1
|
Wu YP, Wu L, Ou J, Tang S, Cao JM, Fu MY, Chen TW. Preoperative identification of small metastatic lymph nodes in esophageal squamous cell carcinoma using CT radiomics of lymph nodes. Abdom Radiol (NY) 2025; 50:1123-1132. [PMID: 39305294 DOI: 10.1007/s00261-024-04585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE To propose and validate a CT radiomics model utilizing radiomic features from lymph nodes (LNs) with maximum short axis diameter (MSAD) < 1 cm for predicting small metastatic LN (sMLN) in patients with resectable esophageal squamous cell carcinoma (ESCC). METHODS A total of 196 resectable patients with ESCC undergoing surgery were retrospectively enrolled, among whom 25% had sMLN. 146 out of 196 patients (from hospital 1) were randomly divided into the training (n = 116) and testing cohorts (n = 30) at an 8:2 ratio, while the remaining 50 patients from hospital 2 constituted the external validation cohort. Least absolute shrinkage and selection operator binary logistic regression was employed for radiomics feature dimensionality reduction and selection, and multivariable logistic regression analysis was used to construct the radiomics prediction model. The clinical features were statistically selected to develop the clinical model. And both the selected radiomics and clinical features were used to develop the combined model. The predictive value of models was assessed using the area under the receiver operating characteristic curves (AUC). RESULTS The LN radiomics model was constructed with 9 radiomics features, the clinical model was developed with 3 clinical features, and the combined model was developed using both the LN radiomics and clinical features. However, no statistical radiomics features from ESCC were extracted in dimensionality reduction. Compared to the clinical model, the combined model exhibited superior predictive ability (AUC: 0.893 vs. 0.766, P = 0.003), and the LN radiomics model showed slightly better predictive ability (AUC: 0.860 vs. 0.766, P = 0.153). It was validated in the test and external validation cohorts. CONCLUSION The combined model could assist in preoperatively identifying sMLN in resectable ESCC. It is beneficial for more accurate N staging and clinical comprehensive staging of ESCC, thereby facilitating the clinical physician to make more personalized and standardized treatment strategies.
Collapse
Affiliation(s)
- Yu-Ping Wu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Wu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Ou
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Sun Tang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jin-Ming Cao
- Department of Radiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Mao-Yong Fu
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tian-Wu Chen
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Zhou YH, Chen XL, Zhang X, Pu H, Li H. Dual-phase contrast-enhanced CT-based intratumoral and peritumoral radiomics for preoperative prediction of lymph node metastasis in gastric cancer. BMC Gastroenterol 2025; 25:123. [PMID: 40021977 PMCID: PMC11869644 DOI: 10.1186/s12876-025-03728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE To determine whether intratumoral and peritumoral radiomics derived from dual-phase contrast-enhanced CT imaging could predict lymph node metastasis (LNM) in gastric cancer. METHODS Patients with gastric cancer from January 2017 to January 2022 were retrospectively collected and were randomly divided into training cohort (n = 287) and test cohort (n = 121) with a ratio of 7: 3. Clinical features and traditional radiological features were analyzed to construct clinical model. Radiomics features based on intratumoral (ITV) and peritumoral volumetric (PTV) regions of the tumor were extracted and screened to construct radiomics models. Clinical-radiomics combined model was constructed by the most predictive radiomics features and clinical independent predictors. The correlation between LNM predicted by the best model and 2-year disease-free survival (DFS) was evaluated by the Kaplan-Meier analysis. RESULTS CT-LNM and CT-T stage were independent predictors of LNM. Compared with other radiomics models, ITV + PTV on atrial and venous phase (ITV + PTV-AP + VP) radiomics model presented moderate AUCs of 0.679 and 0.670 in the training cohort and validation cohort, respectively. Among the models, clinical-radiomics combined model achieved the highest AUC of 0.894 and 0.872 in the training and test cohorts, and 0.744 and 0.784 in the T1-2 and T3-4 subgroups, respectively. Clinical-radiomics combined model based LNM could stratify patients into high-risk and low-risk groups, and 2-year DFS of high-risk group was significantly lower than that of low-risk group (p < 0.001). CONCLUSION Clinical-radiomics combined model integrating CT-LNM, CT-T stage, and ITV-PTV-AP + VP radiomics features could predict LNM, and this combined model based LNM was associated with 2-year DFS.
Collapse
Affiliation(s)
- Yun-Hui Zhou
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610072, China
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College•Chengdu pidu District People's Hospital, 666# Second Section of Deyuan North Road, Pidu District, Chengdu, Sichuan, 611730, China
| | - Xiao-Li Chen
- Department of Radiology, Affiliated Cancer Hospital of Medical School, University of Electronic Science and Technology of China, Sichuan Cancer Hospital, Chengdu, 610000, China
| | - Xin Zhang
- GE Healthcare (China), 1# Tongji South Road, Daxing District, Beijing, 100176, China
| | - Hong Pu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610072, China
| | - Hang Li
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
3
|
Yu N, Ge X, Zuo L, Cao Y, Wang P, Liu W, Deng L, Zhang T, Wang W, Wang J, Lv J, Xiao Z, Feng Q, Zhou Z, Bi N, Zhang W, Wang X. Multi-Centered Pre-Treatment CT-Based Radiomics Features to Predict Locoregional Recurrence of Locally Advanced Esophageal Cancer After Definitive Chemoradiotherapy. Cancers (Basel) 2025; 17:126. [PMID: 39796752 PMCID: PMC11720276 DOI: 10.3390/cancers17010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025] Open
Abstract
Purpose: We constructed a prediction model to predict a 2-year locoregional recurrence based on the clinical features and radiomic features extracted from the machine learning method using computed tomography (CT) before definite chemoradiotherapy (dCRT) in locally advanced esophageal cancer. Patients and methods: A total of 264 patients (156 in Beijing, 87 in Tianjin, and 21 in Jiangsu) were included in this study. All those locally advanced esophageal cancer patients received definite radiotherapy and were randomly divided into five subgroups with a similar number and divided into training groups and validation groups by five cross-validations. The esophageal tumor and extratumoral esophagus were segmented to extract radiomic features from the gross tumor volume (GTV) drawn by radiation therapists before radiotherapy, and six clinical features associated with prognosis were added. T stage, N stage, M stage, total TNM stage, GTV, and GTVnd volume were included to construct a prediction model to predict the 2-year locoregional recurrence of patients after definitive radiotherapy. Results: A total of 264 patients were enrolled from August 2012 to April 2018, with a median age of 62 years and 81% were males. The 2-year locoregional recurrence rate was 52.6%, and the 2-year overall survival rate was 45.6%. About 66% of patients received concurrent chemotherapy. In total, we extracted 786 radiomic features from CT images and the Principal Component Analysis (PCA) method was used to screen out the maximum 30 features. Finally, the Support Vector Machine (SVM) method was used to construct the integrated prediction model combining radiomics and clinical features. In the five training groups for predicting locoregional recurrence, the mean value of C-index was 0.9841 (95%CI, 0.9809-0.9873), and in the five validation groups, the mean value was 0.744 (95%CI, 0.7437-0.7443). Conclusions: The integrated radiomics model could predict the 2-year locoregional recurrence after dCRT. The model showed promising results and could help guide treatment decisions by identifying high-risk patients and enabling strategies to prevent early recurrence.
