1
|
Vander Veken L, Van Ooteghem G, Ghaye B, Razavi A, Dechambre D, Geets X. Lung and Liver Stereotactic Body Radiation Therapy During Mechanically Assisted Deep Inspiration Breath-Holds: A Prospective Feasibility Trial. Adv Radiat Oncol 2024; 9:101563. [PMID: 39155885 PMCID: PMC11327938 DOI: 10.1016/j.adro.2024.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/08/2024] [Indexed: 08/20/2024] Open
Abstract
Purpose Radiation therapy for tumors subject to breathing-related motion during breath-holds (BHs) has the potential to substantially reduce the irradiated volume. Mechanically assisted and noninvasive ventilation (MANIV) could ensure the target repositioning accuracy during each BH while facilitating treatment feasibility through oxygen supplementation and a perfectly replicated mechanical support. However, there is currently no clinical evidence substantiating the use of MANIV-induced BH for moving tumors. The aim of this work was, therefore, to evaluate the technique's performance under real treatment conditions. Methods and Materials Patients eligible for lung or liver stereotactic body radiation therapy were prospectively included in a single-arm trial. The primary endpoint corresponded to the treatment feasibility with MANIV. Secondary outcomes comprised intrafraction geometric uncertainties extracted from real-time imaging, tolerance to BH, and treatment time. Results Treatment was successfully delivered in 92.9% (13/14) of patients: 1 patient with a liver tumor was excluded because of a mechanically induced gastric insufflation displacing the liver cranially by more than 1 cm. In the left-right/anteroposterior/craniocaudal directions, the recalculated safety margins based on intrafraction positional data were 4.6 mm/5.1 mm/5.6 mm and 4.7 mm/7.3 mm/5.9 mm for lung and liver lesions, respectively. Compared with the free-breathing internal target volume and midposition approaches, the average reduction in the planning target volume with MANIV reached -47.2% ± 15.3%, P < .001, and -29.4% ± 19.2%, P = .007, for intrathoracic tumors and -23.3% ± 12.4%, P < .001, and -9.3% ± 15.3%, P = .073, for upper abdominal tumors, respectively. For 1 liver lesion, large caudal drifts of occasionally more than 1 cm were measured. The total slot time was 53.1 ± 10.6 minutes with a BH comfort level of 80.1% ± 10.6%. Conclusions MANIV enables high treatment feasibility within a nonselected population. Accurate intrafraction tumor repositioning is achieved for lung tumors. Because of occasional intra-BH caudal drifts, pretreatment assessment of BH stability for liver lesions is, however, recommended.
Collapse
Affiliation(s)
- Loïc Vander Veken
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Geneviève Van Ooteghem
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Benoît Ghaye
- Radiology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Ariane Razavi
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - David Dechambre
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Xavier Geets
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
2
|
Elshof J, Steenstra C, Niezink A, Wijkstra P, Wijsman R, Duiverman M. Continuous and bilevel positive airway pressure may improve radiotherapy delivery in patients with intra-thoracic tumors. Clin Transl Radiat Oncol 2024; 47:100784. [PMID: 38706725 PMCID: PMC11063599 DOI: 10.1016/j.ctro.2024.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Background Minimizing tumor motion in radiotherapy for intra-thoracic tumors reduces side-effects by limiting radiation exposure to healthy tissue. Continuous or Bilevel Positive Airway Pressure (CPAP/BiPAP) could achieve this, since it could increase lung inflation and decrease tidal volume variability. We aim to identify the better CPAP/BiPAP setting for minimizing tumor motion. Methods In 10 patients (5 with lung cancer, 5 with other intra-thoracic tumors), CPAP/BiPAP was tested with the following settings for 10 min each: CPAP 5, 10 and 15 cmH2O and BiPAP 14/10 cmH2O with a lower (7 breaths/min) and higher back-up respiratory rate (BURR initially 1 breath/min above the spontaneous breathing frequency, with the option to adjust if the patient continued to initiate breaths). Electrical impedance tomography was used to analyse end-expiratory lung impedance (EELI) as an estimate of end-expiratory lung volume and tidal impedance variation (TIV) as an estimate of tidal volume. Results Nine out of ten patients tolerated all settings; one patient could not sustain CPAP-15. A significant difference in EELI was observed between settings (χ2 22.960, p < 0.001), with most increase during CPAP-15 (median (IQR) 1.03 (1.00 - 1.06), normalized to the EELI during spontaneous breathing). No significant differences in TIV and breathing variability were found between settings. Conclusions This study shows that the application of different settings of CPAP/BiPAP in patients with intra-thoracic tumors is feasible and tolerable. BiPAP with a higher BURR may offer the greatest potential for mitigating tumor motion among the applied settings, although further research investigating tumor motion should be conducted.
