1
|
Yang W, Hu P, Zuo C. Application of imaging technology for the diagnosis of malignancy in the pancreaticobiliary duodenal junction (Review). Oncol Lett 2024; 28:596. [PMID: 39430731 PMCID: PMC11487531 DOI: 10.3892/ol.2024.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
The pancreaticobiliary duodenal junction (PBDJ) is the connecting area of the pancreatic duct, bile duct and duodenum. In a broad sense, it refers to a region formed by the head of the pancreas, the pancreatic segment of the common bile duct and the intraduodenal segment, the descending and the horizontal part of the duodenum, and the soft tissue around the pancreatic head. In a narrow sense, it refers to the anatomical Vater ampulla. Due to its complex and variable anatomical features, and the diversity of pathological changes, it is challenging to make an early diagnosis of malignancy at the PBDJ and define the histological type. The unique anatomical structure of this area may be the basis for the occurrence of malignant tumors. Therefore, understanding and subclassifying the anatomical configuration of the PBDJ is of great significance for the prevention and treatment of malignant tumors at their source. The present review comprehensively discusses commonly used imaging techniques and other new technologies for diagnosing malignancy at the PBDJ, offering evidence for physicians and patients to select appropriate examination methods.
Collapse
Affiliation(s)
- Wanyi Yang
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
- Graduates Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410013, P.R. China
| | - Pingsheng Hu
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
- Graduates Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
2
|
Song Y, Chen X, Yu X, Dong Y, Tian J, Wang X, Wang Y, Jiang B. Dosimetric comparison of multiple SBRT delivery platforms for pancreatic cancer. Eur J Med Res 2024; 29:533. [PMID: 39497204 PMCID: PMC11536576 DOI: 10.1186/s40001-024-02080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Stereotactic body radiation therapy (SBRT) has been widely used for pancreatic cancer. However, there is still a lack of studies comparing the latest SBRT techniques in terms of clinical efficacy and safety. OBJECTIVES This study aims to evaluate three latest SBRT delivery platforms: CyberKnife (CK), Tomography Radixact (TOMO), and Halcyon volume rotation intensity modulation therapy (VMAT) for the treatment of pancreatic cancer. METHODS Sixteen patients with pancreatic cancer treated with CK were retrospectively analyzed. SBRT plans were designed using Precision and Eclipse software. CK plans were optimized in two forms: fixed collimator (CK-Fixed) and multi-leaf grating collimator (CK-MLC). TOMO plans were designed with 2.5 cm Fixed Jaw, pitch 0.123-0.43 and 4.0 modulation factors in precision system. In Eclipse 15.6 system, photon optimizer (OP) algorithm was used to design the coplanar two-arc Halcyon VMAT. The median radiation dose was 40 Gy (35-45 Gy) in 5 fractions. The effectiveness of clinical treatment was evaluated by comparing the homogeneity index (HI), conformity index (CI), coverage of the planning target volume (PTV) and dose distribution parameters of organs at risk (OAR). RESULTS All plans met the limits of clinical target dose and OAR. CK-MLC plans had the lowest maximum dose of 2 cm normal tissue from PTV margin (D2cm), indicating a low risk of peripheral radiation damage. Additionally, the CK-MLC plans had the lowest dose parameters and provided the best protection for the kidney, spinal cord, small intestine, and duodenum, with a paired t-test p < 0.05, indicating a statistical difference. CONCLUSION High conformity and adjustability of CK-MLC allowed for precise complex target localization and conformal dose distribution, benefiting tumor treatment while maximally reducing damage to OAR. This study provides valuable dosimetric evidence for SBRT technique selection for pancreatic cancer.
Collapse
Affiliation(s)
- Yongchun Song
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Xiuli Chen
- Department of Radiotherapy, Tianjin Hospital, Tianjin, 300200, People's Republic of China
| | - Xuyao Yu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Yang Dong
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Jia Tian
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Xin Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Yuwen Wang
- Department of Radiotherapy, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308, People's Republic of China.
| | - Bo Jiang
- Department of Radiotherapy, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
3
|
Kisivan K, Farkas A, Kovacs P, Glavak C, Lukacs G, Mahr K, Szabo Z, Csima MP, Gulyban A, Toth Z, Kaposztas Z, Lakosi F. Pancreatic SABR using peritumoral fiducials, triggered imaging and breath-hold. Pathol Oncol Res 2023; 29:1611456. [PMID: 38188611 PMCID: PMC10767757 DOI: 10.3389/pore.2023.1611456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
Background: We aim to present our linear accelerator-based workflow for pancreatic stereotactic ablative radiotherapy (SABR) in order to address the following issues: intrafractional organ motion management, Cone Beam CT (CBCT) image quality, residual errors with dosimetric consequences, treatment time, and clinical results. Methods: Between 2016 and 2021, 14 patients with locally advanced pancreatic cancer were treated with induction chemotherapy and SABR using volumetric modulated arc therapy (VMAT). Internal target volume (ITV) concept (5), phase-gated (4), or breath hold (5) techniques were used. Treatment was verified by CBCT before and after irradiation, while tumor motion was monitored and controlled by kV triggered imaging and beam hold using peritumoral surgical clips. Beam interruptions and treatment time were recorded. The CBCT image quality was scored and supplemented by an agreement analysis (Krippendorff's-α) of breath-hold CBCT images to determine the position of OARs relative to the planning risk volumes (PRV). Residual errors and their dosimetry impact were also calculated. Progression free (PFS) and overall survival (OS) were assessed by the Kaplan-Meier analysis with acute and late toxicity reporting (CTCAEv4). Results: On average, beams were interrupted once (range: 0-3) per treatment session on triggered imaging. The total median treatment time was 16.7 ± 10.8 min, significantly less for breath-hold vs. phase-gated sessions (18.8 ± 6.2 vs. 26.5 ± 13.4, p < 0.001). The best image quality was achieved by breath hold CBCT. The Krippendorff's-α test showed a strong agreement among five radiation therapists (mean K-α value: 0.8 (97.5%). The mean residual errors were <0.2 cm in each direction resulting in an average difference of <2% in dosimetry for OAR and target volume. Two patients received offline adaptation. The median OS/PFS after induction chemotherapy and SABR was 20/12 months and 15/8 months. No Gr. ≥2 acute/late RT-related toxicity was noted. Conclusion: Linear accelerator based pancreatic SABR with the combination of CBCT and triggered imaging + beam hold is feasible. Peritumoral fiducials improve utility while breath-hold CBCT provides the best image quality at a reasonable treatment time with offline adaptation possibilities. In well-selected cases, it can be an effective alternative in clinics where CBCT/MRI-guided online adaptive workflow is not available.