Collapse
Affiliation(s)
- Nuo Yu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Xiaolin Ge
- Department of Radiation Oncology, Jiangsu Province Hospital/The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Lijing Zuo
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Ying Cao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Peipei Wang
- Department of Radiation Oncology, Jiangsu Province Hospital/The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wenyang Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Wenqing Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Jianyang Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Jima Lv
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Zefen Xiao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Qinfu Feng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Zongmei Zhou
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institution & Hospital, Tianjin 300060, China
| | - Xin Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.Y.)
| |
Collapse
|
4
|
Sun J, Wang Z, Zhu H, Yang Q, Sun Y. Advanced Gastric Cancer: CT Radiomics Prediction of Lymph Modes Metastasis After Neoadjuvant Chemotherapy. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2910-2919. [PMID: 38886288 PMCID: PMC11612076 DOI: 10.1007/s10278-024-01148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
This study aims to create and assess machine learning models for predicting lymph node metastases following neoadjuvant treatment in advanced gastric cancer (AGC) using baseline and restaging computed tomography (CT). We evaluated CT images and pathological data from 158 patients with resected stomach cancer from two institutions in this retrospective analysis. Patients were eligible for inclusion if they had histologically proven gastric cancer. They had received neoadjuvant chemotherapy, with at least 15 lymph nodes removed. All patients received baseline and preoperative abdominal CT and had complete clinicopathological reports. They were divided into two cohorts: (a) the primary cohort (n = 125) for model creation and (b) the testing cohort (n = 33) for evaluating models' capacity to predict the existence of lymph node metastases. The diagnostic ability of the radiomics-model for lymph node metastasis was compared to traditional CT morphological diagnosis by radiologist. The radiomics model based on the baseline and preoperative CT images produced encouraging results in the training group (AUC 0.846) and testing cohort (AUC 0.843). In the training cohort, the sensitivity and specificity were 81.3% and 77.8%, respectively, whereas in the testing cohort, they were 84% and 75%. The diagnostic sensitivity and specificity of the radiologist were 70% and 42.2% (using baseline CT) and 46.3% and 62.2% (using preoperative CT). In particular, the specificity of radiomics model was higher than that of conventional CT in diagnosing N0 cases (no lymph node metastasis). The CT-based radiomics model could assess lymph node metastasis more accurately than traditional CT imaging in AGC patients following neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Jia Sun
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 GongtiSouth Road, Chaoyang District, Beijing, Beijing, 100020, China
| | - Zhilong Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Haitao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qi Yang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 GongtiSouth Road, Chaoyang District, Beijing, Beijing, 100020, China.
| | - Yingshi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
5
|
Shi W, Su Y, Zhang R, Xia W, Lian Z, Mao N, Wang Y, Zhang A, Gao X, Zhang Y. Prediction of axillary lymph node metastasis using a magnetic resonance imaging radiomics model of invasive breast cancer primary tumor. Cancer Imaging 2024; 24:122. [PMID: 39272199 PMCID: PMC11395190 DOI: 10.1186/s40644-024-00771-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND This study investigated the clinical value of breast magnetic resonance imaging (MRI) radiomics for predicting axillary lymph node metastasis (ALNM) and to compare the discriminative abilities of different combinations of MRI sequences. METHODS This study included 141 patients diagnosed with invasive breast cancer from two centers (center 1: n = 101, center 2: n = 40). Patients from center 1 were randomly divided into training set and test set 1. Patients from center 2 were assigned to the test set 2. All participants underwent preoperative MRI, and four distinct MRI sequences were obtained. The volume of interest (VOI) of the breast tumor was delineated on the dynamic contrast-enhanced (DCE) postcontrast phase 2 sequence, and the VOIs of other sequences were adjusted when required. Subsequently, radiomics features were extracted from the VOIs using an open-source package. Both single- and multisequence radiomics models were constructed using the logistic regression method in the training set. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and precision of the radiomics model for the test set 1 and test set 2 were calculated. Finally, the diagnostic performance of each model was compared with the diagnostic level of junior and senior radiologists. RESULTS The single-sequence ALNM classifier derived from DCE postcontrast phase 1 had the best performance for both test set 1 (AUC = 0.891) and test set 2 (AUC = 0.619). The best-performing multisequence ALNM classifiers for both test set 1 (AUC = 0.910) and test set 2 (AUC = 0.717) were generated from DCE postcontrast phase 1, T2-weighted imaging, and diffusion-weighted imaging single-sequence ALNM classifiers. Both had a higher diagnostic level than the junior and senior radiologists. CONCLUSIONS The combination of DCE postcontrast phase 1, T2-weighted imaging, and diffusion-weighted imaging radiomics features had the best performance in predicting ALNM from breast cancer. Our study presents a well-performing and noninvasive tool for ALNM prediction in patients with breast cancer.
Collapse
Affiliation(s)
- Wei Shi
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yingshi Su
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511400, China
| | - Rui Zhang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Wei Xia
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Zhenqiang Lian
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511400, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, China
| | - Yanyu Wang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Anqin Zhang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511400, China
| | - Xin Gao
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China.
- Jinan Guoke Medical Engineering and Technology Development Co., Ltd., Jinan, Shandong, 250101, China.
| | - Yan Zhang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511400, China.
| |
Collapse
|
6
|
Wu A, Hu T, Lai C, Zeng Q, Luo L, Shu X, Huang P, Wang Z, Feng Z, Zhu Y, Cao Y, Li Z. Screening of gastric cancer diagnostic biomarkers in the homologous recombination signaling pathway and assessment of their clinical and radiomic correlations. Cancer Med 2024; 13:e70153. [PMID: 39206620 PMCID: PMC11358765 DOI: 10.1002/cam4.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Homologous recombination plays a vital role in the occurrence and drug resistance of gastric cancer. This study aimed to screen new gastric cancer diagnostic biomarkers in the homologous recombination pathway and then used radiomic features to construct a prediction model of biomarker expression to guide the selection of chemotherapy regimens. METHODS Gastric cancer transcriptome data were downloaded from The Cancer Genome Atlas database. Machine learning methods were used to screen for diagnostic biomarkers of gastric cancer and validate them experimentally. Computed Tomography image data of gastric cancer patients and corresponding clinical data were downloaded from The Cancer Imaging Archive and our imaging centre, and then the Computed Tomography images were subjected to feature extraction, and biomarker expression prediction models were constructed to analyze the correlation between the biomarker radiomics scores and clinicopathological features. RESULTS We screened RAD51D and XRCC2 in the homologous recombination pathway as biomarkers for gastric cancer diagnosis by machine learning, and the expression of RAD51D and XRCC2 was significantly positively correlated with pathological T stage, N stage, and TNM stage. Homologous recombination pathway blockade inhibits gastric cancer cell proliferation, promotes apoptosis, and reduces the sensitivity of gastric cancer cells to chemotherapeutic drugs. Our predictive RAD51D and XRCC2 expression models were constructed using radiomics features, and all the models had high accuracy. In the external validation cohort, the predictive models still had decent accuracy. Moreover, the radiomics scores of RAD51D and XRCC2 were also significantly positively correlated with the pathologic T, N, and TNM stages. CONCLUSIONS The gastric cancer diagnostic biomarkers RAD51D and XRCC2 that we screened can, to a certain extent, reflect the expression status of genes through radiomic characteristics, which is of certain significance in guiding the selection of chemotherapy regimens for gastric cancer patients.