Collapse
Affiliation(s)
- J. Elshof
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - C.M. Steenstra
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - A.G.H. Niezink
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P.J. Wijkstra
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - R. Wijsman
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M.L. Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Vander Veken L, Van Ooteghem G, Razavi A, Da Rita Quaresma S, Longton E, Kirkove C, Ledoux B, Vandermeulen A, Abdel Massih C, Henderickx P, Gabriels M, Delvaux C, Salah F, Vaandering A, Geets X. Voluntary versus mechanically-induced deep inspiration breath-hold for left breast cancer: A randomized controlled trial. Radiother Oncol 2023; 183:109598. [PMID: 36898583 DOI: 10.1016/j.radonc.2023.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND PURPOSE Deep inspiration breath-hold (DIBH) protects critical organs-at-risk (OARs) for adjuvant breast radiotherapy. Guidance systems e.g. surface guided radiation therapy (SGRT) improve the positional breast reproducibility and stability during DIBH. In parallel, OARs sparing with DIBH is enhanced through different techniques e.g. prone position, continuous positive airway pressure (CPAP). By inducing repeated DIBH with the same level of positive pressure, mechanically-assisted and non-invasive ventilation (MANIV) could potentially combine these DIBH optimizations. MATERIALS AND METHODS We conducted a randomized, open-label, multicenter and single-institution non-inferiority trial. Sixty-six patients eligible for adjuvant left whole-breast radiotherapy in supine position were equally assigned between mechanically-induced DIBH (MANIV-DIBH) and voluntary DIBH guided by SGRT (sDIBH). The co-primary endpoints were positional breast stability and reproducibility with a non-inferiority margin of 1 mm. Secondary endpoints were tolerance assessed daily via validated scales, treatment time, dose to OARs and their inter-fraction positional reproducibility. RESULTS Differences between both arms for positional breast reproducibility and stability occurred at a sub-millimetric level (p < 0.001 for non-inferiority). The left anterior descending artery near-max dose (14,6 ± 12,0 Gy vs. 7,7 ± 7,1 Gy, p = 0,018) and mean dose (5,0 ± 3,5 Gy vs. 3,0 ± 2,0 Gy, p = 0,009) were improved with MANIV-DIBH. The same applied for the V5Gy of the left ventricle (2,4 ± 4,1 % vs. 0,8 ± 1,6 %, p = 0,001) as well as for the left lung V20Gy (11,4 ± 2,8 % vs. 9,7 ± 2,7 %, p = 0,019) and V30Gy (8,0 ± 2,6 % vs. 6,5 ± 2,3 %, p = 0,0018). Better heart's inter-fraction positional reproducibility was observed with MANIV-DIBH. Tolerance and treatment time were similar. CONCLUSION Mechanical ventilation provides the same target irradiation accuracy as with SGRT while better protecting and repositioning OARs.
