1
|
Bachmann N, Schmidhalter D, Corminboeuf F, Berger MD, Borbély Y, Ermiş E, Stutz E, Shrestha BK, Aebersold DM, Manser P, Hemmatazad H. Cone Beam Computed Tomography-Based Online Adaptive Radiation Therapy of Esophageal Cancer: First Clinical Experience and Dosimetric Benefits. Adv Radiat Oncol 2025; 10:101656. [PMID: 39628955 PMCID: PMC11612653 DOI: 10.1016/j.adro.2024.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024] Open
Abstract
Purpose Radiation therapy (RT) plays a key role in the management of esophageal cancer (EC). However, toxicities caused by proximity of organs at risk (OAR) and daily target coverage caused by interfractional anatomic changes are of concern. Daily online adaptive RT (oART) addresses these concerns and has the potential to increase OAR sparing and improve target coverage. We present the first clinical experience and dosimetric investigations of cone beam CT-based oART in EC using the ETHOS platform. Methods and Materials Treatment fractions of the first 10 EC patients undergoing cone beam CT-based oART at our institution were retrospectively analyzed. The prescription dose was 50.4 Gy in 28 fractions. The same clinical target volume (CTV) and planning target volume (PTV) margins as for nonadaptive treatments were used. For all sessions, the timestamp of each oART workflow step, PTV size, target volume doses, mean heart dose, and lung V20Gy of both the scheduled and the adapted treatment plan were analyzed. Results Following automatic propagation, the CTV was adapted by the physician in 164 (59%) fractions. The adapted treatment plan was selected in 276 (99%) sessions. The median time needed for an oART session was 28 minutes (range, 14.8-43.3). Compared to the scheduled plans, a significant relative reduction of 9.5% in mean heart dose (absolute, 1.6 Gy; P = .006) and 16.9% reduction in mean lung V20Gy (absolute, 2.3%; P < .001) was achieved with the adapted treatment plans. Simultaneously, we observed a significant relative improvement in D99%PTV and D99%CTV by 15.3% (P < .001) and 5.0% (P = .008), respectively, along with a significant increase in D95%PTV by 5.1% (P = .003). Conclusions Although being resource-intensive, oART for EC is feasible in a reasonable timeframe and results in increased OAR sparing and improved target coverage, even without a reduction of margins. Further studies are planned to evaluate the potential clinical benefits.
Collapse
Affiliation(s)
- Nicolas Bachmann
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern Switzerland, Bern, Switzerland
| | - Daniel Schmidhalter
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern Switzerland, Bern, Switzerland
| | - Frédéric Corminboeuf
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern Switzerland, Bern, Switzerland
| | - Martin D. Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern Switzerland, Bern, Switzerland
| | - Yves Borbély
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern Switzerland, Bern, Switzerland
| | - Ekin Ermiş
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern Switzerland, Bern, Switzerland
| | - Emanuel Stutz
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern Switzerland, Bern, Switzerland
| | - Binaya K. Shrestha
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern Switzerland, Bern, Switzerland
| | - Daniel M. Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern Switzerland, Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern Switzerland, Bern, Switzerland
| | - Hossein Hemmatazad
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern Switzerland, Bern, Switzerland
| |
Collapse
|
2
|
Webster A, Mundora Y, Clark CH, Hawkins MA. A systematic review of the impact of abdominal compression and breath-hold techniques on motion, inter-fraction set-up errors, and intra-fraction errors in patients with hepatobiliary and pancreatic malignancies. Radiother Oncol 2024; 201:110581. [PMID: 39395670 DOI: 10.1016/j.radonc.2024.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND AND PURPOSE Reducing motion is vital when radiotherapy is used to treat patients with hepatobiliary (HPB) and pancreatic malignancies. Abdominal compression (AC) and breath-hold (BH) techniques aim to minimise respiratory motion, yet their adoption remains limited, and practices vary. This review examines the impact of AC and BH on motion, set-up errors, and patient tolerability in HPB and pancreatic patients. MATERIALS AND METHODS This systematic review, conducted using PRISMA and PICOS criteria, includes publications from January 2015 to February 2023. Eligible studies focused on AC and BH interventions in adults with HPB and pancreatic malignancies. Endpoints examined motion, set-up errors, intra-fraction errors, and patient tolerability. Due to study heterogeneity, Synthesis Without Meta-Analysis was used, and a 5 mm threshold assessed the impact of motion mitigation. RESULTS In forty studies, 14 explored AC and 26 BH, with 20 on HPB, 13 on pancreatic, and 7 on mixed cohorts. Six studied pre-treatment, 22 inter/intra-fraction errors, and 12 both. Six AC pre-treatment studies showed > 5 mm motion, and 4 BH and 2 AC studies reported > 5 mm inter-fraction errors. Compression studies commonly investigated the arch and belt, and DIBH was the predominant BH technique. No studies compared AC and BH. There was variation in the techniques, and several studies did not follow standardised error reporting. Patient experience and tolerability were under-reported. CONCLUSION The results indicate that AC effectively reduces motion, but its effectiveness may vary between patients. BH can immobilise motion; however, it can be inconsistent between fractions. The review underscores the need for larger, standardised studies and emphasizes the importance of considering the patient's perspective for tailored treatments.