Collapse
Affiliation(s)
- Ahao Wu
- Department of Digestive Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Medical Innovation CentreThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Tengcheng Hu
- Department of Digestive Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Chao Lai
- Department of Digestive Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Qingwen Zeng
- Department of Digestive Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Lianghua Luo
- Department of Digestive Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xufeng Shu
- Department of Digestive Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Pan Huang
- Department of Digestive Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Zhonghao Wang
- Department of Digestive Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Zongfeng Feng
- Department of Digestive Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yanyan Zhu
- Department of RadiologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Yi Cao
- Department of Digestive Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Zhengrong Li
- Department of Digestive Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Department of Digestive Surgery, Digestive Disease HospitalThe Third Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
7
|
Liu DY, Hu JJ, Zhou YQ, Tan AR. Analysis of lymph node metastasis and survival prognosis in early gastric cancer patients: A retrospective study. World J Gastrointest Surg 2024; 16:1637-1646. [PMID: 38983358 PMCID: PMC11230020 DOI: 10.4240/wjgs.v16.i6.1637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Early gastric cancer (EGC) is a common malignant tumor of the digestive system, and its lymph node metastasis and survival prognosis have been concerning. By retrospectively analyzing the clinical data of EGC patients, we can better understand the status of lymph node metastasis and its impact on survival and prognosis. AIM To evaluate the prognosis of EGC patients and the factors that affect lymph node metastasis. METHODS The clinicopathological data of 1011 patients with EGC admitted to our hospital between January 2015 and December 2023 were collected in a retrospective cohort study. There were 561 males and 450 females. The mean age was 58 ± 11 years. The patient underwent radical gastrectomy. The status of lymph node metastasis in each group was determined according to the pathological examination results of surgical specimens. The outcomes were as follows: (1) Lymph node metastasis in EGC patients; (2) Analysis of influencing factors of lymph node metastasis in EGC; and (3) Analysis of prognostic factors in patients with EGC. Normally distributed measurement data are expressed as mean ± SD, and a t test was used for comparisons between groups. The data are expressed as absolute numbers or percentages, and the chi-square test was used for comparisons between groups. Rank data were compared using a nonparametric rank sum test. A log-rank test and a logistic regression model were used for univariate analysis. A logistic stepwise regression model and a Cox stepwise regression model were used for multivariate analysis. The Kaplan-Meier method was used to calculate the survival rate and construct survival curves. A log-rank test was used for survival analysis. RESULTS Analysis of influencing factors of lymph node metastasis in EGC. The results of the multifactor analysis showed that tumor length and diameter, tumor site, tumor invasion depth, vascular thrombus, and tumor differentiation degree were independent influencing factors for lymph node metastasis in patients with EGC (odds ratios = 1.80, 1.49, 2.65, 5.76, and 0.60; 95%CI: 1.29-2.50, 1.11-2.00, 1.81-3.88, 3.87-8.59, and 0.48-0.76, respectively; P < 0.05). Analysis of prognostic factors in patients with EGC. All 1011 patients with EGC were followed up for 43 (0-13) months. The 3-year overall survival rate was 97.32%. Multivariate analysis revealed that age > 60 years and lymph node metastasis were independent risk factors for prognosis in patients with EGC (hazard ratio = 9.50, 2.20; 95%CI: 3.31-27.29, 1.00-4.87; P < 0.05). Further analysis revealed that the 3-year overall survival rates of gastric cancer patients aged > 60 years and ≤ 60 years were 99.37% and 94.66%, respectively, and the difference was statistically significant (P < 0.05). The 3-year overall survival rates of patients with and without lymph node metastasis were 95.42% and 97.92%, respectively, and the difference was statistically significant (P < 0.05). CONCLUSION The lymph node metastasis rate of EGC patients was 23.64%. Tumor length, tumor site, tumor infiltration depth, vascular cancer thrombin, and tumor differentiation degree were found to be independent factors affecting lymph node metastasis in EGC patients. Age > 60 years and lymph node metastasis are independent risk factors for EGC prognosis.
Collapse
Affiliation(s)
- Dong-Yuan Liu
- Department of General Surgery, The 971st Hospital of Chinese People's Liberation Army, Qingdao 266071, Shandong Province, China
| | - Jin-Jin Hu
- Department of Chest Surgery, Feicheng People's Hospital, Feicheng 271600, Shandong Province, China
| | - Yong-Quan Zhou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Ai-Rong Tan
- Department of Oncology, Qingdao Municipal Hospital, Qingdao 266000, Shandong Province, China
| |
Collapse
|
8
|
Mu J, Cao Y, Zhong X, Diao W, Jia Z. Prediction of cervical lymph node metastasis in differentiated thyroid cancer based on radiomics models. Br J Radiol 2024; 97:526-534. [PMID: 38366237 PMCID: PMC11027254 DOI: 10.1093/bjr/tqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/06/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
OBJECTIVE The accurate clinical diagnosis of cervical lymph node metastasis plays an important role in the treatment of differentiated thyroid cancer (DTC). This study aimed to explore and summarize a more objective approach to detect cervical malignant lymph node metastasis of DTC via radiomics models. METHODS PubMed, Web of Science, MEDLINE, EMBASE, and Cochrane databases were searched for all eligible studies. Articles using radiomics models based on ultrasound, computed tomography, or magnetic resonance imaging to assess cervical lymph node metastasis preoperatively were included. Characteristics and diagnostic accuracy measures were extracted. Bias and applicability judgments were evaluated by the revised QUADAS-2 tool. The estimates were pooled using a random-effects model. Additionally, the leave-one-out method was conducted to assess the heterogeneity. RESULTS Twenty-nine radiomics studies with 6160 validation set patients were included in the qualitative analysis, and 11 studies with 3863 validation set patients were included in the meta-analysis. Four of them had an external independent validation set. The studies were heterogeneous, and a significant risk of bias was found in 29 studies. Meta-analysis showed that the pooled sensitivity and specificity for preoperative prediction of lymph node metastasis via US-based radiomics were 0.81 (95% CI, 0.73-0.86) and 0.87 (95% CI, 0.83-0.91), respectively. CONCLUSIONS Although radiomics-based models for cervical lymphatic metastasis in DTC have been demonstrated to have moderate diagnostic capabilities, broader data, standardized radiomics features, robust feature selection, and model exploitation are still needed in the future. ADVANCES IN KNOWLEDGE The radiomics models showed great potential in detecting malignant lymph nodes in thyroid cancer.
Collapse
Affiliation(s)
- Jingshi Mu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Zhong
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Diao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
9
|
Zhan PC, Yang T, Zhang Y, Liu KY, Li Z, Zhang YY, Liu X, Liu NN, Wang HX, Shang B, Chen Y, Jiang HY, Zhao XT, Shao JH, Chen Z, Wang XD, Wang K, Gao JB, Lyu PJ. Radiomics using CT images for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma: a multi-centric study. Eur Radiol 2024; 34:1280-1291. [PMID: 37589900 DOI: 10.1007/s00330-023-10108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/07/2023] [Accepted: 06/29/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVES To develop a CT-based radiomics model for preoperative prediction of lymph node (LN) metastasis in perihilar cholangiocarcinoma (pCCA). METHODS The study enrolled consecutive pCCA patients from three independent Chinese medical centers. The Boruta algorithm was applied to build the radiomics signature for the primary tumor and LN. The k-means algorithm was employed to cluster the selected LNs based on the radiomics signature LN. Support vector machines were used to construct the prediction models. The diagnostic efficiency was measured by the area under the receiver operating characteristic curve (AUC). The optimal model was evaluated in terms of calibration, clinical usefulness, and prognostic value. RESULTS A total of 214 patients were included in the study (mean age: 61.6 years ± 9.4; 130 male). The selected LNs were classified into two clusters, which were significantly correlated with LN metastasis in all cohorts (p < 0.001). The model incorporated the clinical risk factors, radiomics signature primary tumor, and the LN cluster obtained the best discrimination, with AUC values of 0.981 (95% CI: 0.962-1), 0.896 (95% CI: 0.810-0.982), and 0.865 (95% CI: 0.768-0.961) in the training, internal validation, and external validation cohorts, respectively. High-risk patients predicted by the optimal model had shorter overall survival than low-risk patients (median, 13.7 vs. 27.3 months, p < 0.001). CONCLUSIONS The study proposed a radiomics model with good performance to predict LN metastasis in pCCA. As a noninvasive preoperative prediction tool, this model may help in patient risk stratification and personalized treatment. CLINICAL RELEVANCE STATEMENT A CT-based radiomics model accurately predicts lymph node metastasis in perihilar cholangiocarcinoma patients. This noninvasive preoperative tool can aid in patient risk stratification and personalized treatment, potentially improving patient outcomes. KEY POINTS • The radiomics model based on contrast-enhanced CT is a useful tool for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma. • Radiomics features extracted from lymph nodes show great potential for predicting lymph node metastasis. • The study is the first to identify a lymph node phenotype with a high probability of metastasis based on radiomics.