Collapse
Affiliation(s)
- Katalin Kisivan
- Department of Radiotherapy, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| | - Andrea Farkas
- Department of Radiotherapy, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| | - Peter Kovacs
- Department of Radiotherapy, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| | - Csaba Glavak
- Department of Radiotherapy, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| | - Gabor Lukacs
- Department of Medical Oncology, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| | - Karoly Mahr
- Department of Medical Oncology, Zala County Szent Raphael Hospital, Zalaegerszeg, Hungary
| | - Zsolt Szabo
- Department of Medical Oncology, Zala County Szent Raphael Hospital, Zalaegerszeg, Hungary
| | - Melinda Petone Csima
- Institute of Education, Hungarian University of Agricultural and Life Sciences, Gödöllő, Hungary
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| | - Akos Gulyban
- Department of Medical Physics, Institut Jules Bordet, Brussels, Belgium
- Radiophysics and MRI Physics Laboratory, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Zoltan Toth
- Medicopus Nonprofit Ltd., Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
- PET Center, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| | - Zsolt Kaposztas
- Department of Surgery, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| | - Ferenc Lakosi
- Department of Radiotherapy, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| |
Collapse
|
4
|
Uchinami Y, Kanehira T, Nakazato K, Fujita Y, Koizumi F, Takahashi S, Otsuka M, Yasuda K, Taguchi H, Nishioka K, Miyamoto N, Yokokawa K, Suzuki R, Kobashi K, Takahashi K, Katoh N, Aoyama H. Predicting the daily gastrointestinal doses of stereotactic body radiation therapy for pancreatic cancer based on the shortest distance between the tumor and the gastrointestinal tract using daily computed tomography images. BJR Open 2023; 5:20230043. [PMID: 37942491 PMCID: PMC10630971 DOI: 10.1259/bjro.20230043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 11/10/2023] Open
Abstract
Objectives We aimed to investigate whether daily computed tomography (CT) images could predict the daily gastroduodenal, small intestine, and large intestine doses of stereotactic body radiation therapy (SBRT) for pancreatic cancer based on the shortest distance between the gross tumor volume (GTV) and gastrointestinal (GI) tract. Methods Twelve patients with pancreatic cancer received SBRT of 40 Gy in five fractions. We recalculated the reference clinical SBRT plan (PLANref) using daily CT images and calculated the shortest distance from the GTV to each GI tract. The maximum dose delivered to 0.5 cc (D0.5cc) was evaluated for each planning at-risk volume of the GI tract. Spearman's correlation test was used to determine the association between the daily change in the shortest distance (Δshortest distance) and the ratio of ΔD0.5cc dose to D0.5cc dose in PLANref (ΔD0.5cc/PLANref) for quantitative analysis. Results The median shortest distance in PLANref was 0 mm in the gastroduodenum (interquartile range, 0-2.7), 16.7 mm in the small intestine (10.0-23.7), and 16.7 mm in the large intestine (8.3-28.1 mm). The D0.5cc of PLANref in the gastroduodenum was >30 Gy in all patients, with 10 (83.3%) having the highest dose. A significant association was found between the Δshortest distance and ΔD0.5cc/ PLANref in the small or large intestine (p < 0.001) but not in the gastroduodenum (p = 0.404). Conclusions The gastroduodenum had a higher D0.5cc and predicting the daily dose was difficult. Daily dose calculations of the GI tract are recommended for safe SBRT. Advances in knowledge This study aimed to predict the daily doses in SBRT for pancreatic cancer from the shortest distance between the GTV and the gastrointestinal tract.Daily changes in the shortest distance can predict the daily dose to the small or large intestines, but not to the gastroduodenum.
Collapse
Affiliation(s)
- Yusuke Uchinami
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Takahiro Kanehira
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Keiji Nakazato
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshihiro Fujita
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Fuki Koizumi
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Shuhei Takahashi
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Manami Otsuka
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Koichi Yasuda
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Kentaro Nishioka
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Naoki Miyamoto
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Kohei Yokokawa
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Ryusuke Suzuki
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Keiji Kobashi
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Keita Takahashi
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Norio Katoh
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Hiroshima Y, Kondo M, Sawada T, Hoshi S, Okubo R, Iizumi T, Numajiri H, Okumura T, Sakurai H. Analysis of the cost-effectiveness of proton beam therapy for unresectable pancreatic cancer in Japan. Cancer Med 2023; 12:20450-20458. [PMID: 37795771 PMCID: PMC10652344 DOI: 10.1002/cam4.6611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Proton beam therapy (PBT) has recently been included in Japan's social health insurance benefits package. This study aimed to determine the cost-effectiveness of PBT for unresectable, locally advanced pancreatic cancer (LAPC) as a replacement for conventional photon radiotherapy (RT). METHODS We estimated the incremental cost-effectiveness ratio (ICER) of PBT as a replacement for three-dimensional conformal RT (3DCRT), a conventional photon RT, using clinical evidence in the literature and expense complemented by expert opinions. We used a decision tree and an economic and Markov model to illustrate the disease courses followed by LAPC patients. Effectiveness was estimated as quality-adjusted life years (QALY) using utility weights for the health state. Social insurance fees were calculated as the costs. The stability of the ICER against the assumptions made was appraised using sensitivity analyses. RESULTS The effectiveness of PBT and 3DCRT was 1.67610615 and 0.97181271 QALY, respectively. The ICER was estimated to be ¥5,376,915 (US$46,756) per QALY. According to the suggested threshold for anti-cancer therapy from the Japanese authority of ¥7,500,000 (US$65,217) per QALY gain, such a replacement would be considered cost-effective. The one-way and probabilistic sensitivity analyses demonstrated stability of the base-case ICER. CONCLUSION PBT, as a replacement for conventional photon radiotherapy, is cost-effective and justifiable as an efficient use of finite healthcare resources. Making it a standard treatment option and available to every patient in Japan is socially acceptable from the perspective of health economics.