Collapse
Affiliation(s)
- Amanda Webster
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Yemurai Mundora
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK
| | - Catharine H Clark
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; National Physical Laboratory, Teddington, UK
| | - Maria A Hawkins
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
3
|
Samadi Miandoab P, Worm E, Hansen R, Weber B, Høyer M, Saramad S, Setayeshi S, Poulsen PR. Accuracy of four models and update strategies to estimate liver tumor motion from external respiratory motion. Front Oncol 2024; 14:1470650. [PMID: 39381048 PMCID: PMC11458717 DOI: 10.3389/fonc.2024.1470650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Background This study investigates different strategies for estimating internal liver tumor motion during radiotherapy based on continuous monitoring of external respiratory motion combined with sparse internal imaging. Methods Fifteen patients underwent three-fraction stereotactic liver radiotherapy. The 3D internal tumor motion (INT) was monitored by electromagnetic transponders while a camera monitored the external marker block motion (EXT). The ability of four external-internal correlation models (ECM) to estimate INT as function of EXT was investigated: a simple linear model (ECM1), an augmented linear model (ECM2), an augmented quadratic model (ECM3), and an extended quadratic model (ECM4). Each ECM was constructed by fitting INT and EXT during the first 60s of each fraction. The fit accuracy was calculated as the root-mean-square error (RMSE) between ECM-estimated and actual tumor motion. Next, the RMSE of the ECM-estimated tumor motion throughout the fractions was calculated for four simulated ECM update strategies: (A) no update, 0.33Hz internal sampling with continuous update of either (B) all ECM parameters based on the last 2 minutes samples or (C) only the baseline term based on the last 5 samples, (D) full ECM update every minute using 20s continuous internal sampling. Results The augmented quadratic ECM3 had best fit accuracy with mean (± SD)) RMSEs of 0.32 ± 0.11mm (left-right, LR), 0.79 ± 0.30mm (cranio-caudal, CC) and 0.56 ± 0.31mm (anterior-posterior, AP). However, the simpler augmented linear ECM2 combined with frequent baseline updates (update strategy C) gave best motion estimations with mean RMSEs of 0.41 ± 0.14mm (LR), 1.02 ± 0.33mm (CC) and 0.78 ± 0.48mm (AP). This was significantly better than all other ECM-update strategy combinations for CC motion (Wilcoxon signed rank p<0.05). Conclusion The augmented linear ECM2 combined with frequent baseline updates provided the best compromise between fit accuracy and robustness towards irregular motion. It allows accurate internal motion monitoring by combining external motioning with sparse 0.33Hz kV imaging, which is available at conventional linacs.
Collapse
Affiliation(s)
- Payam Samadi Miandoab
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Esben Worm
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Rune Hansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Britta Weber
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Shahyar Saramad
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Setayeshi
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Per Rugaard Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Canters R, van der Klugt K, Trier Taasti V, Buijsen J, Ta B, Steenbakkers I, Houben R, Vilches-Freixas G, Berbee M. Robustness of intensity modulated proton treatment of esophageal cancer for anatomical changes and breathing motion. Radiother Oncol 2024; 198:110409. [PMID: 38917884 DOI: 10.1016/j.radonc.2024.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/26/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND PURPOSE In this study, we assessed the robustness of intensity modulated proton therapy (IMPT) in esophageal cancer for anatomical variations during treatment. METHODS The first sixty esophageal cancer patients, treated clinically with chemoradiotherapy were included. The treatment planning strategy was based on an internal target volume (ITV) approach, where the ITV was created from the clinical target volumes (CTVs) delineated on all phases of a 4DCT. For optimization, a 3 mm isotropic margin was added to the ITV, combined with robust optimization using 5 mm setup and 3 % range uncertainty. Each patient received weekly repeat CTs (reCTs). Robust plan re-evaluation on all reCTs, and a robust dose summation was performed. To assess the factors influencing ITV coverage, a multivariate linear regression analysis was performed. Additionally, clinical adaptations were evaluated. RESULTS The target coverage was adequate (ITV V94%>98 % on the robust voxel-wise minimum dose) on most reCTs (91 %), and on the summed dose in 92 % of patients. Significant predictors for ITV coverage in the multivariate analysis were diaphragm baseline shift and water equivalent depth (WED) of the ITV in the beam direction. Underdosage of the ITV mainly occurred in week 1 and 4, leading to treatment adaptation of eight patients, all on the first reCT. CONCLUSION Our IMPT treatment of esophageal cancer is robust for anatomical variations. Adaptation appears to be most effective in the first week of treatment. Diaphragm baseline shifts and WED are predictive factors for ITV underdosage, and should be incorporated in an adaptation protocol.