Collapse
Affiliation(s)
- Peng-Chao Zhan
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, ZhengzhouZhengzhou, 450052, China
| | - Ting Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuan Zhang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ke-Yan Liu
- Zhengzhou University Medical College, Zhengzhou, 450052, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yu-Yuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xing Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, ZhengzhouZhengzhou, 450052, China
| | - Na-Na Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, ZhengzhouZhengzhou, 450052, China
| | - Hui-Xia Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, ZhengzhouZhengzhou, 450052, China
| | - Bo Shang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, ZhengzhouZhengzhou, 450052, China
| | - Yan Chen
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, ZhengzhouZhengzhou, 450052, China
| | - Han-Yu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang-Tian Zhao
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jing-Hai Shao
- Department of Radiology, He Nan Sui Xian People's Hospital, Shangqiu, 476000, China
| | - Zhe Chen
- Department of Radiology, People's Hospital of Tanghe, Nanyang, 473000, China
| | - Xin-Dong Wang
- Department of Radiology, People's Hospital of Tanghe, Nanyang, 473000, China
| | - Kang Wang
- Department of Radiology, People's Hospital of Tanghe, Nanyang, 473000, China
| | - Jian-Bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, ZhengzhouZhengzhou, 450052, China.
| | - Pei-Jie Lyu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, ZhengzhouZhengzhou, 450052, China.
| |
Collapse
|
10
|
Wu YP, Wu L, Ou J, Cao JM, Fu MY, Chen TW, Ouchi E, Hu J. Preoperative CT radiomics of esophageal squamous cell carcinoma and lymph node to predict nodal disease with a high diagnostic capability. Eur J Radiol 2024; 170:111197. [PMID: 37992611 DOI: 10.1016/j.ejrad.2023.111197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE To develop CT radiomics models of resectable esophageal squamous cell carcinoma (ESCC) and lymph node (LN) to preoperatively identify LN+. MATERIALS AND METHODS 299 consecutive patients with ESCC were enrolled in the study, 140 of whom were LN+ and 159 were LN-. Of the 299 patients, 249 (from the same hospital) were randomly divided into a training cohort (n = 174) and a test cohort (n = 75). The remaining 50 patients, from a second hospital, were assigned to an external validation cohort. In the training cohort, preoperative contrast-enhanced CT radiomics features of ESCC and LN were extracted, then integrated with clinical features to develop three models: ESCC, LN and combined. The performance of these models was assessed using area under receiver operating characteristic curve (AUC), and F-1 score, which were validated in both the test cohort and external validation cohort. RESULTS An ESCC model was developed for the training cohort utilizing the 8 tumor radiomics features, and an LN model was constructed using 9 nodal radiomics features. A combined model was constructed using both ESCC and LN extracted features, in addition to cT stage and LN+ distribution. This combined model had the highest predictive ability among the three models in the training cohort (AUC = 0.948, F1-score = 0.878). The predictive ability was validated in both the test and external validation cohorts (AUC = 0.885 and 0.867, F1-score = 0.816 and 0.773, respectively). CONCLUSION To preoperatively determine LN+, the combined model is superior to models of ESCC and LN alone.
Collapse
Affiliation(s)
- Yu-Ping Wu
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lan Wu
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Ou
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jin-Ming Cao
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China; Department of Radiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Mao-Yong Fu
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tian-Wu Chen
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Erika Ouchi
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
11
|
Zhang M, Wang Y, Lv M, Sang L, Wang X, Yu Z, Yang Z, Wang Z, Sang L. Trends and Hotspots in Global Radiomics Research: A Bibliometric Analysis. Technol Cancer Res Treat 2024; 23:15330338241235769. [PMID: 38465611 DOI: 10.1177/15330338241235769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Objectives: The purpose of this research is to summarize the structure of radiomics-based knowledge and to explore potential trends and priorities by using bibliometric analysis. Methods: Select radiomics-related publications from 2012 to October 2022 from the Science Core Collection Web site. Use VOSviewer (version 1.6.18), CiteSpace (version 6.1.3), Tableau (version 2022), Microsoft Excel and Rstudio's free online platforms (http://bibliometric.com) for co-writing, co-citing, and co-occurrence analysis of countries, institutions, authors, references, and keywords in the field. The visual analysis is also carried out on it. Results: The study included 6428 articles. Since 2012, there has been an increase in research papers based on radiomics. Judging by publications, China has made the largest contribution in this area. We identify the most productive institutions and authors as Fudan University and Tianjie. The top three magazines with the most publications are《FRONTIERS IN ONCOLOGY》, 《EUROPEAN RADIOLOGY》, and 《CANCERS》. According to the results of reference and keyword analysis, "deep learning, nomogram, ultrasound, f-18-fdg, machine learning, covid-19, radiogenomics" has been determined as the main research direction in the future. Conclusion: Radiomics is in a phase of vigorous development with broad prospects. Cross-border cooperation between countries and institutions should be strengthened in the future. It can be predicted that the development of deep learning-based models and multimodal fusion models will be the focus of future research. Advances in knowledge: This study explores the current state of research and hot spots in the field of radiomics from multiple perspectives, comprehensively, and objectively reflecting the evolving trends in imaging-related research and providing a reference for future research.
Collapse
Affiliation(s)
- Minghui Zhang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Yan Wang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Mutian Lv
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Li Sang
- Department of Acupuncture and Massage, Shouguang Hospital of Traditional Chinese Medicine, Weifang, P. R. China
| | - Xuemei Wang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zijun Yu
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Ziyi Yang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
12
|
HajiEsmailPoor Z, Tabnak P, Baradaran B, Pashazadeh F, Aghebati-Maleki L. Diagnostic performance of CT scan-based radiomics for prediction of lymph node metastasis in gastric cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1185663. [PMID: 37936604 PMCID: PMC10627242 DOI: 10.3389/fonc.2023.1185663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/30/2023] [Indexed: 11/09/2023] Open
Abstract
Objective The purpose of this study was to evaluate the diagnostic performance of computed tomography (CT) scan-based radiomics in prediction of lymph node metastasis (LNM) in gastric cancer (GC) patients. Methods PubMed, Embase, Web of Science, and Cochrane Library databases were searched for original studies published until 10 November 2022, and the studies satisfying the inclusion criteria were included. Characteristics of included studies and radiomics approach and data for constructing 2 × 2 tables were extracted. The radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) were utilized for the quality assessment of included studies. Overall sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to assess diagnostic accuracy. The subgroup analysis and Spearman's correlation coefficient was done for exploration of heterogeneity sources. Results Fifteen studies with 7,010 GC patients were included. We conducted analyses on both radiomics signature and combined (based on signature and clinical features) models. The pooled sensitivity, specificity, DOR, and AUC of radiomics models compared to combined models were 0.75 (95% CI, 0.67-0.82) versus 0.81 (95% CI, 0.75-0.86), 0.80 (95% CI, 0.73-0.86) versus 0.85 (95% CI, 0.79-0.89), 13 (95% CI, 7-23) versus 23 (95% CI, 13-42), and 0.85 (95% CI, 0.81-0.86) versus 0.90 (95% CI, 0.87-0.92), respectively. The meta-analysis indicated a significant heterogeneity among studies. The subgroup analysis revealed that arterial phase CT scan, tumoral and nodal regions of interest (ROIs), automatic segmentation, and two-dimensional (2D) ROI could improve diagnostic accuracy compared to venous phase CT scan, tumoral-only ROI, manual segmentation, and 3D ROI, respectively. Overall, the quality of studies was quite acceptable based on both QUADAS-2 and RQS tools. Conclusion CT scan-based radiomics approach has a promising potential for the prediction of LNM in GC patients preoperatively as a non-invasive diagnostic tool. Methodological heterogeneity is the main limitation of the included studies. Systematic review registration https://www.crd.york.ac.uk/Prospero/display_record.php?RecordID=287676, identifier CRD42022287676.