Collapse
Affiliation(s)
- Yuichi Hiroshima
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- QST hospital, National Institutes for Quantum and Radiological Sciences and TechnologyChibaChibaJapan
- Department of Radiation Oncology, Ibaraki Prefectural Central HospitalKasamaIbarakiJapan
| | - Masahide Kondo
- Department of Health Care Policy and Health Economics, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Takuya Sawada
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Shu‐ling Hoshi
- Department of Health Care Policy and Health Economics, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Reiko Okubo
- Department of Health Care Policy and Health Economics, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Department of Clinical Laboratory MedicineUniversity of Tsukuba HospitalTsukubaIbarakiJapan
- Department of Nephrology, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Takashi Iizumi
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Haruko Numajiri
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Toshiyuki Okumura
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Department of Radiation Oncology, Ibaraki Prefectural Central HospitalKasamaIbarakiJapan
| | - Hideyuki Sakurai
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
6
|
Bryant JM, Weygand J, Keit E, Cruz-Chamorro R, Sandoval ML, Oraiqat IM, Andreozzi J, Redler G, Latifi K, Feygelman V, Rosenberg SA. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers (Basel) 2023; 15:2081. [PMID: 37046741 PMCID: PMC10093051 DOI: 10.3390/cancers15072081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.M.B.)
| |
Collapse
|
7
|
Broggi S, Passoni P, Tiberio P, Cicchetti A, Cattaneo GM, Longobardi B, Mori M, Reni M, Slim N, Del Vecchio A, Di Muzio NG, Fiorino C. Stomach and duodenum dose-volume constraints for locally advanced pancreatic cancer patients treated in 15 fractions in combination with chemotherapy. Front Oncol 2023; 12:983984. [PMID: 36761419 PMCID: PMC9902495 DOI: 10.3389/fonc.2022.983984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023] Open
Abstract
Purpose To assess dosimetry predictors of gastric and duodenal toxicities for locally advanced pancreatic cancer (LAPC) patients treated with chemo-radiotherapy in 15 fractions. Methods Data from 204 LAPC patients treated with induction+concurrent chemotherapy and radiotherapy (44.25 Gy in 15 fractions) were available. Forty-three patients received a simultaneous integrated boost of 48-58 Gy. Gastric/duodenal Common Terminology Criteria for Adverse Events v. 5 (CTCAEv5) Grade ≥2 toxicities were analyzed. Absolute/% duodenal and stomach dose-volume histograms (DVHs) of patients with/without toxicities were compared: the most predictive DVH points were identified, and their association with toxicity was tested in univariate and multivariate logistic regressions together with near-maximum dose (D0.03) and selected clinical variables. Results Toxicity occurred in 18 patients: 3 duodenal (ulcer and duodenitis) and 10 gastric (ulcer and stomatitis); 5/18 experienced both. At univariate analysis, V44cc (duodenum: p = 0.02, OR = 1.07; stomach: p = 0.01, OR = 1.12) and D0.03 (p = 0.07, OR = 1.19; p = 0.008, OR = 1.12) were found to be the most predictive parameters. Stomach/duodenum V44Gy and stomach D0.03 were confirmed at multivariate analysis and found to be sufficiently robust at internal, bootstrap-based validation; the results regarding duodenum D0.03 were less robust. No clinical variables or %DVH was significantly associated with toxicity. The best duodenum cutoff values were V44Gy < 9.1 cc (and D0.03 < 47.6 Gy); concerning the stomach, they were V44Gy < 2 cc and D0.03 < 45 Gy. The identified predictors showed a high negative predictive value (>94%). Conclusion In a large cohort treated with hypofractionated radiotherapy for LAPC, the risk of duodenal/gastric toxicities was associated with duodenum/stomach DVH. Constraining duodenum V44Gy < 9.1 cc, stomach V44Gy < 2 cc, and stomach D0.03 < 45 Gy should keep the toxicity rate at approximately or below 5%. The association with duodenum D0.03 was not sufficiently robust due to the limited number of events, although results suggest that a limit of 45-46 Gy should be safe.
Collapse
Affiliation(s)
- Sara Broggi
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | - Paolo Passoni
- Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
| | - Paolo Tiberio
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | - Alessandro Cicchetti
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
- Unit of Data Science, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Martina Mori
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | - Michele Reni
- Oncology, San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Najla Slim
- Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
| | | | - Nadia G. Di Muzio
- Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
8
|
Evaluation of short-term gastrointestinal motion and its impact on dosimetric parameters in stereotactic body radiation therapy for pancreatic cancer. Clin Transl Radiat Oncol 2023; 39:100576. [PMID: 36686564 PMCID: PMC9852488 DOI: 10.1016/j.ctro.2023.100576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Background The aim of this study is to quantify the short-term motion of the gastrointestinal tract (GI-tract) and its impact on dosimetric parameters in stereotactic body radiation therapy (SBRT) for pancreatic cancer. Methods The analyzed patients were eleven pancreatic cancer patients treated with SBRT or proton beam therapy. To ensure a fair analysis, the simulation SBRT plan was generated on the planning CT in all patients with the dose prescription of 40 Gy in 5 fractions. The GI-tract motion (stomach, duodenum, small and large intestine) was evaluated using three CT images scanned at spontaneous expiration. After fiducial-based rigid image registration, the contours in each CT image were generated and transferred to the planning CT, then the organ motion was evaluated. Planning at risk volumes (PRV) of each GI-tract were generated by adding 5 mm margins, and the volume receiving at least 33 Gy (V33) < 0.5 cm3 was evaluated as the dose constraint. Results The median interval between the first and last CT scans was 736 s (interquartile range, IQR:624-986). To compensate for the GI-tract motion based on the planning CT, the necessary median margin was 8.0 mm (IQR: 8.0-10.0) for the duodenum and 14.0 mm (12.0-16.0) for the small intestine. Compared to the planned V33 with the worst case, the median V33 in the PRV of the duodenum significantly increased from 0.20 cm3 (IQR: 0.02-0.26) to 0.33 cm3 (0.10-0.59) at Wilcoxon signed-rank test (p = 0.031). Conclusion The short-term motions of the GI-tract lead to high dose differences.