Collapse
Affiliation(s)
- Richard Canters
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Kim van der Klugt
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Vicki Trier Taasti
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands; Aarhus University, Danish Centre for Particle Therapy, Denmark
| | - Jeroen Buijsen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bastiaan Ta
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Inge Steenbakkers
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ruud Houben
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Maaike Berbee
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
5
|
Hoffmann L, Ehmsen ML, Hansen J, Hansen R, Knap MM, Mortensen HR, Poulsen PR, Ravkilde T, Rose HK, Schmidt HH, Worm ES, Møller DS. Repeated deep-inspiration breath-hold CT scans at planning underestimate the actual motion between breath-holds at treatment for lung cancer and lymphoma patients. Radiother Oncol 2023; 188:109887. [PMID: 37659663 DOI: 10.1016/j.radonc.2023.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
PURPOSE/OBJECTIVE Deep-inspiration breath-hold (DIBH) during radiotherapy may reduce dose to the lungs and heart compared to treatment in free breathing. However, intra-fractional target shifts between several breath-holds may decrease target coverage. We compared target shifts between four DIBHs at the planning-CT session with those measured on CBCT-scans obtained pre- and post-DIBH treatments. MATERIAL/METHODS Twenty-nine lung cancer and nine lymphoma patients were treated in DIBH. An external gating block was used as surrogate for the DIBH-level with a window of 2 mm. Four DIBH CT-scans were acquired: one for planning (CTDIBH3) and three additional (CTDIBH1,2,4) to assess the intra-DIBH target shifts at scanning by registration to CTDIBH3. During treatment, pre-treatment (CBCTpre) and post-treatment (CBCTpost) scans were acquired. For each pair of CBCTpre/post, the target intra-DIBH shift was determined. For lung cancer, tumour (GTV-Tlung) and lymph nodes (GTV-Nlung) were analysed separately. Group mean (GM), systematic and random errors, and GM for the absolute maximum shifts (GMmax) were calculated for the shifts between CTDIBH1,2,3,4 and between CBCTpre/post. RESULTS For GTV-Tlung, GMmax was larger at CBCT than CT in all directions. GMmax in cranio-caudal direction was 3.3 mm (CT)and 6.1 mm (CBCT). The standard deviations of the shifts in the left-right and cranio-caudal directions were larger at CBCT than CT. For GTV-Nlung and CTVlymphoma, no difference was found in GMmax or SD. CONCLUSION Intra-DIBH shifts at planning-CT session are generally smaller than intra-DIBH shifts observed at CBCTpre/post and therefore underestimate the intra-fractional DIBH uncertainty during treatment. Lung tumours show larger intra-fractional variations than lymph nodes and lymphoma targets.
Collapse
Affiliation(s)
- Lone Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - M L Ehmsen
- Danish Center for Proton Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - J Hansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - R Hansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - M M Knap
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - H R Mortensen
- Danish Center for Proton Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - P R Poulsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Danish Center for Proton Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - T Ravkilde
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - H K Rose
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - H H Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - E S Worm
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - D S Møller
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Boekhoff MR, Lagendijk JJ, L.H.M.W. van Lier A, Mook S, Meijer GJ. Intrafraction motion analysis in online adaptive radiotherapy for esophageal cancer. Phys Imaging Radiat Oncol 2023; 26:100432. [PMID: 37020582 PMCID: PMC10068261 DOI: 10.1016/j.phro.2023.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Intrafraction motion during magnetic resonance (MR)-guided dose delivery of esophageal cancer tumors was retrospectively analyzed. Deformable image registration of cine-MR series resulted in gross tumor volume motion profiles in all directions, which were subsequently filtered to isolate respiratory and drift motion. A large variability in intrafraction motion patterns was observed between patients. Median 95% peak-to-peak motion was 7.7 (3.7 - 18.3) mm, 2.1 (0.7 - 5.7) mm and 2.4 (0.5 - 5.6) mm in cranio-caudal, left-right and anterior-posterior directions, relatively. Furthermore, intrafraction drift was generally modest (<5mm). A patient specific approach could lead to very small margins (<3mm) for most patients.
Collapse
|
7
|
Wang H, Liu X, Kong L, Huang Y, Chen H, Ma X, Duan Y, Shao Y, Feng A, Shen Z, Gu H, Kong Q, Xu Z, Zhou Y. Improving CBCT image quality to the CT level using RegGAN in esophageal cancer adaptive radiotherapy. Strahlenther Onkol 2023; 199:485-497. [PMID: 36688953 PMCID: PMC10133081 DOI: 10.1007/s00066-022-02039-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/04/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE This study aimed to improve the image quality and CT Hounsfield unit accuracy of daily cone-beam computed tomography (CBCT) using registration generative adversarial networks (RegGAN) and apply synthetic CT (sCT) images to dose calculations in radiotherapy. METHODS The CBCT/planning CT images of 150 esophageal cancer patients undergoing radiotherapy were used for training (120 patients) and testing (30 patients). An unsupervised deep-learning method, the 2.5D RegGAN model with an adaptively trained registration network, was proposed, through which sCT images were generated. The quality of deep-learning-generated sCT images was quantitatively compared to the reference deformed CT (dCT) image using mean absolute error (MAE), root mean square error (RMSE) of Hounsfield units (HU), and peak signal-to-noise ratio (PSNR). The dose calculation accuracy was further evaluated for esophageal cancer radiotherapy plans, and the same plans were calculated on dCT, CBCT, and sCT images. RESULTS The quality of sCT images produced by RegGAN was significantly improved compared to the original CBCT images. ReGAN achieved image quality in the testing patients with MAE sCT vs. CBCT: 43.7 ± 4.8 vs. 80.1 ± 9.1; RMSE sCT vs. CBCT: 67.2 ± 12.4 vs. 124.2 ± 21.8; and PSNR sCT vs. CBCT: 27.9 ± 5.6 vs. 21.3 ± 4.2. The sCT images generated by the RegGAN model showed superior accuracy on dose calculation, with higher gamma passing rates (93.3 ± 4.4, 90.4 ± 5.2, and 84.3 ± 6.6) compared to original CBCT images (89.6 ± 5.7, 85.7 ± 6.9, and 72.5 ± 12.5) under the criteria of 3 mm/3%, 2 mm/2%, and 1 mm/1%, respectively. CONCLUSION The proposed deep-learning RegGAN model seems promising for generation of high-quality sCT images from stand-alone thoracic CBCT images in an efficient way and thus has the potential to support CBCT-based esophageal cancer adaptive radiotherapy.