Collapse
Affiliation(s)
- Loïc Vander Veken
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), 1200 Brussels, Belgium; Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium.
| | - Geneviève Van Ooteghem
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), 1200 Brussels, Belgium; Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Ariane Razavi
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | | | - Eleonore Longton
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Carine Kirkove
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Benjamin Ledoux
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Ad Vandermeulen
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Christel Abdel Massih
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Pascale Henderickx
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Mortimer Gabriels
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Céline Delvaux
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Faycal Salah
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Aude Vaandering
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), 1200 Brussels, Belgium; Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Xavier Geets
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), 1200 Brussels, Belgium; Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
4
|
van Kesteren Z, Veldman JK, Parkes MJ, Stevens MF, Balasupramaniam P, van den Aardweg JG, van Tienhoven G, Bel A, van Dijk IWEM. Quantifying the reduction of respiratory motion by mechanical ventilation with MRI for radiotherapy. Radiat Oncol 2022; 17:99. [PMID: 35597956 PMCID: PMC9123684 DOI: 10.1186/s13014-022-02068-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Due to respiratory motion, accurate radiotherapy delivery to thoracic and abdominal tumors is challenging. We aimed to quantify the ability of mechanical ventilation to reduce respiratory motion, by measuring diaphragm motion magnitudes in the same volunteers during free breathing (FB), mechanically regularized breathing (RB) at 22 breaths per minute (brpm), variation in mean diaphragm position across multiple deep inspiration breath-holds (DIBH) and diaphragm drift during single prolonged breath-holds (PBH) in two MRI sessions. Methods In two sessions, MRIs were acquired from fifteen healthy volunteers who were trained to be mechanically ventilated non-invasively We measured diaphragm motion amplitudes during FB and RB, the inter-quartile range (IQR) of the variation in average diaphragm position from one measurement over five consecutive DIBHs, and diaphragm cranial drift velocities during single PBHs from inhalation (PIBH) and exhalation (PEBH) breath-holds. Results RB significantly reduced the respiratory motion amplitude by 39%, from median (range) 20.9 (10.6–41.9) mm during FB to 12.8 (6.2–23.8) mm. The median IQR for variation in average diaphragm position over multiple DIBHs was 4.2 (1.0–23.6) mm. During single PIBHs with a median duration of 7.1 (2.0–11.1) minutes, the median diaphragm cranial drift velocity was 3.0 (0.4–6.5) mm/minute. For PEBH, the median duration was 5.8 (1.8–10.2) minutes with 4.4 (1.8–15.1) mm/minute diaphragm drift velocity. Conclusions Regularized breathing at a frequency of 22 brpm resulted in significantly smaller diaphragm motion amplitudes compared to free breathing. This would enable smaller treatment volumes in radiotherapy. Furthermore, prolonged breath-holding from inhalation and exhalation with median durations of six to seven minutes are feasible. Trial registration Medical Ethics Committee protocol NL.64693.018.18.
Collapse
Affiliation(s)
- Z van Kesteren
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - J K Veldman
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - M J Parkes
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - M F Stevens
- Department of Anesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Anesthesiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - P Balasupramaniam
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - J G van den Aardweg
- Department of Pulmonology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - G van Tienhoven
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - A Bel
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - I W E M van Dijk
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Dasnoy-Sumell D, Aspeel A, Souris K, Macq B. Locally tuned deformation fields combination for 2D cine-MRI-based driving of 3D motion models. Phys Med 2021; 94:8-16. [PMID: 34968950 DOI: 10.1016/j.ejmp.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To target mobile tumors in radiotherapy with the recent MR-Linac hardware solutions, research is being conducted to drive a 3D motion model with 2D cine-MRI to reproduce the breathing motion in 4D. This work presents a method to combine several deformation fields using local measures to better drive 3D motion models. METHODS The method uses weight maps, each representing the proximity with a specific area of interest. The breathing state is evaluated on cine-MRI frames in these areas and a different deformation field is estimated for each using a 2D to 3D motion model. The different deformation fields are multiplied by their respective weight maps and combined to form the final field to apply to a reference image. A global motion model is adjusted locally on the selected areas and creates a 3DCT for each cine-MRI frame. RESULTS The 13 patients on which it was tested showed on average an improvement of the accuracy of our model of 0.71 mm for areas selected to drive the model and 0.5 mm for other areas compared to our previous method without local adjustment. The additional computation time for each region was around 40 ms on a modern laptop. CONCLUSION The method improves the accuracy of the2D-based driving of 3D motion models. It can be used on top of existing methods relying on deformation fields. It does add some computation time but, depending on the area to deform and the number of regions of interests, offers the potential of online use.