Collapse
Key Words
- 4DCT, four-dimensional computed tomography,
- CTV, clinical target volume
- FFF, flattening filter-free
- GI-tract, gastrointestinal tract
- GTV, gross tumor volume
- Gastrointestinal tract
- IQR, interquartile range
- Intra-fractional motion
- MV, mega-voltage
- PRV, planning at risk volume
- PTV, planning target volume
- Pancreatic cancer
- ROI, region of interest
- SBRT
- SBRT, stereotactic body radiation therapy
- SD, standard deviation
- Short-term organ motion
- VMAT, volumetric modulated arc therapy
Collapse
|
9
|
Zhong J, Huang T, Qiu M, Guan Q, Luo N, Deng Y. A markerless beam's eye view tumor tracking algorithm based on unsupervised deformable registration learning framework of VoxelMorph in medical image with partial data. Phys Med 2023; 105:102510. [PMID: 36535237 DOI: 10.1016/j.ejmp.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To propose an unsupervised deformable registration learning framework-based markerless beam's eye view (BEV) tumor tracking algorithm for the inferior quality megavolt (MV) images with occlusion and deformation. METHODS Quality assurance (QA) plans for thorax phantom were delivered to the linear accelerator with artificially treatment offsets. Electronic portal imaging device (EPID) images (682 in total) and corresponding digitally reconstructed radiograph (DRR) were gathered as the moving and fixed image pairs, which were randomly divided into training and testing set in a ratio of 0.7:0.3 to train a non-rigid registration model with Voxelmorph. Simultaneously, 533 pairs of patient images from 21 lung tumor plans were acquired for tumor tracking investigation to offer quantifiable tumor motion data. Tracking error and image similarity measures were employed to evaluate the algorithm's accuracy. RESULTS The tracking algorithm can handle image registration with non-rigid deformation and losses ranging from 10 % to 80 %. The tracking errors in the phantom study were below 3 mm in about 86.8 % of cases, and below 2 mm in about 80 % of cases. The normalized mutual information (NMI) changes from 1.182 ± 0.024 to 1.198 ± 0.024 (p < 0.005). The patient target had an average translation of 3.784 mm and a maximum comprehensive displacement value of 7.455 mm. NMI of patient images changes from 1.209 ± 0.027 to 1.217 ± 0.026 (p < 0.005), indicating the presence of non-negligible non-rigid deformation. CONCLUSIONS The study provides a robust markerless tumor tracking algorithm for multi-modal, partial data and inferior quality image processing.
Collapse
Affiliation(s)
- Jiajian Zhong
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, PR China
| | - Taiming Huang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, PR China
| | - Minmin Qiu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, PR China
| | - Qi Guan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, PR China
| | - Ning Luo
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, PR China.
| | - Yongjin Deng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, PR China.
| |
Collapse
|
10
|
Ren Q, Niu T. A temporo-spatial description of moving tumor and organs by the probability of presence time proportion: concept and implementation for 4D dose calculation and optimization. Phys Med Biol 2022; 68. [PMID: 36537562 DOI: 10.1088/1361-6560/aca86c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Objective. The binary definition of the internal target volume (ITV) artificially separates tumor from healthy organs at motion overlapping area for dose evaluation and optimization, bringing confusion about taking partial organs as tumor or adversely. In this work, the probability of presence time (PPT) proportion of a moving anatomic voxel at a geometric voxel is defined to construct a temporo-spatial description of moving objects. The geometric overlapping of tumor and organs in 3D space is distinguished by individual residence time proportion. The dose deposition at a geometric voxel is decomposed into individual dose delivered to tumor and organs for accumulative dose calculation and optimization.Approach.A novel PPT-based plan optimization strategy is proposed to generate an optimized non-uniform dose distribution based on the temporo-spatial relationship between tumor and organs.Main results.Results from a simulation study on phantoms show that the proposed method provides promising performance for surrounding organs at risk (OAR) avoidance with a reduction of mean and maximum dose at a range of 22.6%-23.1% and 23.6%-28.3% compared with ITV-based plans under different geometric conditions, while keeping the clinical target volume dose as prescription.Significance.The PPT definition constructs a unified framework to deal with the 4D temporo-spatial distribution, accumulative dose calculation and optimization of moving tumor and organs. The advantages of the PPT-based dose calculation and optimization approach are demonstrated by simulation study with significant reduction of OARs dose level compared with conventional ITV-based plan.
Collapse
Affiliation(s)
- Qing Ren
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Tianye Niu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| |
Collapse
|
11
|
Tanaka O, Taniguchi T, Adachi K, Nakaya S, Kiryu T, Ukai A, Makita C, Matsuo M. Effect of stomach size on organs at risk in pancreatic stereotactic body radiotherapy. Radiat Oncol 2022; 17:136. [PMID: 35909121 PMCID: PMC9339195 DOI: 10.1186/s13014-022-02107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In clinical practice, the organs at risk (OARs) should be carefully determined when performing pancreatic stereotactic body radiotherapy (SBRT). We conducted a simulation study to examine the effect of the stomach size on the radiation dose to the OARs when performing pancreatic SBRT. METHODS Twenty-five cases were included in this study. Pancreatic head and body tumors were 2-cm-sized pseudotumors, which were included as gross target volume (GTV) contours. The stomach, pancreas, small intestine, liver, kidneys, and spinal cord were considered as the OARs. The prescription dose for planning target volume (PTV) was 40 Gy/5fx, and the dose limit for the OARs was determined. The dose to X% of the OAR volume at X values of 0.1, 5.0, and 10.0 cc (DX) and the percentage of the OAR volume that received more than X Gy were recorded. RESULTS In terms of the radiation dose to the pancreatic body tumors, the stomach size was positively correlated with a dose of D10cc [correlation coefficient (r) = 0.5516) to the stomach. The r value between the radiation dose to the pancreatic head tumor and the stomach size was 0.3499. The stomach size and radiation dose to the head and body of the pancreas were positively correlated (pancreatic head D10cc: r = 0.3979, pancreatic body D10cc: r = 0.3209). The larger the stomach, the larger the radiation dose to the healthy portion of the pancreas outside the PTV. CONCLUSIONS When performing pancreatic SBRT, the dose to the OARs depends on the stomach size. Reducing the dose to the stomach and pancreas can be achieved by shrinking the stomach.
Collapse
Affiliation(s)
- Osamu Tanaka
- Department of Radiation Oncology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan.