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China.,Institute of Modern Physics, Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | | | - Ying Huang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiurui Ma
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanhua Duan
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Aihui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhenjiong Shen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hengle Gu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qing Kong
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Zhiyong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yongkang Zhou
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Shamshad M, Møller DS, Mortensen HR, Ehmsen ML, Jensen MF, Hoffmann L. Bone versus soft-tissue setup in proton therapy for patients with oesophageal cancer. Acta Oncol 2022; 61:994-1003. [PMID: 35775236 DOI: 10.1080/0284186x.2022.2091949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effect of patient positioning based on either bone or soft-tissue matching for PT in oesophageal cancer and its impact on plan adaptation. MATERIALS AND METHODS Two retrospective patient cohorts treated with radiotherapy were included in the study. Cohort A consisted of 26 consecutive patients with a planning 4DCT scan (CT1) and a surveillance 4DCT scan (CT2) at fraction ten. Cohort B consisted of 17 patients selected based on large anatomical changes identified during treatment resulting in a rescan (CT2). Mean dose to the iCTV (sum of the CTVs in all respiratory phases) was 50.4 Gy (RBE) in 28 fractions or 41.4 Gy (RBE) in 23 fractions. A nominal pencil beam scanning plan was created using two posterior beams and robust optimization (5 mm setup, 3.5% range). For each patient, two rigid registrations were made between average (avg) CT1 and CT2: a match on the vertebral column (bone match) and a match on the iCTV (soft-tissue match). Robustness towards setup (5 mm) and range (3.5%) errors was evaluated at CT2. Robustness towards respiration was evaluated by recalculation of the plan on all phases of the CT2 scan. Dose coverage <96% would trigger adaptation. The statistical significance (p-value <0.05) between dose coverage for the two registration methods was assessed using the Wilcoxon signed rank test. RESULTS All plans fulfilled V95%iCTV>99% for the nominal plan and V95%iCTV>97% for all respiratory phases and robustness scenarios at CT1. In two (8%) and three (18%) patients, V95%iCTV<96% on CT2 for Cohort A and B, respectively when bone match was used. For soft-tissue match, V95%iCTV >96% for all patients. V95%iCTV was significantly higher (p-value = 0.0001) for soft-tissue match than bone match. CONCLUSION Anatomical changes during the treatment course led to target dose deterioration and a need for plan adaptation when using a bone match.
Collapse
Affiliation(s)
- Muhammad Shamshad
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Ditte Sloth Møller
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | | | | | | | - Lone Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Hoffmann L, Mortensen H, Shamshad M, Berbee M, Bizzocchi N, Bütof R, Canters R, Defraene G, Lykkegaard Ehmsen M, Fiorini F, Haustermans K, Hulley R, Korevaar EW, Clarke M, Makocki S, Muijs CT, Murray L, Nicholas O, Nordsmark M, Radhakrishna G, Thomas M, Troost EGC, Vilches-Freixas G, Visser S, Weber DC, Sloth Møller D. Treatment planning comparison in the PROTECT-trial randomising proton versus photon beam therapy in oesophageal cancer: results from eight european centres. Radiother Oncol 2022; 172:32-41. [PMID: 35513132 DOI: 10.1016/j.radonc.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To compare dose distributions and robustness in treatment plans from eight European centres in preparation for the European randomized phase-III PROTECT-trial investigating the effect of proton therapy (PT) versus photon therapy (XT) for oesophageal cancer. MATERIALS AND METHODS All centres optimized one PT and one XT nominal plan using delineated 4DCT scans for four patients receiving 50.4Gy(RBE) in 28 fractions. Target volume receiving 95% of prescribed dose (V95%iCTVtotal) should be >99%. Robustness towards setup, range, and respiration was evaluated. The plans were recalculated on a surveillance 4DCT (sCT) acquired at fraction ten and robustness evaluation was performed to evaluate the effect of respiration and inter-fractional anatomical changes. RESULTS All PT and XT plans complied with V95%iCTVtotal>99% for the nominal plan and V95%iCTVtotal>97% for all respiratory and robustness scenarios. Lung and heart dose varied considerably between centres for both modalities. The difference in mean lung dose and mean heart dose between each pair of XT and PT plans was in median [range] 4.8Gy [1.1;7.6] and 8.4Gy [1.9;24.5], respectively. Patients B and C showed large inter-fractional anatomical changes on sCT. For patient B, the minimum V95%iCTVtotal in the worst-case robustness scenario was 45% and 94% for XT and PT, respectively. For patient C, the minimum V95%iCTVtotal was 57% and 72% for XT and PT, respectively. Patient A and D showed minor inter-fractional changes and the minimum V95%iCTVtotal was >85%. CONCLUSION Large variability in dose to the lungs and heart was observed for both modalities. Inter-fractional anatomical changes led to larger target dose deterioration for XT than PT plans.