Collapse
Affiliation(s)
| | - Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-based Medicine, Iranian Evidence-Based Medicine (EBM) Centre: A Joanna Briggs Institute (JBI) Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Xue Y, Zhang H, Zheng Z, Liu X, Yin J, Zhang J. Predictive performance of radiomics for peritoneal metastasis in patients with gastric cancer: a meta-analysis and radiomics quality assessment. J Cancer Res Clin Oncol 2023; 149:12103-12113. [PMID: 37422882 DOI: 10.1007/s00432-023-05096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE The purpose of this meta-analysis is to systematically review the diagnostic performance of radiomic techniques in predicting peritoneal metastasis in patients with gastric cancer, and to evaluate the quality of current research. METHODS We searched PubMed, Web of Science, EBSCO, Embase, and Cochrane databases for relevant studies up to April 3, 2023. Data extraction and quality evaluation were performed by two independent reviewers. Then we performed statistical analysis, including plotting the forest plot and summary receiver operating characteristic (SROC) curve, and source of heterogeneity analysis, through the MIDAS module in Stata 15. We performed meta-regression and subgroup analyses to analyze the sources of heterogeneity. Using the QUADAS-2 scale and the RQS scale to assess the quality of retrieved studies. RESULTS Ten studies with 6199 patients were finally included in our meta-analysis. Pooled sensitivity and specificity were 0.77 (95% confidence interval [CI]: 0.66, 0.86), and 0.88 (95% CI 0.80, 0.93), respectively. The overall AUC was 0.89 (95% CI 0.86, 0.92). The heterogeneity of this meta-analysis was high, with I2 = 88% (95% CI 75,100). The result of meta-regression showed that QUADAS-2 results, RQS results and machine learning method led to heterogeneity in sensitivity and specificity (P < 0.05). Furthermore, the image segmentation area and the presence or absence of combined clinical factors were associated with sensitivity heterogeneity and specificity heterogeneity, respectively. CONCLUSION Undoubtedly, radiomics has potential value in diagnosing peritoneal metastasis of gastric cancer, but the quality of current research is inconsistent, and more standardized and high-quality research is still needed in the future to achieve the transformation of radiomics results into clinical applications.
Collapse
Affiliation(s)
- Yasheng Xue
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Haiqiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Xiaoye Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
14
|
Ruiqing L, Jing Y, Shunli L, Jia K, Zhibo W, Hongping Z, Keyu R, Xiaoming Z, Zhiming W, Weiming Z, Tianye N, Yun L. A Novel Radiomics Model Integrating Luminal and Mesenteric Features to Predict Mucosal Activity and Surgery Risk in Crohn's Disease Patients: A Multicenter Study. Acad Radiol 2023; 30 Suppl 1:S207-S219. [PMID: 37149448 DOI: 10.1016/j.acra.2023.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND To investigate the feasibility of integrating radiomics and morphological features based on computed tomography enterography (CTE) for developing a noninvasive grading model for mucosal activity and surgery risk of Crohn's disease (CD) patients. METHODS A total of 167 patients from three centers were enrolled. Radiomics and image morphological features were extracted to quantify segmental and global simple endoscopic score for Crohn's disease (SES-CD). An image-fusion-based support vector machine (SVM) classifier was used for grading SES-CD and identifying moderate-to-severe SES-CD. The performance of the predictive model was assessed using the area under the receiver operating characteristic curve (AUC). A multiparametric model was developed to predict surgical progression in CD patients by combining sum-image scores and clinical data. RESULTS The AUC values of the multicategorical segmental SES-CD fusion radiomic model based on a combination of luminal and mesenteric radiomics were 0.828 and 0.709 in training and validation cohorts. The image fusion model integrating the fusion radiomics and morphological features could accurately distinguish bowel segments with moderate-to-severe SES-CD in both the training cohort (AUC = 0.847, 95% confidence interval (CI): 0.784-0.902) and the validation cohort (AUC = 0.896, 95% CI: 0.812-0.960). A predictive nomogram for interval surgery was developed based on multivariable cox analysis. CONCLUSIONS This study demonstrated the feasibility of integrating lumen and mesentery radiomic features to develop a promising noninvasive grading model for mucosal activity of CD. In combination with clinical data, the fusion-image score may yield an accurate prognostic model for time to surgery.
Collapse
Affiliation(s)
- Liu Ruiqing
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Jiangsu Road 16#, Qingdao, Shandong 266400, People's Republic of China
| | - Yang Jing
- Institute of Translational Medicine, Zhejiang University, Hangzhou, ZJ, China
| | - Liu Shunli
- Department of Radiology, The Affiliated Hospital of Qingdao University Qingdao, Qingdao, SD, China
| | - Ke Jia
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, GD, China
| | - Wang Zhibo
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Jiangsu Road 16#, Qingdao, Shandong 266400, People's Republic of China
| | - Zhu Hongping
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Jiangsu Road 16#, Qingdao, Shandong 266400, People's Republic of China
| | - Ren Keyu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, SD, China
| | - Zhou Xiaoming
- Department of Radiology, The Affiliated Hospital of Qingdao University Qingdao, Qingdao, SD, China
| | - Wang Zhiming
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, JS, China
| | - Zhu Weiming
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, JS, China
| | - Niu Tianye
- Shenzhen Bay Laboratory, Shenzhen, GD, China
| | - Lu Yun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Jiangsu Road 16#, Qingdao, Shandong 266400, People's Republic of China.
| |
Collapse
|
15
|
Miccichè F, Rizzo G, Casà C, Leone M, Quero G, Boldrini L, Bulajic M, Corsi DC, Tondolo V. Role of radiomics in predicting lymph node metastasis in gastric cancer: a systematic review. Front Med (Lausanne) 2023; 10:1189740. [PMID: 37663653 PMCID: PMC10469447 DOI: 10.3389/fmed.2023.1189740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Gastric cancer (GC) is an aggressive and clinically heterogeneous tumor, and better risk stratification of lymph node metastasis (LNM) could lead to personalized treatments. The role of radiomics in the prediction of nodal involvement in GC has not yet been systematically assessed. This study aims to assess the role of radiomics in the prediction of LNM in GC. Methods A PubMed/MEDLINE systematic review was conducted to assess the role of radiomics in LNM. The inclusion criteria were as follows: i. original articles, ii. articles on radiomics, and iii. articles on LNM prediction in GC. All articles were selected and analyzed by a multidisciplinary board of two radiation oncologists and one surgeon, under the supervision of one radiation oncologist, one surgeon, and one medical oncologist. Results A total of 171 studies were obtained using the search strategy mentioned on PubMed. After the complete selection process, a total of 20 papers were considered eligible for the analysis of the results. Radiomics methods were applied in GC to assess the LNM risk. The number of patients, imaging modalities, type of predictive models, number of radiomics features, TRIPOD classification, and performances of the models were reported. Conclusions Radiomics seems to be a promising approach for evaluating the risk of LNM in GC. Further and larger studies are required to evaluate the clinical impact of the inclusion of radiomics in a comprehensive decision support system (DSS) for GC.
