID: PMC7075390 DOI: 10.1002/acm2.12827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
In this work, the feasibility of using flattening filter free (FFF) beams in volumetric modulated arc therapy (VMAT) total body irradiation (TBI) treatment planning to decrease protracted beam‐on times for these treatments was investigated. In addition, a methodology was developed to generate standardized VMAT TBI treatment plans based on patient physical dimensions to eliminate plan optimization time. A planning study cohort of 47 TBI patients previously treated with optimized VMAT ARC 6 MV beams was retrospectively examined. These patients were sorted into six categories depending on height and anteroposterior (AP) width at the umbilicus. Using Varian Eclipse, clinical 40 cm × 10 cm open field arcs were substituted with 6 MV FFF. Mid‐plane lateral dose profiles in conjunction with relative arc output factors (RAOF) yielded how far a given multileaf collimator (MLC) leaf must move in order to achieve a mid‐plane 100% isodose for a specific control point. Linear interpolation gave the dynamic MLC aperture for the entire arc for each patient AP width category, which was subsequently applied through Python scripting. All FFF VMAT TBI plans were then evaluated by two radiation oncologists and deemed clinically acceptable. The FFF and clinical VMAT TBI plans had similar Body–5 mm D98% distributions, but overall the FFF plans had statistically significantly increased or broader Body–5 mm D2% and mean lung dose distributions. These differences are not considered clinically significant. Median beam‐on times for the FFF and clinical VMAT TBI plans were 11.07 and 18.06 min, respectively, and planning time for the FFF VMAT TBI plans was reduced by 34.1 min. In conclusion, use of FFF beams in VMAT TBI treatment planning resulted in dose homogeneity similar to our current VMAT TBI technique. Clinical dosimetric criteria were achieved for a majority of patients while planning and calculated beam‐on times were reduced, offering the possibility of improved patient experience.
Collapse
Affiliation(s)
- Rebecca Frederick
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
| | - Alana Hudson
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Alex Balogh
- Department of Oncology, University of Calgary, Calgary, AB, Canada.,Division of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Jeffrey Q Cao
- Department of Oncology, University of Calgary, Calgary, AB, Canada.,Division of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Greg Pierce
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Losert C, Shpani R, Kießling R, Freislederer P, Li M, Walter F, Niyazi M, Reiner M, Belka C, Corradini S. Novel rotatable tabletop for total-body irradiation using a linac-based VMAT technique. Radiat Oncol 2019; 14:244. [PMID: 31888680 PMCID: PMC6937701 DOI: 10.1186/s13014-019-1445-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/12/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Volumetric Modulated Arc Therapy (VMAT) techniques have recently been implemented in clinical practice for total-body irradiation (TBI). To date, most techniques still use special couches, translational tables, or other self-made immobilization devices for dose delivery. Aim of the present study was to report the first results of a newly developed rotatable tabletop designed for VMAT-TBI. METHODS The VMAT-TBI technique theoretically allows the use of any standard positioning device at the linear accelerator. Nevertheless, the main problem is that patients taller than 120 cm cannot be treated in one position due to the limited cranial-caudal couch shift capacities of the linac. Therefore, patients are usually turned from a head-first supine position (HFS) to a feet-first supine position (FFS) to overcome this limitation. The newly developed rotatable tabletop consists completely of carbon fiber, including the ball bearing within the base plate of the rotation unit. The patient can be turned 180° from a HFS to a FFS position within a few seconds, without the need of repositioning. RESULTS The first 20 patients had a median age of 47 years, and received TBI before bone marrow transplantation for acute myeloid leukemia. Most patients (13/20) received a TBI dose of 4 Gy in 2 fractions, twice daily. The mean number of applied monitor units (MU) was 6476 MU using a multi-arcs and multi-isocenter VMAT-TBI technique. The tabletop has been successfully used in daily clinical practice and helped to keep the treatment times at an acceptable level. During the first treatment fraction, the mean overall treatment time (OTT) was 57 min. Since no additional image guidance was used in fraction 2 of the same day, the OTT was reduced to mean 38 min. CONCLUSIONS The easy and reproducible rotation of the patient on the treatment couch using the rotatable tabletop, is time-efficient and overcomes the need of repositioning the patient after turning from a HFS to a FFS position during VMAT TBI. Furthermore, it prevents couch-gantry collisions, incorrect isocenter shifts and beam mix-up due to predicted absolute table coordinates, which are recorded to the R + V system with the corresponding beams.
Collapse
Affiliation(s)
- Christoph Losert
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Roel Shpani
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Robert Kießling
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Philipp Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Franziska Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
43
|
Radiation-Related Toxicities Using Organ Sparing Total Marrow Irradiation Transplant Conditioning Regimens. Int J Radiat Oncol Biol Phys 2019; 105:1025-1033. [DOI: 10.1016/j.ijrobp.2019.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/16/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
|