Collapse
Affiliation(s)
- Lone Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Denmark; Dept. of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark.
| | - Hanna Mortensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Muhammad Shamshad
- Department of Medical Physics, Aarhus University Hospital, Denmark; Dept. of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Maaike Berbee
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Richard Canters
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Gilles Defraene
- KU Leuven - University of Leuven - Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | | | | | - Karin Haustermans
- KU Leuven - University of Leuven - Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium; University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Ryan Hulley
- South West Wales Cancer Centre, Swansea University Board, UL AND Swansea University Medical School, United Kingdom
| | - Erik W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Matthew Clarke
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sebastian Makocki
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Christina T Muijs
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Luke Murray
- Rutherford Cancer Centre, Shinfield, Reading, United Kingdom
| | - Owen Nicholas
- South West Wales Cancer Centre, Swansea University Board, UL AND Swansea University Medical School, United Kingdom
| | | | | | - Melissa Thomas
- KU Leuven - University of Leuven - Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium; University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Sabine Visser
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland; Radiation Oncology Department, University Hospital Zurich, Zurich, Switzerland
| | - Ditte Sloth Møller
- Department of Medical Physics, Aarhus University Hospital, Denmark; Dept. of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Boekhoff M, Bouwmans R, Doornaert P, Intven M, Lagendijk J, van Lier A, Rasing M, van de Ven S, Meijer G, Mook S. Clinical implementation and feasibility of long-course fractionated MR-guided chemoradiotherapy for patients with esophageal cancer: an R-IDEAL stage 1b/2a evaluation of technical innovation. Clin Transl Radiat Oncol 2022; 34:82-89. [PMID: 35372703 PMCID: PMC8971577 DOI: 10.1016/j.ctro.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022] Open
Abstract
Online MR-guided long-course fractionated chemoradiotherapy for patients with esophageal cancer was feasible in 7 out of 9 patients. Median treatment time was 53 min per fraction. MRgRT resulted in a reduction in mean heart dose (12%) and mean lung dose (26%) compared to CBCT-guided radiotherapy. Limited intrafraction motion was observed during dose delivery.
Purpose This R-Ideal stage 1b/2a study describes the workflow and feasibility of long-course fractionated online adaptive MR-guided chemoradiotherapy with reduced CTV-to-PTV margins on the 1.5T MR-Linac for patients with esophageal cancer. Methods Patients with esophageal cancer scheduled to undergo chemoradiation were treated on a 1.5T MR-Linac. Daily MR-images were acquired for online contour adaptation and replanning. Contours were manually adapted to match the daily anatomy and an isotropic CTV-to-PTV margin of 6 mm was applied. Time was recorded for all individual steps in the workflow. Feasibility and patient tolerability were defined as on-table time of ≤60 min and completion of >95% of the fractions on the MR-Linac, respectively. Positioning verification and post-treatment MRIs were retrospectively analyzed and dosimetric parameters were compared to standard non-adaptive conventional treatment plans. Results Nine patients with esophageal cancer were treated with chemoradiation; eight patients received 41.4 Gy in 23 fractions and one received 50.4 Gy in 28 fractions. Four patients received all planned fractions on the MR-Linac, whereas for two patients >5% of fractions were rescheduled to a conventional linac for reasons of discomfort. A total of 183 (86%) of 212 scheduled fractions were successfully delivered on the MR-Linac. Three fractions ended prematurely due to technical issues and 26 fractions were rescheduled on a conventional linac due to MR-Linac downtime (n = 10), logistical reasons (n = 3) or discomfort (n = 13). The median time per fraction was 53 min (IQR = 3 min). Daily adapted MR-Linac plans had similar target coverage, whereas dose to the organs-at-risk was significantly reduced compared to conventional treatment (26% and 12% reduction in mean lung and heart dose, respectively). Conclusion Daily online adaptive fractionated chemoradiotherapy with reduced PTV margins is moderately feasible for esophageal cancer and results in better sparing of heart and lungs. Future studies should focus on further optimization and acceleration of the current workflow.
Collapse
|
11
|
Visser S, den Otter LA, Ribeiro CO, Korevaar EW, Both S, Langendijk JA, Muijs CT, Sijtsema NM, Knopf A. Diaphragm-Based Position Verification to Improve Daily Target Dose Coverage in Proton and Photon Radiation Therapy Treatment of Distal Esophageal Cancer. Int J Radiat Oncol Biol Phys 2021; 112:463-474. [PMID: 34530091 DOI: 10.1016/j.ijrobp.2021.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE In modern conformal radiation therapy of distal esophageal cancer, target coverage can be affected by variations in the diaphragm position. We investigated if daily position verification (PV) extended by a diaphragm position correction would optimize target dose coverage for esophageal cancer treatment. METHODS AND MATERIALS For 15 esophageal cancer patients, intensity modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) plans were computed. Displacements of the target volume were correlated with diaphragm displacements using repeated 4-dimensional computed tomography images to determine the correction needed to account for diaphragm variations. Afterwards, target coverage was evaluated for 3 PV approaches based on: (1) bony anatomy (PV_B), (2) bony anatomy corrected for the diaphragm position (PV_BD) and (3) target volume (PV_T). RESULTS The cranial-caudal mean target displacement was congruent with almost half of the diaphragm displacement (y = 0.459x), which was used for the diaphragm correction in PV_BD. Target dose coverage using PV_B was adequate for most patients with diaphragm displacements up till 10 mm (≥94% of the dose in 98% of the volume [D98%]). For larger displacements, the target coverage was better maintained by PV_T and PV_BD. Overall, PV_BD accounted best for target displacements, especially in combination with tissue density variations (D98%: IMPT 94% ± 5%, VMAT 96% ± 5%). Diaphragm displacements of more than 10 mm were observed in 22% of the cases. CONCLUSIONS PV_B was sufficient to achieve adequate target dose coverage in case of small deviations in diaphragm position. However, large deviations of the diaphragm were best mitigated by PV_BD. To detect the cases where target dose coverage could be compromised due to diaphragm position variations, we recommend monitoring of the diaphragm position before treatment through online imaging.