| | - Takuya Taniguchi
- Department of Radiation Oncology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan
| | - Kousei Adachi
- Department of Radiation Oncology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan
| | - Shuto Nakaya
- Department of Radiation Oncology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan
| | - Takuji Kiryu
- Department of Radiation Oncology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan
| | - Akira Ukai
- Department of Oral and Maxillofacial Surgery, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu City, Gifu, 500-8523, Japan
| | - Chiyoko Makita
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| |
Collapse
|
12
|
Milder MT, Magallon-Baro A, den Toom W, de Klerck E, Luthart L, Nuyttens JJ, Hoogeman MS. Technical feasibility of online adaptive stereotactic treatments in the abdomen on a robotic radiosurgery system. Phys Imaging Radiat Oncol 2022; 23:103-108. [PMID: 35928600 PMCID: PMC9344339 DOI: 10.1016/j.phro.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Maaike T.W. Milder
- Corresponding author at: Department of Radiation Oncology, Erasmus MC – Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Magallon-Baro A, Milder MTW, Granton PV, den Toom W, Nuyttens JJ, Hoogeman MS. Impact of Using Unedited CT-Based DIR-Propagated Autocontours on Online ART for Pancreatic SBRT. Front Oncol 2022; 12:910792. [PMID: 35756687 PMCID: PMC9213731 DOI: 10.3389/fonc.2022.910792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the dosimetric impact of using unedited autocontours in daily plan adaptation of patients with locally advanced pancreatic cancer (LAPC) treated with stereotactic body radiotherapy using tumor tracking. Materials and Methods The study included 98 daily CT scans of 35 LAPC patients. All scans were manually contoured (MAN), and included the PTV and main organs-at-risk (OAR): stomach, duodenum and bowel. Precision and MIM deformable image registration (DIR) methods followed by contour propagation were used to generate autocontour sets on the daily CT scans. Autocontours remained unedited, and were compared to MAN on the whole organs and at 3, 1 and 0.5 cm from the PTV. Manual and autocontoured OAR were used to generate daily plans using the VOLO™ optimizer, and were compared to non-adapted plans. Resulting planned doses were compared based on PTV coverage and OAR dose-constraints. Results Overall, both algorithms reported a high agreement between unclipped MAN and autocontours, but showed worse results when being evaluated on the clipped structures at 1 cm and 0.5 cm from the PTV. Replanning with unedited autocontours resulted in better OAR sparing than non-adapted plans for 95% and 84% plans optimized using Precision and MIM autocontours, respectively, and obeyed OAR constraints in 64% and 56% of replans. Conclusion For the majority of fractions, manual correction of autocontours could be avoided or be limited to the region closest to the PTV. This practice could further reduce the overall timings of adaptive radiotherapy workflows for patients with LAPC.
Collapse
Affiliation(s)
- Alba Magallon-Baro
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maaike T W Milder
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Patrick V Granton
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilhelm den Toom
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joost J Nuyttens
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mischa S Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
14
|
Alam S, Veeraraghavan H, Tringale K, Amoateng E, Subashi E, Wu AJ, Crane CH, Tyagi N. Inter- and intrafraction motion assessment and accumulated dose quantification of upper gastrointestinal organs during magnetic resonance-guided ablative radiation therapy of pancreas patients. Phys Imaging Radiat Oncol 2022; 21:54-61. [PMID: 35243032 PMCID: PMC8861831 DOI: 10.1016/j.phro.2022.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background and purpose Stereotactic body radiation therapy (SBRT) of locally advanced pancreatic cancer (LAPC) is challenging due to significant motion of gastrointestinal (GI) organs. The goal of our study was to quantify inter and intrafraction deformations and dose accumulation of upper GI organs in LAPC patients. Materials and methods Five LAPC patients undergoing five-fraction magnetic resonance-guided radiation therapy (MRgRT) using abdominal compression and daily online plan adaptation to 50 Gy were analyzed. A pre-treatment, verification, and post-treatment MR imaging (MRI) for each of the five fractions (75 total) were used to calculate intra and interfraction motion. The MRIs were registered using Large Deformation Diffeomorphic Metric Mapping (LDDMM) deformable image registration (DIR) method and total dose delivered to stomach_duodenum, small bowel (SB) and large bowel (LB) were accumulated. Deformations were quantified using gradient magnitude and Jacobian integral of the Deformation Vector Fields (DVF). Registration DVFs were geometrically assessed using Dice and 95th percentile Hausdorff distance (HD95) between the deformed and physician’s contours. Accumulated doses were then calculated from the DVFs. Results Median Dice and HD95 were: Stomach_duodenum (0.9, 1.0 mm), SB (0.9, 3.6 mm), and LB (0.9, 2.0 mm). Median (max) interfraction deformation for stomach_duodenum, SB and LB was 6.4 (25.8) mm, 7.9 (40.5) mm and 7.6 (35.9) mm. Median intrafraction deformation was 5.5 (22.6) mm, 8.2 (37.8) mm and 7.2 (26.5) mm. Accumulated doses for two patients exceeded institutional constraints for stomach_duodenum, one of whom experienced Grade1 acute and late abdominal toxicity. Conclusion LDDMM method indicates feasibility to measure large GI motion and accumulate dose. Further validation on larger cohort will allow quantitative dose accumulation to more reliably optimize online MRgRT.
Collapse
Affiliation(s)
- Sadegh Alam
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn Tringale
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Emmanuel Amoateng
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ergys Subashi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Abraham J. Wu
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher H. Crane
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Corresponding author at: Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 545 East 74th Street, New York, NY 10021, USA.
| |
Collapse
|
15
|
Niedzielski JS, Liu Y, Ng SSW, Martin RM, Perles LA, Beddar S, Rebueno N, Koay EJ, Taniguchi C, Holliday EB, Das P, Smith GL, Minsky BD, Ludmir EB, Herman JM, Koong A, Sawakuchi GO. Dosimetric Uncertainties Resulting From Interfractional Anatomic Variations for Patients Receiving Pancreas Stereotactic Body Radiation Therapy and Cone Beam Computed Tomography Image Guidance. Int J Radiat Oncol Biol Phys 2021; 111:1298-1309. [PMID: 34400267 DOI: 10.1016/j.ijrobp.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To estimate the effects of interfractional anatomic changes on dose to organs at risk (OARs) and tumors, as measured with cone beam computed tomography (CBCT) image guidance for pancreatic stereotactic body radiation therapy. METHODS AND MATERIALS We evaluated 11 patients with pancreatic cancer whom were treated with stereotactic body radiation therapy (33-40 Gy in 5 fractions) using daily CT-on-rails (CTOR) image guidance immediately before treatment with breath-hold motion management. CBCT alignment was simulated in the treatment planning software by aligning the original planning CT to each fractional CTOR image set via fiducial markers. CTOR data sets were used to calculate fractional doses after alignment by applying the rigid shift of the planning CT and CTOR image sets to the planning treatment isocenter and recalculating the fractional dose. Accumulated dose to the gross tumor volume (GTV), tumor vessel interface, duodenum, small bowel, and stomach were calculated by summing the 5 fractional absolute dose-volume histograms into a single dose-volume histogram for comparison with the original planned dose. RESULTS Four patients had a GTV D100% of at least 1.5 Gy less than the fractional planned value in several fractions; 4 patients had fractional underestimation of duodenum dose by 1.0 Gy per fraction. The D1.0 cm3 <35 Gy constraint was violated for at least 1 OAR in 3 patients, with either the duodenum (n = 2) or small bowel (n = 1) D1.0 cm3 being higher on the accumulated dose distribution (P = .01). D100% was significantly lower according to accumulated dose GTV (P = .01) and tumor vessel interface (P = .02), with 4 and 2 patients having accumulated D100% ≥4 Gy lower than the planned value for the GTV and tumor vessel interface, respectively. CONCLUSIONS For some patients, CBCT image guidance based on fiducial alignment may cause large dosimetric uncertainties for OARs and target structures, according to accumulated dose.