Collapse
Affiliation(s)
- Francesco Miccichè
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Gianluca Rizzo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Calogero Casà
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Mariavittoria Leone
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Giuseppe Quero
- U.O.C. di Chirurgia Digestiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- U.O.C. di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Milutin Bulajic
- U.O.C. di Endoscopia Digestiva, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | | | - Vincenzo Tondolo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| |
Collapse
|
16
|
Schena CA, Laterza V, De Sio D, Quero G, Fiorillo C, Gunawardena G, Strippoli A, Tondolo V, de'Angelis N, Alfieri S, Rosa F. The Role of Staging Laparoscopy for Gastric Cancer Patients: Current Evidence and Future Perspectives. Cancers (Basel) 2023; 15:3425. [PMID: 37444535 DOI: 10.3390/cancers15133425] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A significant proportion of patients diagnosed with gastric cancer is discovered with peritoneal metastases at laparotomy. Despite the continuous improvement in the performance of radiological imaging, the preoperative recognition of such an advanced disease is still challenging during the diagnostic work-up, since the sensitivity of CT scans to peritoneal carcinomatosis is not always adequate. Staging laparoscopy offers the chance to significantly increase the rate of promptly diagnosed peritoneal metastases, thus reducing the number of unnecessary laparotomies and modifying the initial treatment strategy of gastric cancer. The aim of this review was to provide a comprehensive summary of the current literature regarding the role of staging laparoscopy in the management of gastric cancer. Indications, techniques, accuracy, advantages, and limitations of staging laparoscopy and peritoneal cytology were discussed. Furthermore, a focus on current evidence regarding the application of artificial intelligence and image-guided surgery in staging laparoscopy was included in order to provide a picture of the future perspectives of this technique and its integration with modern tools in the preoperative management of gastric cancer.
Collapse
Affiliation(s)
- Carlo Alberto Schena
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Unit of Colorectal and Digestive Surgery, DIGEST Department, Beaujon University Hospital, AP-HP, University of Paris Cité, Clichy, 92110 Paris, France
| | - Vito Laterza
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Davide De Sio
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giuseppe Quero
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Digestive Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Claudio Fiorillo
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gayani Gunawardena
- Department of Digestive Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonia Strippoli
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vincenzo Tondolo
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Nicola de'Angelis
- Unit of Colorectal and Digestive Surgery, DIGEST Department, Beaujon University Hospital, AP-HP, University of Paris Cité, Clichy, 92110 Paris, France
| | - Sergio Alfieri
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Digestive Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fausto Rosa
- Department of Digestive Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Emergency and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
17
|
Lin JX, Wang FH, Wang ZK, Wang JB, Zheng CH, Li P, Huang CM, Xie JW. Prediction of the mitotic index and preoperative risk stratification of gastrointestinal stromal tumors with CT radiomic features. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01637-2. [PMID: 37148481 DOI: 10.1007/s11547-023-01637-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE The objective is to develop a mitotic prediction model and preoperative risk stratification nomogram for gastrointestinal stromal tumor (GIST) based on computed tomography (CT) radiomic features. METHODS A total of 267 GIST patients from 2009.07 to 2015.09 were retrospectively collected and randomly divided into (6:4) training cohort and validation cohort. The 2D-tumor region of interest was delineated from the portal-phase images on contrast-enhanced (CE)-CT, and radiomic features were extracted. Lasso regression method was used to select valuable features to establish a radiomic model for predicting mitotic index in GIST. Finally, the nomogram of preoperative risk stratification was constructed by combining the radiomic features and clinical risk factors. RESULTS Four radiomic features closely related to the level of mitosis were obtained, and a mitotic radiomic model was constructed. The area under the curve (AUC) of the radiomics signature model used to predict mitotic levels in training and validation cohorts (training cohort AUC = 0.752; 95% confidence interval [95%CI] 0.674-0.829; validation cohort AUC = 0.764; 95% CI 0.667-0.862). Finally, the preoperative risk stratification nomogram combining radiomic features was equivalent to the clinically recognized gold standard AUC (0.965 vs. 0.983) (p = 0.117). The Cox regression analysis found that the nomogram score was one of the independent risk factors for the long-term prognosis of the patients. CONCLUSION Preoperative CT radiomic features can effectively predict the level of mitosis in GIST, and combined with preoperative tumor size, accurate preoperative risk stratification can be performed to guide clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fu-Hai Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zu-Kai Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
- Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
18
|
Chen C, Geng Q, Song G, Zhang Q, Wang Y, Sun D, Zeng Q, Dai Z, Wang G. A comprehensive nomogram combining CT-based radiomics with clinical features for differentiation of benign and malignant lung subcentimeter solid nodules. Front Oncol 2023; 13:1066360. [PMID: 37007065 PMCID: PMC10064794 DOI: 10.3389/fonc.2023.1066360] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
ObjectiveTo establish a nomogram based on non-enhanced computed tomography(CT) imaging radiomics and clinical features for use in predicting the malignancy of sub-centimeter solid nodules (SCSNs).Materials and methodsRetrospective analysis was performed of records for 198 patients with SCSNs that were surgically resected and examined pathologically at two medical institutions between January 2020 and June 2021. Patients from Center 1 were included in the training cohort (n = 147), and patients from Center 2 were included in the external validation cohort (n = 52). Radiomic features were extracted from chest CT images. The least absolute shrinkage and selection operator (LASSO) regression model was used for radiomic feature extraction and computation of radiomic scores. Clinical features, subjective CT findings, and radiomic scores were used to build multiple predictive models. Model performance was examined by evaluating the area under the receiver operating characteristic curve (AUC). The best model was selected for efficacy evaluation in a validation cohort, and column line plots were created.ResultsPulmonary malignant nodules were significantly associated with vascular alterations in both the training (p < 0.001) and external validation (p < 0.001) cohorts. Eleven radiomic features were selected after a dimensionality reduction to calculate the radiomic scores. Based on these findings, three prediction models were constructed: subjective model (Model 1), radiomic score model (Model 2), and comprehensive model (Model 3), with AUCs of 0.672, 0.888, and 0.930, respectively. The optimal model with an AUC of 0.905 was applied to the validation cohort, and decision curve analysis indicated that the comprehensive model column line plot was clinically useful.ConclusionPredictive models constructed based on CT-based radiomics with clinical features can help clinicians diagnose pulmonary nodules and guide clinical decision making.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Qun Geng
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Gesheng Song
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical Unversity, Jinan, China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Youruo Wang
- Elite Class of 2017, Shandong First Medical University, Jinan, China
| | - Dongfeng Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Qingshi Zeng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical Unversity, Jinan, China
| | - Zhengjun Dai
- Scientific Research Department, Huiying Medical Technology Co., Ltd, Beijing, China
| | - Gongchao Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Gongchao Wang,
| |
Collapse
|
19
|
Du G, Zeng Y, Chen D, Zhan W, Zhan Y. Application of radiomics in precision prediction of diagnosis and treatment of gastric cancer. Jpn J Radiol 2023; 41:245-257. [PMID: 36260211 DOI: 10.1007/s11604-022-01352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022]
Abstract
Gastric cancer is one of the most common malignant tumors. Although some progress has been made in chemotherapy and surgery, it is still one of the highest mortalities in the world. Therefore, early detection, diagnosis and treatment are very important to improve the prognosis of patients. In recent years, with the proposal of the concept of radiomics, it has been gradually applied to histopathological grading, differential diagnosis, therapeutic efficacy and prognosis evaluation of gastric cancer, whose advantage is to comprehensively quantify the tumor phenotype using a large number of quantitative image features, so as to predict and diagnose the lesion area of gastric cancer early. The purpose of this review is to evaluate the research status and progress of radiomics in gastric cancer, and reviewed the workflow and clinical application of radiomics. The 27 original studies on the application of radiomics in gastric cancer were included from web of science database search results from 2017 to 2021, the number of patients included ranged from 30 to 1680, and the models used were based on the combination of radiomics signature and clinical factors. Most of these studies showed positive results, the median radiomics quality score (RQS) for all studies was 36.1%, and the development prospect and challenges of radiomics development were prospected. In general, radiomics has great potential in improving the early prediction and diagnosis of gastric cancer, and provides an unprecedented opportunity for clinical practice to improve the decision support of gastric cancer treatment at a low cost.