Collapse
Affiliation(s)
- Sabine Visser
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Lydia A den Otter
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cássia O Ribeiro
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christina T Muijs
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nanna M Sijtsema
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antje Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Boekhoff M, Defize I, Borggreve A, van Hillegersberg R, Kotte A, Lagendijk J, van Lier A, Ruurda J, Takahashi N, Mook S, Meijer G. An in-silico assessment of the dosimetric benefits of MR-guided radiotherapy for esophageal cancer patients. Radiother Oncol 2021; 162:76-84. [PMID: 34237345 DOI: 10.1016/j.radonc.2021.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To assess the dosimetric benefits of online MR-guided radiotherapy (MRgRT) for esophageal cancer patients and to assess how these benefits could be translated into a local boosting strategy to improve future outcomes. METHODS Twenty-nine patients were in-silico treated with both a MRgRT regimen and a conventional image guided radiotherapy (IGRT) regimen using dose warping techniques. Here, the inter and intrafractional changes that occur over the course of treatment (as derived from 5 MRI scans that were acquired weekly during treatment) were incorporated to assess the total accumulated dose for each regimen. RESULTS A significant reduction in dose to the organs-at-risk (OARs) was observed for all dose-volume-histogram (DVH) parameters for the MRgRT regimen without concessions to target coverage compared to the IGRT regimen. The mean lung dose was reduced by 28%, from 7.9 to 5.7 Gy respectively and V20Gy of the lungs was reduced by 55% (6.3-2.8%). A reduction of 24% was seen in mean heart dose (14.8-11.2 Gy), while the V25Gy of the heart was decreased by 53% (14.3-6.7%) and the V40Gy of the heart was decreased by 69% (3.9-1.2%). In addition, MRgRT dose escalation regimens with a boost up to 66% of the prescription dose to the primary tumor yielded approximately the same dose levels to the OARs as from the conventional IGRT regimen. CONCLUSION This study revealed that MRgRT for esophageal cancer has the potential to significantly reduce the dose to heart and lungs. In addition, online high precision targeting of the primary tumor opens new perspectives for local boosting strategies to improve outcome of the local management of this disease.
Collapse
Affiliation(s)
- Mick Boekhoff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands.
| | - Ingmar Defize
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Surgery, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Alicia Borggreve
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Surgery, University Medical Center Utrecht, Utrecht University, The Netherlands
| | | | - Alexis Kotte
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Jan Lagendijk
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Astrid van Lier
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Jelle Ruurda
- Department of Surgery, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Noriyoshi Takahashi
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Stella Mook
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Gert Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands.
| |
Collapse
|
13
|
Boekhoff MR, Defize IL, Borggreve AS, van Hillegersberg R, Kotte ANTJ, Lagendijk JJW, van Lier ALHMW, Ruurda JP, Takahashi N, Mook S, Meijer GJ. CTV-to-PTV margin assessment for esophageal cancer radiotherapy based on an accumulated dose analysis. Radiother Oncol 2021; 161:16-22. [PMID: 33992628 DOI: 10.1016/j.radonc.2021.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed to assess the smallest clinical target volume (CTV) to planned target volume (PTV) margins for esophageal cancer radiotherapy using daily online registration to the bony anatomy that yield full dosimetric coverage over the course of treatment. METHODS 29 esophageal cancer patients underwent six T2-weighted MRI scans at weekly intervals. An online bone-match image-guided radiotherapy treatment of five fractions was simulated for each patient. Multiple conformal treatment plans with increasing margins around the CTV were created for each patient. Then, the dose was warped to obtain an accumulated dose per simulated fraction. Full target coverage by 95% of the prescribed dose was assessed as a function of margin expansion in six directions. If target coverage in a single direction was accomplished, then the respective margin remained fixed for the subsequent dose plans. Margins in uncovered directions were increased in a new dose plan until full target coverage was achieved. RESULTS The smallest set of CTV-to-PTV margins that yielded full dosimetric CTV coverage was 8 mm in posterior and right direction, 9 mm in anterior and cranial direction and 10 mm in left and caudal direction for 27 out of 29 patients. In two patients the curvature of the esophagus considerably changed between fractions, which required a 17 and 23 mm margin in right direction. CONCLUSION Accumulated dose analysis revealed that CTV-to-PTV treatment margins of 8, 9 and 10 mm in posterior & right, anterior & cranial and left & caudal direction, respectively, are sufficient to account for interfraction tumor variations over the course of treatment when applying a daily online bone match. However, two patients with extreme esophageal interfraction motion were insufficiently covered with these margins and were identified as patients requiring replanning to achieve full target coverage.