Collapse
Affiliation(s)
- D Dasnoy-Sumell
- Universite Catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, ImagX-R Lab, Place du Levant 3 Box L5.03.02, 1348 Louvain-la-Neuve, Belgium.
| | - A Aspeel
- Universite Catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, ImagX-R Lab, Place du Levant 3 Box L5.03.02, 1348 Louvain-la-Neuve, Belgium.
| | - K Souris
- Universite Catholique de Louvain, Institut de Recherche Experimentale et Clinique (IREC), Molecular Imaging, Radiotherapy and Oncology (MIRO), Avenue Hippocrate 54 Box B1.54.07, 1200 Brussels, Belgium.
| | - B Macq
- Universite Catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, ImagX-R Lab, Place du Levant 3 Box L5.03.02, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
6
|
Parkes MJ, Green S, Cashmore J, Ghafoor Q, Clutton-Brock T. Shortening the preparation time of the single prolonged breath-hold for radiotherapy sessions. Br J Radiol 2021; 95:20210408. [PMID: 34930022 PMCID: PMC8822572 DOI: 10.1259/bjr.20210408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective: Single prolonged breath-holds of >5 min can be obtained in cancer patients. Currently, however, the preparation time in each radiotherapy session is a practical limitation for clinical adoption of this new technique. Here, we show by how much our original preparation time can be shortened without unduly compromising breath-hold duration. Methods: 44 healthy subjects performed single prolonged breath-holds from 60% O2 and mechanically induced hypocapnia. We tested the effect on breath-hold duration of shortening preparation time (the durations of acclimatization, hyperventilation and hypocapnia) by changing these durations and or ventilator settings. Results: Mean original breath-hold duration was 6.5 ± 0.2 (standard error) min. The total original preparation time (from connecting the facemask to the start of the breath-hold) was 26 ± 1 min. After shortening the hypocapnia duration from 16 to 5 min, mean breath-hold duration was still 6.1 ± 0.2 min (ns vs the original). After abolishing the acclimatization and shortening the hypocapnia to 1 min (a total preparation time now of 9 ± 1 min), a mean breath-hold duration of >5 min was still possible (now significantly shortened to 5.2 ± 0.6 min, p < 0.001). After shorter and more vigorous hyperventilation (lasting 2.7 ± 0.3 min) and shorter hypocapnia (lasting 43 ± 4 s), a mean breath-hold duration of >5 min (5.3 ± 0.2 min, p < 0.05) was still possible. Here, the final total preparation time was 3.5 ± 0.3 min. Conclusions: These improvements may facilitate adoption of the single prolonged breath-hold for a range of thoracic and abdominal radiotherapies especially involving hypofractionation. Advances in knowledge: Multiple short breath-holds improve radiotherapy for thoracic and abdominal cancers. Further improvement may occur by adopting the single prolonged breath-hold of >5 min. One limitation to clinical adoption is its long preparation time. We show here how to reduce the mean preparation time from 26 to 3.5 min without compromising breath-hold duration
Collapse
Affiliation(s)
- Michael John Parkes
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,National Institute for Health Research (NIHR)/Wellcome Trust Birmingham Clinical Research Facility, Birmingham, United Kingdom.,Hall Edwards Radiotherapy Group, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Marie Sklodowska-Curie Fellow, Department of Radiation Oncology, University Medical Centre, Amsterdam, Netherlands
| | - Stuart Green
- Hall Edwards Radiotherapy Group, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Jason Cashmore
- Hall Edwards Radiotherapy Group, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Qamar Ghafoor
- Hall Edwards Radiotherapy Group, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Thomas Clutton-Brock
- National Institute for Health Research (NIHR)/Wellcome Trust Birmingham Clinical Research Facility, Birmingham, United Kingdom.,Department of Anaesthesia and Intensive Care Medicine, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
7
|