Collapse
Affiliation(s)
- Getao Du
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
20
|
Li S, Wan X, Deng YQ, Hua HL, Li SL, Chen XX, Zeng ML, Zha Y, Tao ZZ. Predicting prognosis of nasopharyngeal carcinoma based on deep learning: peritumoral region should be valued. Cancer Imaging 2023; 23:14. [PMID: 36759889 PMCID: PMC9912633 DOI: 10.1186/s40644-023-00530-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The purpose of this study was to explore whether incorporating the peritumoral region to train deep neural networks could improve the performance of the models for predicting the prognosis of NPC. METHODS A total of 381 NPC patients who were divided into high- and low-risk groups according to progression-free survival were retrospectively included. Deeplab v3 and U-Net were trained to build segmentation models for the automatic segmentation of the tumor and suspicious lymph nodes. Five datasets were constructed by expanding 5, 10, 20, 40, and 60 pixels outward from the edge of the automatically segmented region. Inception-Resnet-V2, ECA-ResNet50t, EfficientNet-B3, and EfficientNet-B0 were trained with the original, segmented, and the five new constructed datasets to establish the classification models. The receiver operating characteristic curve was used to evaluate the performance of each model. RESULTS The Dice coefficients of Deeplab v3 and U-Net were 0.741(95%CI:0.722-0.760) and 0.737(95%CI:0.720-0.754), respectively. The average areas under the curve (aAUCs) of deep learning models for classification trained with the original and segmented images and with images expanded by 5, 10, 20, 40, and 60 pixels were 0.717 ± 0.043, 0.739 ± 0.016, 0.760 ± 0.010, 0.768 ± 0.018, 0.802 ± 0.013, 0.782 ± 0.039, and 0.753 ± 0.014, respectively. The models trained with the images expanded by 20 pixels obtained the best performance. CONCLUSIONS The peritumoral region NPC contains information related to prognosis, and the incorporation of this region could improve the performance of deep learning models for prognosis prediction.
Collapse
Affiliation(s)
- Song Li
- grid.89957.3a0000 0000 9255 8984Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029 China ,grid.412632.00000 0004 1758 2270Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Xia Wan
- grid.510937.9Department of Otolaryngology-Head & Neck Surgery, Ezhou Central Hospital, No. 9 Wenxing Road, Ezhou, 436000 P.R. China
| | - Yu-Qin Deng
- grid.412632.00000 0004 1758 2270Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Hong-Li Hua
- grid.412632.00000 0004 1758 2270Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Sheng-Lan Li
- grid.412632.00000 0004 1758 2270Department of Radiology, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Xi-Xiang Chen
- grid.412632.00000 0004 1758 2270Department of Radiology, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Man-Li Zeng
- grid.510937.9Department of Otolaryngology-Head & Neck Surgery, Ezhou Central Hospital, No. 9 Wenxing Road, Ezhou, 436000 P.R. China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| |
Collapse
|
21
|
Wang Z, Yang G, Wang X, Cao Y, Jiao W, Niu H. A combined model based on CT radiomics and clinical variables to predict uric acid calculi which have a good accuracy. Urolithiasis 2023; 51:37. [PMID: 36745218 DOI: 10.1007/s00240-023-01405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/02/2023] [Indexed: 02/07/2023]
Abstract
The aim of this study was to develop a CT-based radiomics and clinical variable diagnostic model for the preoperative prediction of uric acid calculi. In this retrospective study, 370 patients with urolithiasis who underwent preoperative urinary CT scans were enrolled. The CT images of each patient were manually segmented, and radiomics features were extracted. Sixteen radiomics features were selected by one-way analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO). Logistic regression (LR), random forest (RF) and support vector machine (SVM) were used to model the selected features, and the model with the best performance was selected. Multivariate logistic regression was used to screen out significant clinical variables, and the radiomics features and clinical variables were combined to construct a nomogram model. The area under the receiver operating characteristic (ROC) curve (AUC), etc., were used to evaluate the diagnostic performance of the model. Among the three machine learning models, the LR model had the best performance and good robustness of the dataset. Therefore, the LR model was used to construct the nomogram. The AUCs of the nomogram model in the training set and validation set were 0.878 and 0.867, respectively, which were significantly higher than those of the radiomics model and the clinical feature model. The CT-based radiomics model based has good performance in distinguishing uric acid stones from nonuric acid stones, and the nomogram model has the best diagnostic performance among the three models. This model can provide an effective reference for clinical decision-making.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, 16th Jiangsu Road, Qingdao, 266012, China
| | - Guangjie Yang
- PET-CT Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xinning Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, 16th Jiangsu Road, Qingdao, 266012, China
| | - Yuanchao Cao
- Department of Urology, The Affiliated Hospital of Qingdao University, 16th Jiangsu Road, Qingdao, 266012, China
| | - Wei Jiao
- Department of Urology, The Affiliated Hospital of Qingdao University, 16th Jiangsu Road, Qingdao, 266012, China.
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, 16th Jiangsu Road, Qingdao, 266012, China.
| |
Collapse
|
22
|
Ma XH, Yang J, Jia X, Zhou HC, Liang JW, Ding YS, Shu Q, Niu T. Preoperative radiomic signature based on CT images for noninvasive evaluation of localized nephroblastoma in pediatric patients. Front Oncol 2023; 13:1122210. [PMID: 37152031 PMCID: PMC10157206 DOI: 10.3389/fonc.2023.1122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background Nephron sparing nephrectomy may not reduce the prognosis of nephroblastoma in the absence of involvement of the renal capsule, sinus vessels, and lymph nodes, However, there is no accurate preoperative noninvasive evaluation method at present. Materials and methods 105 nephroblastoma patients underwent contrast-enhanced CT scan between 2013 and 2020 in our hospital were retrospectively collected, including 59 cases with localized stage and 46 cases with non-localized stage, and then were divided into training cohort (n= 73) and validation cohort (n= 32) according to the order of CT scanning time. After lesion segmentation and data preprocessing, radiomic features were extracted from each volume of interest. The multi-step procedure including Pearson correlation analysis and sequential forward floating selection was performed to produce radiomic signature. Prediction model was constructed using the radiomic signature and Logistic Regression classifier for predicting the localized nephroblastoma in the training cohort. Finally, the model performance was validated in the validation cohort. Results A total of 1652 radiomic features have been extracted, from which TOP 10 features were selected as the radiomic signature. The area under the receiver operating characteristic curve, accuracy, sensitivity and specificity of the prediction model were 0.796, 0.795, 0.732 and 0.875 for the training cohort respectively, and 0.710, 0.719, 0.611 and 0.857 for the validation cohort respectively. The result comparison with prediction models composed of different machine learning classifiers and different parameters also manifest the effectiveness of our radiomic model. Conclusion A logistic regression model based on radiomic features extracted from preoperative CT images had good ability to noninvasively predict nephroblastoma without renal capsule, sinus vessel, and lymph node involvement.
Collapse
Affiliation(s)
- Xiao-Hui Ma
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jing Yang
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuan Jia
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Hai-Chun Zhou
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jia-Wei Liang
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yu-Shuang Ding
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Qiang Shu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- *Correspondence: Tianye Niu, ; Qiang Shu,
| | - Tianye Niu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China
- *Correspondence: Tianye Niu, ; Qiang Shu,
| |
Collapse
|
23
|
Lin G, Wang X, Ye H, Cao W. Radiomic Models Predict Tumor Microenvironment Using Artificial Intelligence-the Novel Biomarkers in Breast Cancer Immune Microenvironment. Technol Cancer Res Treat 2023; 22:15330338231218227. [PMID: 38111330 PMCID: PMC10734346 DOI: 10.1177/15330338231218227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/22/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and some subtypes are associated with a poor prognosis with a lack of efficacious therapy. Moreover, immunotherapy and the use of other novel antibody‒drug conjugates have been rapidly incorporated into the standard management of advanced breast cancer. To extract more benefit from these therapies, clarifying and monitoring the tumor microenvironment (TME) status is critical, but this is difficult to accomplish based on conventional approaches. Radiomics is a method wherein radiological image features are comprehensively collected and assessed to build connections with disease diagnosis, prognosis, therapy efficacy, the TME, etc In recent years, studies focused on predicting the TME using radiomics have increasingly emerged, most of which demonstrate meaningful results and show better capability than conventional methods in some aspects. Beyond predicting tumor-infiltrating lymphocytes, immunophenotypes, cytokines, infiltrating inflammatory factors, and other stromal components, radiomic models have the potential to provide a completely new approach to deciphering the TME and facilitating tumor management by physicians.