Collapse
Affiliation(s)
| | - Yufei Liu
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Sylvia S W Ng
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | | | - Luis A Perles
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Sam Beddar
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Neal Rebueno
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Eugene J Koay
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | | | - Emma B Holliday
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Prajnan Das
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Grace L Smith
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Bruce D Minsky
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Ethan B Ludmir
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Joseph M Herman
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Albert Koong
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, UT-MD Anderson Cancer Center; Graduate School of Biomedical Sciences, UT-MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
16
|
Dai X, Lei Y, Wynne J, Janopaul-Naylor J, Wang T, Roper J, Curran WJ, Liu T, Patel P, Yang X. Synthetic CT-aided multiorgan segmentation for CBCT-guided adaptive pancreatic radiotherapy. Med Phys 2021; 48:7063-7073. [PMID: 34609745 PMCID: PMC8595847 DOI: 10.1002/mp.15264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The delineation of organs at risk (OARs) is fundamental to cone-beam CT (CBCT)-based adaptive radiotherapy treatment planning, but is time consuming, labor intensive, and subject to interoperator variability. We investigated a deep learning-based rapid multiorgan delineation method for use in CBCT-guided adaptive pancreatic radiotherapy. METHODS To improve the accuracy of OAR delineation, two innovative solutions have been proposed in this study. First, instead of directly segmenting organs on CBCT images, a pretrained cycle-consistent generative adversarial network (cycleGAN) was applied to generating synthetic CT images given CBCT images. Second, an advanced deep learning model called mask-scoring regional convolutional neural network (MS R-CNN) was applied on those synthetic CT to detect the positions and shapes of multiple organs simultaneously for final segmentation. The OAR contours delineated by the proposed method were validated and compared with expert-drawn contours for geometric agreement using the Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), and residual mean square distance (RMS). RESULTS Across eight abdominal OARs including duodenum, large bowel, small bowel, left and right kidneys, liver, spinal cord, and stomach, the geometric comparisons between automated and expert contours are as follows: 0.92 (0.89-0.97) mean DSC, 2.90 mm (1.63-4.19 mm) mean HD95, 0.89 mm (0.61-1.36 mm) mean MSD, and 1.43 mm (0.90-2.10 mm) mean RMS. Compared to the competing methods, our proposed method had significant improvements (p < 0.05) in all the metrics for all the eight organs. Once the model was trained, the contours of eight OARs can be obtained on the order of seconds. CONCLUSIONS We demonstrated the feasibility of a synthetic CT-aided deep learning framework for automated delineation of multiple OARs on CBCT. The proposed method could be implemented in the setting of pancreatic adaptive radiotherapy to rapidly contour OARs with high accuracy.
Collapse
Affiliation(s)
- Xianjin Dai
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jacob Wynne
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - James Janopaul-Naylor
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Narita Y, Kato T, Takemasa K, Sato H, Ikeda T, Harada T, Oyama S, Murakami M. Dosimetric impact of simulated changes in large bowel content during proton therapy with simultaneous integrated boost for locally advanced pancreatic cancer. J Appl Clin Med Phys 2021; 22:90-98. [PMID: 34599856 PMCID: PMC8598140 DOI: 10.1002/acm2.13429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/31/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the dosimetric impact of changes in the large bowel content during proton therapy (PT) with simultaneous integrated boost (SIB) for locally advanced pancreatic cancer (LAPC). Materials and methods Fifteen patients with LAPC were included in this study. The SIB method was performed using five fields according to our standard protocol. A total dose of 67.5 Gy(relative biological effectiveness [RBE]) was prescribed in 25 fractions using the SIB method. A dose of 45 Gy(RBE) was prescribed for the entire planning target volume (PTV) by using four main fields. The remaining 22.5 Gy(RBE) was prescribed to the PTV excluding for the gastrointestinal tract using one subfield. Five simulated doses were obtained by the forward dose calculations with the Hounsfield units (HU) override to the large bowel to 50, 0, −100, −500, and −1000, respectively. The dose‐volume indices in each plan were compared using the 50 HU plan as a reference. Results At D98 of the clinical target volume (CTV) and spinal cord‐D2cc, when the density of the large bowel was close to that of gas, there were significant differences compared to the reference plan (p < 0.05). By contrast, no significant difference was observed in stomach‐D2cc duodenum‐D2cc, small bowel‐D2cc, kidneys‐V18, and liver‐Dmean under any of the conditions. There were no cases in which the dose constraint of organs at risk, specified by our institution, was exceeded. Conclusion Density change in the large bowel was revealed to significantly affect the doses of the CTV and spinal cord during PT with SIB for LAPC. For beam arrangement, it is important to select a gantry angle that prevents the large bowel from passing as much as possible. If this is unavoidable, it is important to carefully observe the gas image on the beam path during daily image guidance and to provide adaptive re‐planning as needed.