Collapse
Affiliation(s)
- M R Boekhoff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - I L Defize
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Surgery, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - A S Borggreve
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Surgery, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - R van Hillegersberg
- Department of Surgery, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - A N T J Kotte
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - J J W Lagendijk
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - A L H M W van Lier
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - J P Ruurda
- Department of Surgery, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - N Takahashi
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - S Mook
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - G J Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, the Netherlands.
| |
Collapse
|
14
|
Møller DS, Poulsen PR, Hagner A, Dufour M, Nordsmark M, Nyeng TB, Mortensen HR, Lutz CM, Hoffmann L. Strategies for Motion Robust Proton Therapy With Pencil Beam Scanning for Esophageal Cancer. Int J Radiat Oncol Biol Phys 2021; 111:539-548. [PMID: 33974885 DOI: 10.1016/j.ijrobp.2021.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Proton therapy of esophageal cancer is superior to photon radiation therapy in terms of normal tissue sparing. However, respiratory motion and anatomical changes may compromise target dose coverage owing to density changes, geometric misses, and interplay effects. Here we investigate the combined effect on clinical target volume (CTV) coverage and compare proton therapy with intensity modulated radiation therapy (IMRT). METHODS AND MATERIALS This study includes 26 patients with esophageal cancer previously treated with IMRT planned on 4-dimensional computed tomography (4D-CT). For each patient, 7 proton pencil beam scanning (PBS) plans were created with different field configurations and optimization strategies. The effect of respiration was investigated by calculating the phase doses, 4D dose, and 4D dynamic dose (including interplay effects). The effect of anatomical changes was investigated by recalculating all plans on all phases of a 4D-CT surveillance scan. RESULTS The most robust PBS plans were achieved using 2 posterior beams requiring coverage of planning target volume (PTV) and simultaneously using robust optimization (RO) of CTV (2PAPTVRO), resulting in only 1 patient showing V95%CTV <97% in 1 or more phases of the planning CT. For the least robust PBS plans obtained using lateral + posterior beams and CTV-RO, but not requiring PTV coverage (2LPRO), 10 patients showed underdosage. For IMRT, 2 patients showed underdosage. Interplay effects reduced V95%CTV significantly when delivering only 1 fraction, but the effects generally averaged out after 10 fractions. The effect of interplay was significantly larger for RO-only plans compared with plans optimized with RO combined with PTV coverage. Combining the effect of anatomical changes and respiration on the 4D-CT surveillance scan resulted in V95%CTV <97% for 3 2PAPTVRO, 16 2LPRO, and 8 IMRT patients. CONCLUSIONS PBS using posterior beam angles was more robust to anatomical changes and respiration than IMRT. The effect of respiration was enhanced when anatomical changes were present. Single fraction interplay effects deteriorated the dose distribution but were averaged out after 10 fractions.
Collapse
Affiliation(s)
- Ditte Sloth Møller
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark.
| | - Per Rugaard Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas Hagner
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Mathieu Dufour
- Department of Physics, University of Turin, Turin, Italy
| | | | | | | | | | - Lone Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
15
|
Thomas M, Defraene G, Levis M, Sterpin E, Lambrecht M, Ricardi U, Haustermans K. A study to investigate the influence of cardiac motion on the robustness of pencil beam scanning proton plans in oesophageal cancer. Phys Imaging Radiat Oncol 2021; 16:50-53. [PMID: 33458343 PMCID: PMC7807867 DOI: 10.1016/j.phro.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022] Open
Abstract
While proton therapy offers an excellent dose conformity and sparing of organs at risk, this can be compromised by uncertainties, e.g. organ motion. This study aimed to investigate the influence of cardiac motion on the contoured oesophagus using electrocardiogram-triggered imaging and to assess the impact of this motion on the robustness of proton therapy plans in oesophageal cancer patients. Limited cardiac-induced motion of the oesophagus was observed with a negligible impact on the robustness of proton therapy plans. Therefore, our data suggest that cardiac motion may be safely ignored in the robust optimisation strategy for proton planning in oesophageal cancer.
Collapse
Affiliation(s)
- Melissa Thomas
- KU Leuven – University of Leuven, Department of Oncology – Laboratory Experimental Radiotherapy, Leuven, Belgium
- UZ Leuven – University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
- Corresponding author.
| | - Gilles Defraene
- KU Leuven – University of Leuven, Department of Oncology – Laboratory Experimental Radiotherapy, Leuven, Belgium
| | - Mario Levis
- University of Torino, Department of Oncology, Torino, Italy
| | - Edmond Sterpin
- KU Leuven – University of Leuven, Department of Oncology – Laboratory Experimental Radiotherapy, Leuven, Belgium
- UCLouvain – Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Sint-Lambrechts-Woluwe, Belgium
| | - Maarten Lambrecht
- KU Leuven – University of Leuven, Department of Oncology – Laboratory Experimental Radiotherapy, Leuven, Belgium
- UZ Leuven – University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| | | | - Karin Haustermans
- KU Leuven – University of Leuven, Department of Oncology – Laboratory Experimental Radiotherapy, Leuven, Belgium
- UZ Leuven – University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
16
|
Thomas M, De Roover R, van der Merwe S, Lambrecht M, Defraene G, Haustermans K. The use of tumour markers in oesophageal cancer to quantify setup errors and baseline shifts during treatment. Clin Transl Radiat Oncol 2020; 26:8-14. [PMID: 33251342 PMCID: PMC7677672 DOI: 10.1016/j.ctro.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022] Open
Abstract
Implantation of solid gold markers safe. Inter-fractional motion for markers in distal oesophagus largest cranio-caudally. Reduced radiotherapy treatment margins with soft-tissue vs. bony-anatomy matching. Impact of intra-fractional baseline shifts on margin calculation rather small.