Vander Veken L, Dechambre D, Sterpin E, Souris K, Van Ooteghem G, Aldo Lee J, Geets X. Incorporation of tumor motion directionality in margin recipe: The directional MidP strategy. Phys Med 2021; 91:43-53. [PMID: 34710790 DOI: 10.1016/j.ejmp.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Planning target volume (PTV) definition based on Mid-Position (Mid-P) strategy typically integrates breathing motion from tumor positions variances along the conventional axes of the DICOM coordinate system. Tumor motion directionality is thus neglected even though it is one of its stable characteristics in time. We therefore propose the directional MidP approach (MidP dir), which allows motion directionality to be incorporated into PTV margins. A second objective consists in assessing the ability of the proposed method to better take care of respiratory motion uncertainty. METHODS 11 lung tumors from 10 patients with supra-centimetric motion were included. PTV were generated according to the MidP and MidP dir strategies starting from planning 4D CT. RESULTS PTVMidP dir volume didn't differ from the PTVMidP volume: 31351 mm3 IC95% [17242-45459] vs. 31003 mm3 IC95% [ 17347-44659], p = 0.477 respectively. PTVMidP dir morphology was different and appeared more oblong along the main motion axis. The relative difference between 3D and 4D doses was on average 1.09%, p = 0.011 and 0.74%, p = 0.032 improved with directional MidP for D99% and D95%. D2% was not significantly different between both approaches. The improvement in dosimetric coverage fluctuated substantially from one lesion to another and was all the more important as motion showed a large amplitude, some obliquity with respect to conventional axes and small hysteresis. CONCLUSIONS Directional MidP method allows tumor motion to be taken into account more tightly as a geometrical uncertainty without increasing the irradiation volume.
Collapse
Affiliation(s)
- Loïc Vander Veken
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium.
| | - David Dechambre
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Edmond Sterpin
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium; KULeuven Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Kevin Souris
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium
| | - Geneviève Van Ooteghem
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium; Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - John Aldo Lee
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium
| | - Xavier Geets
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium; Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
8
|
Paganetti H, Beltran C, Both S, Dong L, Flanz J, Furutani K, Grassberger C, Grosshans DR, Knopf AC, Langendijk JA, Nystrom H, Parodi K, Raaymakers BW, Richter C, Sawakuchi GO, Schippers M, Shaitelman SF, Teo BKK, Unkelbach J, Wohlfahrt P, Lomax T. Roadmap: proton therapy physics and biology. Phys Med Biol 2021; 66. [DOI: 10.1088/1361-6560/abcd16] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
|
9
|
Vakaet V, Van Hulle H, Schoepen M, Van Caelenberg E, Van Greveling A, Holvoet J, Monten C, De Baerdemaeker L, De Neve W, Coppens M, Veldeman L. Prolonging deep inspiration breath-hold time to 3 min during radiotherapy, a simple solution. Clin Transl Radiat Oncol 2021; 28:10-16. [PMID: 33732910 PMCID: PMC7941008 DOI: 10.1016/j.ctro.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/07/2023] Open
Abstract
A new protocol was developped to prolong deep inspiration breath-holds. Multiple prolonged breath-holds are achievable with minimal side effects. DIBH was prolonged to 3 min using HFNO and hyperventilation in breast cancer patients.
Background and purpose Deep inspiration breath-hold is an established technique to reduce heart dose during breast cancer radiotherapy. However, modern breast cancer radiotherapy techniques with lymph node irradiation often require long beam-on times of up to 5 min. Therefore, the combination with deep inspiration breath-hold (DIBH) becomes challenging. A simple support technique for longer duration deep inspiration breath-hold (L-DIBH), feasible for daily use at the radiotherapy department, is required to maximize heart sparing. Materials and methods At our department, a new protocol for multiple L-DIBH of at least 2 min and 30 s was developed on 32 healthy volunteers and validated on 8 breast cancer patients during radiotherapy treatment, using a pragmatic process of iterative development, including all major stakeholders. Each participant performed 12 L-DIBHs, on 4 different days. Different methods of pre-oxygenation and voluntary hyperventilation were tested, and scored on L-DIBH duration, ease of use, and comfort. Results Based on 384 L-DIBHs from 32 healthy volunteers, voluntary hyperventilation for 3 min whilst receiving high-flow nasal oxygen at 40 L/min was the most promising technique. During validation, the median L-DIBH duration in prone position of 8 breast cancer patients improved from 59 s without support to 3 min and 9 s using the technique (p < 0.001). Conclusion A new and simple L-DIBH protocol was developed feasible for daily use at the radiotherapy center.