Collapse
Affiliation(s)
- Yuki Narita
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Takahiro Kato
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan.,School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Kimihiro Takemasa
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Hiroki Sato
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Tomohiro Ikeda
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Takaomi Harada
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Sho Oyama
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Masao Murakami
- Department of Radiation Oncology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| |
Collapse
|
18
|
Magallon-Baro A, Milder MTW, Granton PV, Nuyttens JJ, Hoogeman MS. Comparison of Daily Online Plan Adaptation Strategies for a Cohort of Pancreatic Cancer Patients Treated with SBRT. Int J Radiat Oncol Biol Phys 2021; 111:208-219. [PMID: 33811976 DOI: 10.1016/j.ijrobp.2021.03.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/01/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To study the trade-offs of three online strategies to adapt treatment plans of patients with locally advanced pancreatic carcinoma (LAPC) treated using the CyberKnife with tumor tracking. METHODS AND MATERIALS A total of 35 planning computed tomography scans and 98 daily in-room computed tomography scans were collected from 35 patients with LAPC. Planned dose distributions, optimized with VOLO, were evaluated on manually contoured daily anatomies to collect daily doses. Three strategies were tested to adapt treatment plans: (1) unrestricted full replanning using a patient-specific plan template, (2) time-restricted replanning on organs at risk (OARs) within 3 cm from the planning target volume (PTV) structure, and (3) dose realignment optimization to stay within OAR constraints. Dose distributions resulting from each plan adaptation strategy were dosimetrically compared by means of gross tumor volume (GTV), PTV coverage, and OAR tolerances. RESULTS Planned doses did not result in dose-constraint violations for 28 of 98 daily anatomies. None of the suggested plan adaptation strategies improved planned doses significantly for this subset. For 70 of the 98 reported violations, the median (interquartile range) PTV coverage of the planned dose was 84% (76% to 86%). After plan adaptation, unrestricted replanning achieved clinically acceptable plans in 93% of these fractions, time-restricted replanning in 90%, and dose realignment in 74%, at median computational times of 8.5, 3, and 0.5 minutes. Over all 98 fractions, PTV coverage was reduced: -1% (-3% to 1%), -2% (-5% to 0%), and -2% (-8% to 0%) after each strategy, respectively. In 3 of 70 fractions, none of the suggested strategies achieved clinically acceptable OAR dose volumes. CONCLUSIONS Unrestricted replanning was the most time-consuming method but reached the highest number of successfully adapted plans. Time-restricted replanning and dose realignment resulted in a high number of plans within dose constraints. Depending on the resources available, an adaptive strategy can be selected for each patient to address the specific anatomic challenges on the treatment day. The increase in the complexity of the strategy corresponds with an increasing number of successfully adapted plans.
Collapse
Affiliation(s)
- Alba Magallon-Baro
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands.
| | - Maaike T W Milder
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Patrick V Granton
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Joost J Nuyttens
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Mischa S Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Liu Y, Lei Y, Fu Y, Wang T, Tang X, Jiang X, Curran WJ, Liu T, Patel P, Yang X. CT-based multi-organ segmentation using a 3D self-attention U-net network for pancreatic radiotherapy. Med Phys 2020; 47:4316-4324. [PMID: 32654153 DOI: 10.1002/mp.14386] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Segmentation of organs-at-risk (OARs) is a weak link in radiotherapeutic treatment planning process because the manual contouring action is labor-intensive and time-consuming. This work aimed to develop a deep learning-based method for rapid and accurate pancreatic multi-organ segmentation that can expedite the treatment planning process. METHODS We retrospectively investigated one hundred patients with computed tomography (CT) simulation scanned and contours delineated. Eight OARs including large bowel, small bowel, duodenum, left kidney, right kidney, liver, spinal cord and stomach were the target organs to be segmented. The proposed three-dimensional (3D) deep attention U-Net is featured with a deep attention strategy to effectively differentiate multiple organs. Performance of the proposed method was evaluated using six metrics, including Dice similarity coefficient (DSC), sensitivity, specificity, Hausdorff distance 95% (HD95), mean surface distance (MSD) and residual mean square distance (RMSD). RESULTS The contours generated by the proposed method closely resemble the ground-truth manual contours, as evidenced by encouraging quantitative results in terms of DSC, sensitivity, specificity, HD95, MSD and RMSD. For DSC, mean values of 0.91 ± 0.03, 0.89 ± 0.06, 0.86 ± 0.06, 0.95 ± 0.02, 0.95 ± 0.02, 0.96 ± 0.01, 0.87 ± 0.05 and 0.93 ± 0.03 were achieved for large bowel, small bowel, duodenum, left kidney, right kidney, liver, spinal cord and stomach, respectively. CONCLUSIONS The proposed method could significantly expedite the treatment planning process by rapidly segmenting multiple OARs. The method could potentially be used in pancreatic adaptive radiotherapy to increase dose delivery accuracy and minimize gastrointestinal toxicity.
Collapse
Affiliation(s)
- Yingzi Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Yabo Fu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Xiangyang Tang
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Xiaojun Jiang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
20
|
Loi M, Magallon-Baro A, Suker M, Van Eijck C, Hoogeman M, Nuyttens JJ. Daily dose to organs at risk predicts acute toxicity in pancreatic stereotactic radiotherapy. Acta Oncol 2020; 59:944-948. [PMID: 32207351 DOI: 10.1080/0284186x.2020.1742931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mauro Loi
- Department of Radiotherapy, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Alba Magallon-Baro
- Department of Radiotherapy, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Mustafa Suker
- Department of Surgery, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Casper Van Eijck
- Department of Surgery, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Mischa Hoogeman
- Department of Radiotherapy, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Joost J. Nuyttens
- Department of Radiotherapy, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Schmitt D, Blanck O, Gauer T, Fix MK, Brunner TB, Fleckenstein J, Loutfi-Krauss B, Manser P, Werner R, Wilhelm ML, Baus WW, Moustakis C. Technological quality requirements for stereotactic radiotherapy : Expert review group consensus from the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. Strahlenther Onkol 2020; 196:421-443. [PMID: 32211939 PMCID: PMC7182540 DOI: 10.1007/s00066-020-01583-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/25/2022]
Abstract
This review details and discusses the technological quality requirements to ensure the desired quality for stereotactic radiotherapy using photon external beam radiotherapy as defined by the DEGRO Working Group Radiosurgery and Stereotactic Radiotherapy and the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The covered aspects of this review are 1) imaging for target volume definition, 2) patient positioning and target volume localization, 3) motion management, 4) collimation of the irradiation and beam directions, 5) dose calculation, 6) treatment unit accuracy, and 7) dedicated quality assurance measures. For each part, an expert review for current state-of-the-art techniques and their particular technological quality requirement to reach the necessary accuracy for stereotactic radiotherapy divided into intracranial stereotactic radiosurgery in one single fraction (SRS), intracranial fractionated stereotactic radiotherapy (FSRT), and extracranial stereotactic body radiotherapy (SBRT) is presented. All recommendations and suggestions for all mentioned aspects of stereotactic radiotherapy are formulated and related uncertainties and potential sources of error discussed. Additionally, further research and development needs in terms of insufficient data and unsolved problems for stereotactic radiotherapy are identified, which will serve as a basis for the future assignments of the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The review was group peer-reviewed, and consensus was obtained through multiple working group meetings.
Collapse
Affiliation(s)
- Daniela Schmitt
- Klinik für Radioonkologie und Strahlentherapie, National Center for Radiation Research in Oncology (NCRO), Heidelberger Institut für Radioonkologie (HIRO), Universitätsklinikum Heidelberg, Heidelberg, Germany.