Purpose To prospectively evaluate the feasibility of solid gold marker placement in oesophageal cancer patients and to quantify inter-fractional and intra-fractional (baseline shift) marker motion during radiation treatment. Radiotherapy target margins and matching strategies were investigated. Materials/methods Thirty-four markers were implanted by echo-endoscopy in 10 patients. Patients received a planning 4D CT, daily pre-treatment cone-beam CT (CBCT) and a post-treatment CBCT for at least five fractions. For fractions with both pre- and post-treatment CBCT, marker displacement between planning CT and pre-treatment CBCT (inter-fractional) and between pre-treatment and post-treatment CBCT (intra-fractional; only for fractions without rotational treatment couch correction) were calculated in left–right (LR), cranio-caudal (CC) and anterior-posterior (AP) direction after bony-anatomy and soft-tissue matching. Systematic/random setup errors were estimated; treatment margins were calculated. Results No serious adverse events occurred. Twenty-three (67.6%) markers were visible during radiotherapy (n = 3 middle oesophagus, n = 16 distal oesophagus, n = 4 proximal stomach). Margins for inter-fractional displacement after bony-anatomy match depended on the localisation of the primary tumour and were 11.2 mm (LR), 16.4 mm (CC) and 8.2 mm (AP) for distal markers. Soft-tissue matching reduced the CC margin for these markers (16.4 mm to 10.5 mm). The mean intra-fractional shift of 12 distal markers was 0.4 mm (LR), 2.3 mm (CC) and 0.7 mm (AP). Inclusion of this shift resulted in treatment margins for distal markers of 12.8 mm (LR), 17.3 mm (CC) and 10.4 mm (AP) after bony-anatomy matching and 12.4 mm (LR), 11.4 mm (CC) and 9.7 mm (AP) after soft-tissue matching. Conclusion This study demonstrated that the implantation of gold markers was safe, albeit less stable compared to other marker types. Inter-fractional motion was largest cranio-caudally for markers in the distal oesophagus, which was reduced after soft-tissue compared to bony-anatomy matching. The impact of intra-fractional baseline shifts on margin calculation was rather small.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- 4D, four-dimensional
- AP, anterior-posterior
- CBCT, cone-beam computed tomography
- CC, cranio-caudal
- CT, computed tomography
- CTV, clinical target volume
- CTVtotal, total clinical target volume
- DoF, degree-of-freedom
- EUS, endoscopic ultrasound
- Esophageal cancer
- FDG-PET/CT, fluorodeoxyglucose positron emission tomography with integrated computed tomography
- Fiducial gold markers
- GM, grand mean
- GTV, gross tumour volume
- IMRT, intensity modulated radiation therapy
- Inter-fractional motion
- Intra-fractional baseline shifts
- LR, left-right
- MRI, magnetic resonance imaging
- Matching strategies
- OAR, organ at risk
- PTV, planning target volume
- Radiotherapy treatment margins
- iCTV, internal clinical target volume
- kV, kilovoltage
- nCRT, neoadjuvant chemoradiation
Collapse
Affiliation(s)
- Melissa Thomas
- KU Leuven - University of Leuven, Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Robin De Roover
- KU Leuven - University of Leuven, Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Schalk van der Merwe
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Maarten Lambrecht
- KU Leuven - University of Leuven, Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Gilles Defraene
- KU Leuven - University of Leuven, Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Karin Haustermans
- KU Leuven - University of Leuven, Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
17
|
Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver. Clin Oncol (R Coll Radiol) 2020; 32:792-804. [PMID: 33036840 DOI: 10.1016/j.clon.2020.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022]
Abstract
Organ motion as a result of respiratory and cardiac motion poses significant challenges for the accurate delivery of radiotherapy to both the thorax and the upper abdomen. Modern imaging techniques during radiotherapy simulation and delivery now permit better quantification of organ motion, which in turn reduces tumour and organ at risk position uncertainty. These imaging advances, coupled with respiratory correlated radiotherapy delivery techniques, have led to the development of a range of approaches to manage respiratory motion. This review summarises the key strategies of image-guided respiratory motion management with a focus on lung and liver radiotherapy.
Collapse
|
18
|
Boekhoff M, Defize I, Borggreve A, Takahashi N, van Lier A, Ruurda J, van Hillegersberg R, Lagendijk J, Mook S, Meijer G. 3-Dimensional target coverage assessment for MRI guided esophageal cancer radiotherapy. Radiother Oncol 2020; 147:1-7. [DOI: 10.1016/j.radonc.2020.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/21/2023]
|