Collapse
Affiliation(s)
- Vincent Vakaet
- Department of Human Structure and Repair, Ghent University, Belgium.,Department of Radiation Oncology, Ghent University Hospital, Belgium
| | - Hans Van Hulle
- Department of Human Structure and Repair, Ghent University, Belgium
| | - Max Schoepen
- Department of Human Structure and Repair, Ghent University, Belgium.,Department of Industrial Systems Engineering and Product Design, Kortrijk, Belgium
| | | | | | - Jeroen Holvoet
- Department of Radiation Oncology, Ghent University Hospital, Belgium
| | - Chris Monten
- Department of Human Structure and Repair, Ghent University, Belgium.,Department of Radiation Oncology, Ghent University Hospital, Belgium
| | - Luc De Baerdemaeker
- Department of Anesthesia, Ghent University Hospital, Belgium.,Department of Basic and Applied Medical Sciences, Ghent University, Belgium
| | - Wilfried De Neve
- Department of Human Structure and Repair, Ghent University, Belgium.,Department of Radiation Oncology, Ghent University Hospital, Belgium
| | - Marc Coppens
- Department of Anesthesia, Ghent University Hospital, Belgium.,Department of Basic and Applied Medical Sciences, Ghent University, Belgium
| | - Liv Veldeman
- Department of Human Structure and Repair, Ghent University, Belgium.,Department of Radiation Oncology, Ghent University Hospital, Belgium
| |
Collapse
|
10
|
Anakotta RM, van der Laan HP, Visser S, Ribeiro CO, Dieters M, Langendijk JA, Both S, Korevaar EW, Sijtsema NM, Knopf A, Muijs CT. Weekly robustness evaluation of intensity-modulated proton therapy for oesophageal cancer. Radiother Oncol 2020; 151:66-72. [DOI: 10.1016/j.radonc.2020.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
|
11
|
Dasnoy‐Sumell D, Souris K, Van Ooteghem G, Macq B. Continuous real time 3D motion reproduction using dynamic MRI and precomputed 4DCT deformation fields. J Appl Clin Med Phys 2020; 21:236-248. [PMID: 32614497 PMCID: PMC7484834 DOI: 10.1002/acm2.12953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy of mobile tumors requires specific imaging tools and models to reduce the impact of motion on the treatment. Online continuous nonionizing imaging has become possible with the recent development of magnetic resonance imaging devices combined with linear accelerators. This opens the way to new guided treatment methods based on the real-time tracking of anatomical motion. In such devices, 2D fast MR-images are well-suited to capture and predict the real-time motion of the tumor. To be used effectively in an adaptive radiotherapy, these MR images have to be combined with X-ray images such as CT, which are necessary to compute the irradiation dose deposition. We therefore developed a method combining both image modalities to track the motion on MR images and reproduce the tracked motion on a sequence of 3DCT images in real-time. It uses manually placed navigators to track organ interfaces in the image, making it possible to select anatomical object borders that are visible on both MRI and CT modalities and giving the operator precise control of the motion tracking quality. Precomputed deformation fields extracted from the 4DCT acquired in the planning phase are then used to deform existing 3DCT images to match the tracked object position, creating a new set of 3DCT images encompassing irregularities in the breathing pattern for the complete duration of the MRI acquisition. The final continuous reconstructed 4DCT image sequence reproduces the motion captured by the MRI sequence with high precision (difference below 2 mm).