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Tobias Gauer
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Michael K Fix
- Abteilung für Medizinische Strahlenphysik und Universitätsklinik für Radio-Onkologie, Inselspital-Universitätsspital Bern, Universität Bern, Bern, Switzerland
| | - Thomas B Brunner
- Universitätsklinik für Strahlentherapie, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Jens Fleckenstein
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Britta Loutfi-Krauss
- Klinik für Strahlentherapie und Onkologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Peter Manser
- Abteilung für Medizinische Strahlenphysik und Universitätsklinik für Radio-Onkologie, Inselspital-Universitätsspital Bern, Universität Bern, Bern, Switzerland
| | - Rene Werner
- Institut für Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Maria-Lisa Wilhelm
- Klinik für Strahlentherapie, Universitätsmedizin Rostock, Rostock, Germany
| | - Wolfgang W Baus
- Klinik für Radioonkologie, CyberKnife- und Strahlentherapie, Universitätsklinikum Köln, Cologne, Germany
| | - Christos Moustakis
- Klinik für Strahlentherapie-Radioonkologie, Universitätsklinikum Münster, Münster, Germany
| |
Collapse
|
22
|
Rigaud B, Cazoulat G, Vedam S, Venkatesan AM, Peterson CB, Taku N, Klopp AH, Brock KK. Modeling Complex Deformations of the Sigmoid Colon Between External Beam Radiation Therapy and Brachytherapy Images of Cervical Cancer. Int J Radiat Oncol Biol Phys 2020; 106:1084-1094. [PMID: 32029345 DOI: 10.1016/j.ijrobp.2019.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE In this study, we investigated registration methods for estimating the large interfractional sigmoid deformations that occur between external beam radiation therapy (EBRT) and brachytherapy (BT) for cervical cancer. METHODS AND MATERIALS Sixty-three patients were retrospectively analyzed. The sigmoid colon was delineated on 2 computed tomography images acquired during EBRT (without applicator) and BT (with applicator) for each patient. Five registration approaches were compared to propagate the contour of the sigmoid from BT to EBRT anatomies: rigid registration, commercial hybrid (ANAtomically CONstrained Deformation Algorithm), controlling ROI surface projection of RayStation, and the classical and constrained symmetrical thin-plate spline robust point matching (sTPS-RPM) methods. Deformation of the sigmoid due to insertion of the BT applicator was reported. Registration performance was compared by using the Dice similarity coefficient (DSC), distance to agreement, and Hausdorff distance. The 2 sTPS-RPM methods were compared by using surface triangle quality criteria between deformed surfaces. Using the deformable approaches, the BT dose of the sigmoid was deformed toward the EBRT anatomy. The displacement and discrepancy between the deformable methods to propagate the planned D1cm3 and D2cm3 of the sigmoid from BT to EBRT anatomies were reported for 55 patients. RESULTS Large and complex deformations of the sigmoid were observed for each patient. Rigid registration resulted in poor sigmoid alignment with a mean DSC of 0.26. Using the contour to drive the deformation, ANAtomically CONstrained Deformation Algorithm was able to slightly improve the alignment of the sigmoid with a mean DSC of 0.57. Using only the sigmoid surface as controlling ROI, the mean DSC was improved to 0.79. The classical and constrained sTPS-RPM methods provided mean DSCs of 0.95 and 0.96, respectively, with an average inverse consistency error <1 mm. The constrained sTPS-RPM provided more realistic deformations and better surface topology of the deformed sigmoids. The planned mean (range) D1cm3 and D2cm3 of the sigmoid were 13.4 Gy (1-24.1) and 12.2 Gy (1-21.5) on the BT anatomy, respectively. Using the constrained sTPS-RPM to deform the sigmoid from BT to EBRT anatomies, these hotspots had a mean (range) displacement of 27.1 mm (6.8-81). CONCLUSIONS Large deformations of the sigmoid were observed between the EBRT and BT anatomies, suggesting that the D1cm3 and D2cm3 of the sigmoid would unlikely to be at the same position throughout treatment. The proposed constrained sTPS-RPM seems to be the preferred approach to manage the large deformation due to BT applicator insertion. Such an approach could be used to map the EBRT dose to the BT anatomy for personalized BT planning optimization.
Collapse
Affiliation(s)
- Bastien Rigaud
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Guillaume Cazoulat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sastry Vedam
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aradhana M Venkatesan
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicolette Taku
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
23
|
Magallon-Baro A, Granton PV, Milder MTW, Loi M, Zolnay AG, Nuyttens JJ, Hoogeman MS. A model-based patient selection tool to identify who may be at risk of exceeding dose tolerances during pancreatic SBRT. Radiother Oncol 2019; 141:116-122. [PMID: 31606227 DOI: 10.1016/j.radonc.2019.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/04/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Locally advanced pancreatic cancer (LAPC) patients are prone to experience daily anatomical variations, which can lead to additional doses in organs-at-risk (OAR) during SBRT. A patient selection tool was developed to identify who may be at risk of exceeding dose tolerances, by quantifying the dosimetric impact of daily variations using an OAR motion model. MATERIALS AND METHODS The study included 133 CT scans from 35 LAPC patients. By following a leave-one-out approach, an OAR motion model trained with the remaining 34 subjects variations was used to simulate organ deformations on the left-out patient planning CT anatomy. Dose-volume histograms obtained from planned doses sampled on simulated organs resulted in the probability of exceeding OAR dose-constraints due to anatomical variations. Simulated probabilities were clustered with a threshold per organ according to clinical observations. If the prediction of at least one OAR was above the established thresholds, the patient was classified as being at risk. RESULTS Clinically, in 20/35 patients at least one OAR exceeded dose-constraints in the daily CTs. The model-based prediction had an accuracy of 89%, 71%, 91% in estimating the risk of exceeding dose tolerances for the duodenum, stomach and bowel, respectively. By combining the three predictions, our approach resulted in a correct patient classification for 29/35 patients (83%) when compared with clinical observations. CONCLUSIONS Our model-based patient selection tool is able to predict who might be at risk of exceeding dose-constraints during SBRT. It is a promising tool to tailor LAPC treatments, e.g. by employing online adaptive SBRT; and hence, to minimize toxicity of patients being at risk.
Collapse
Affiliation(s)
- Alba Magallon-Baro
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands.
| | - Patrick V Granton
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| | - Maaike T W Milder
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| | - Mauro Loi
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| | - Andras G Zolnay
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| | - Joost J Nuyttens
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| |
Collapse
|