Collapse
Affiliation(s)
- Damien Dasnoy‐Sumell
- Institute of Information and Communication TechnologiesElectronics and Applied MathematicsUniversite Catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Kevin Souris
- Institut de Recherche Experimentale et Clinique (IREC)Molecular Imaging, Radiotherapy and Oncology (MIRO)Universite Catholique de LouvainBrusselsBelgium
| | - G. Van Ooteghem
- Institut de Recherche Experimentale et Clinique (IREC)Molecular Imaging, Radiotherapy and Oncology (MIRO)Universite Catholique de LouvainBrusselsBelgium
| | - Benoit Macq
- Institute of Information and Communication TechnologiesElectronics and Applied MathematicsUniversite Catholique de LouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
12
|
Parkes MJ, Sheppard JP, Barker T, Ranasinghe AM, Senanayake E, Clutton-Brock TH, Frenneaux MP. Hypocapnia Alone Fails to Provoke Important Electrocardiogram Changes in Coronary Artery Diseased Patients. Front Physiol 2020; 10:1515. [PMID: 32038268 PMCID: PMC6983462 DOI: 10.3389/fphys.2019.01515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There is still an urgent clinical need to develop non-invasive diagnostic tests for early ischemic heart disease because, once angina occurs, it is too late. Hypocapnia has long been known to cause coronary artery vasoconstriction. Some new cardiology tests are accompanied by the claim that they must have potential diagnostic value if hypocapnia enhances their cardiac effects in healthy subjects. But no previous study has tested whether hypocapnia produces bigger cardiac effects in patients with angina than in healthy subjects. METHODS Severe hypocapnia (a PetCO2 level of 20 mmHg) lasting >15 min was mechanically induced by facemask, while conscious and unmedicated, in 18 healthy subjects and in 10 patients with angina and angiographically confirmed coronary artery disease, awaiting by-pass surgery. Each participant was their own control in normocapnia (where CO2 was added to the inspirate) and the order of normocapnia and hypocapnia was randomized. Twelve lead electrocardiograms (ECG) were recorded and automated measurements were made on all ECG waveforms averaged over >120 beats. 2D echocardiography was also performed on healthy subjects. RESULTS In the 18 healthy subjects, we confirm that severe hypocapnia (a mean PetCO2 of 20 ± 0 mmHg, P < 0.0001) consistently increased the mean T wave amplitude in leads V1-V3, but by only 31% (P < 0.01), 15% (P < 0.001) and 11% (P < 0.05), respectively. Hypocapnia produced no other significant effects (p > 0.05) on their electro- or echocardiogram. All 10 angina patients tolerated the mechanical hyperventilation well, with minimal discomfort. Hypocpania caused a similar increase in V1 (by 39%, P < 0.05 vs. baseline, but P > 0.05 vs. healthy controls) and did not induce angina. Its effects were no greater in patients who did not take β-blockers, or did not take organic nitrates, or had the worst Canadian Cardiovascular Society scores. CONCLUSION Non-invasive mechanical hyperventilation while awake and unmedicated is safe and acceptable, even to patients with angina. Using it to produce severe and prolonged hypocapnia alone does produce significant ECG changes in angina patients. But its potential diagnostic value for identifying patients with coronary stenosis requires further evaluation.
Collapse
Affiliation(s)
- Michael J. Parkes
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research/Wellcome Trust Birmingham Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - James P. Sheppard
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research/Wellcome Trust Birmingham Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Thomas Barker
- Department of Cardiovascular Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Aaron M. Ranasinghe
- Department of Cardiovascular Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Eshan Senanayake
- Department of Cardiovascular Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Thomas H. Clutton-Brock
- National Institute for Health Research/Wellcome Trust Birmingham Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Department of Anaesthesia and Intensive Care Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Michael P. Frenneaux
- National Institute for Health Research/Wellcome Trust Birmingham Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Department of Cardiovascular Medicine, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Van Ooteghem G, Dasnoy-Sumell D, Lee JA, Geets X. Mechanically-assisted and non-invasive ventilation for radiation therapy: A safe technique to regularize and modulate internal tumour motion. Radiother Oncol 2019; 141:283-291. [PMID: 31653574 DOI: 10.1016/j.radonc.2019.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 09/23/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Current motion mitigation strategies, like margins, gating, and tracking, deal with geometrical uncertainties in the tumour position, induced by breathing during radiotherapy (RT). However, they often overlook motion variability in amplitude, respiratory rate, or baseline position, when breathing spontaneously. Consequently, this may negatively affect the delivered dose conformality in comparison to the plan. We previously demonstrated on volunteers that 3 different modes of mechanically-assisted and non-invasive ventilation (MANIV) may reduce variability in breathing motion. The volume-controlled mode (VC) constraints the amplitude and respiratory rate (RR) in physiologic condition. The shallow-controlled mode (SH), derived from VC, increases the RR and decreases amplitude. The slow-controlled mode (SL) induces repeated breath holds with constrained ventilation pressure. In this study, we compared these mechanical ventilation modes to spontaneous breathing or breath hold and assessed their tolerance and effects on internal tumour motion in patients receiving RT. MATERIAL AND METHODS The VC and SH modes were evaluated in ten patients with lung or liver cancers (cohort A). The SL mode was evaluated in 12 left breast cancer patients (cohort B). After a training and simulation session, the patients underwent 2 MRI sessions to analyze the internal motion of breast and tumour. RESULTS MANIV was well tolerated, without any adverse events or oxymetric changes, even in patients with respiratory comorbidities. In cohort A, when compared to spontaneous breathing (SP), VC reduced significantly inter-session variations of the tumour motion amplitude (p = 0.01), as well as intra- and inter-session variations of the RR (p < 0.05). As to SH, the RR increased, while its variations within and across sessions decreased when compared to SP (p < 0.001). SH reduced the median amplitude of the tumour motion by 6.1 mm or 38.2% (p ≤ 0.01) compared to VC. In cohort B, breast position stability over the end-inspiratory plateaus obtained spontaneously or with SL remained similar. Median duration of the plateaus in SL was 16.6 s. CONCLUSION MANIV is a safe and well tolerated ventilation technique for patients receiving radiotherapy. MANIV could thus make current motion mitigation strategies less critical and more robust. Clinical implementation might be considered, provided the ventilation mode is carefully selected with respect to the treatment indication and patient individualities.
Collapse
Affiliation(s)
- Geneviève Van Ooteghem
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium; Cliniques Universitaires Saint Luc, Department of Radiation Oncology, Brussels, Belgium.
| | - Damien Dasnoy-Sumell
- Université Catholique de Louvain, ImagX-R, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Louvain-La-Neuve, Belgium
| | - John Aldo Lee
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xavier Geets
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium; Cliniques Universitaires Saint Luc, Department of Radiation Oncology, Brussels, Belgium
| |
Collapse
|
14
|
PET and MRI based RT treatment planning: Handling uncertainties. Cancer Radiother 2019; 23:753-760. [PMID: 31427076 DOI: 10.1016/j.canrad.2019.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Imaging provides the basis for radiotherapy. Multi-modality images are used for target delineation (primary tumor and nodes, boost volume) and organs at risk, treatment guidance, outcome prediction, and treatment assessment. Next to anatomical information, more and more functional imaging is being used. The current paper provides a brief overview of the different applications of imaging techniques used in the radiotherapy process, focusing on uncertainties and QA. The paper mainly focuses on PET and MRI, but also provides a short discussion on DCE-CT. A close collaboration between radiology, nuclear medicine and radiotherapy departments provides the key to improve the quality of radiotherapy. Jointly developed imaging protocols (RT position setup, immobilization tools, lasers, flat table…), and QA programs are mandatory. For PET, suitable windowing in consultation with a Nuclear Medicine Physician is crucial (differentiation benign/malignant lesions, artifacts…). A basic knowledge of MRI sequences is required, in such a way that geometrical distortions are easily recognized by all members the RT and RT physics team. If this is not the case, then the radiologist should be introduced systematically in the delineation process and multidisciplinary meetings need to be organized regularly. For each image modality and each image registration process, the associated uncertainties need to be determined and integrated in the PTV margin. When using functional information for dose painting, response assessment or outcome prediction, collaboration between the different departments is even more important. Limitations of imaging based biomarkers (specificity, sensitivity) should be known.
Collapse
|