Collapse
Affiliation(s)
- Guang Lin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Hunan Ye
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wenming Cao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Can PD-L1 expression be predicted by contrast-enhanced CT in patients with gastric adenocarcinoma? a preliminary retrospective study. Abdom Radiol (NY) 2023; 48:220-228. [PMID: 36271155 PMCID: PMC9849168 DOI: 10.1007/s00261-022-03709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND This study aimed to construct a computed tomography (CT) radiomics model to predict programmed cell death-ligand 1 (PD-L1) expression in gastric adenocarcinoma patients using radiomics features. METHODS A total of 169 patients with gastric adenocarcinoma were studied retrospectively and randomly divided into training and testing datasets. The clinical data of the patients were recorded. Radiomics features were extracted to construct a radiomics model. The random forest-based Boruta algorithm was used to screen the features of the training dataset. A receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of the model. RESULTS Four radiomics features were selected to construct a radiomics model. The radiomics signature showed good efficacy in predicting PD-L1 expression, with an area under the receiver operating characteristic curve (AUC) of 0.786 (p < 0.001), a sensitivity of 0.681, and a specificity of 0.826. The radiomics model achieved the greatest areas under the curve (AUCs) in the training dataset (AUC = 0.786) and testing dataset (AUC = 0.774). The calibration curves of the radiomics model showed great calibration performances outcomes in the training dataset and testing dataset. The net clinical benefit for the radiomics model was high. CONCLUSION CT radiomics has important value in predicting the expression of PD-L1 in patients with gastric adenocarcinoma.
Collapse
|
25
|
Zeng Q, Zhu Y, Li L, Feng Z, Shu X, Wu A, Luo L, Cao Y, Tu Y, Xiong J, Zhou F, Li Z. CT-based radiomic nomogram for preoperative prediction of DNA mismatch repair deficiency in gastric cancer. Front Oncol 2022; 12:883109. [PMID: 36185292 PMCID: PMC9523515 DOI: 10.3389/fonc.2022.883109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDNA mismatch repair (MMR) deficiency has attracted considerable attention as a predictor of the immunotherapy efficacy of solid tumors, including gastric cancer. We aimed to develop and validate a computed tomography (CT)-based radiomic nomogram for the preoperative prediction of MMR deficiency in gastric cancer (GC).MethodsIn this retrospective analysis, 225 and 91 GC patients from two distinct hospital cohorts were included. Cohort 1 was randomly divided into a training cohort (n = 176) and an internal validation cohort (n = 76), whereas cohort 2 was considered an external validation cohort. Based on repeatable radiomic features, a radiomic signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. We employed multivariable logistic regression analysis to build a radiomics-based model based on radiomic features and preoperative clinical characteristics. Furthermore, this prediction model was presented as a radiomic nomogram, which was evaluated in the training, internal validation, and external validation cohorts.ResultsThe radiomic signature composed of 15 robust features showed a significant association with MMR protein status in the training, internal validation, and external validation cohorts (both P-values <0.001). A radiomic nomogram incorporating a radiomic signature and two clinical characteristics (age and CT-reported N stage) represented good discrimination in the training cohort with an AUC of 0.902 (95% CI: 0.853–0.951), in the internal validation cohort with an AUC of 0.972 (95% CI: 0.945–1.000) and in the external validation cohort with an AUC of 0.891 (95% CI: 0.825–0.958).ConclusionThe CT-based radiomic nomogram showed good performance for preoperative prediction of MMR protein status in GC. Furthermore, this model was a noninvasive tool to predict MMR protein status and guide neoadjuvant therapy.
Collapse
Affiliation(s)
- Qingwen Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Leyan Li
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zongfeng Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xufeng Shu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ahao Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lianghua Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
- *Correspondence: Zhengrong Li, ; Yi Cao,
| | - Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianbo Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhengrong Li, ; Yi Cao,
| |
Collapse
|
26
|
Li Y, Xie F, Xiong Q, Lei H, Feng P. Machine learning for lymph node metastasis prediction of in patients with gastric cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:946038. [PMID: 36059703 PMCID: PMC9433672 DOI: 10.3389/fonc.2022.946038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
Objective To evaluate the diagnostic performance of machine learning (ML) in predicting lymph node metastasis (LNM) in patients with gastric cancer (GC) and to identify predictors applicable to the models. Methods PubMed, EMBASE, Web of Science, and Cochrane Library were searched from inception to March 16, 2022. The pooled c-index and accuracy were used to assess the diagnostic accuracy. Subgroup analysis was performed based on ML types. Meta-analyses were performed using random-effect models. Risk of bias assessment was conducted using PROBAST tool. Results A total of 41 studies (56182 patients) were included, and 33 of the studies divided the participants into a training set and a test set, while the rest of the studies only had a training set. The c-index of ML for LNM prediction in training set and test set was 0.837 [95%CI (0.814, 0.859)] and 0.811 [95%CI (0.785-0.838)], respectively. The pooled accuracy was 0.781 [(95%CI (0.756-0.805)] in training set and 0.753 [95%CI (0.721-0.783)] in test set. Subgroup analysis for different ML algorithms and staging of GC showed no significant difference. In contrast, in the subgroup analysis for predictors, in the training set, the model that included radiomics had better accuracy than the model with only clinical predictors (F = 3.546, p = 0.037). Additionally, cancer size, depth of cancer invasion and histological differentiation were the three most commonly used features in models built for prediction. Conclusion ML has shown to be of excellent diagnostic performance in predicting the LNM of GC. One of the models covering radiomics and its ML algorithms showed good accuracy for the risk of LNM in GC. However, the results revealed some methodological limitations in the development process. Future studies should focus on refining and improving existing models to improve the accuracy of LNM prediction. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022320752
Collapse
|
27
|
Crimì F, Bao QR, Mari V, Zanon C, Cabrelle G, Spolverato G, Pucciarelli S, Quaia E. Predictors of Metastatic Lymph Nodes at Preoperative Staging CT in Gastric Adenocarcinoma. Tomography 2022; 8:1196-1207. [PMID: 35645384 PMCID: PMC9149869 DOI: 10.3390/tomography8030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background. The aim of this study was to identify the most accurate computed-tomography (CT) dimensional criteria of loco-regional lymph nodes (LNs) for detecting nodal metastases in gastric cancer (GC) patients. Methods. Staging CTs of surgically resected GC were jointly reviewed by two radiologists, considering only loco-regional LNs with a long axis (LA) ≥ 5 mm. For each nodal group, the short axis (SA), volume and SA/LA ratio of the largest LN, the sum of the SAs of all LNs, and the mean of the SA/LA ratios were plotted in ROC curves, taking the presence/absence of metastases at histopathology for reference. On a per-patient basis, the sums of the SAs of all LNs, and the sums of the SAs, volumes, and SA/LA ratios of the largest LNs in all nodal groups were also plotted, taking the presence/absence of metastatic LNs in each patient for reference. Results. Four hundred and forty-three nodal groups were harvested during surgery from 107 patients with GC, and 173 (39.1%) were metastatic at histopathology. By nodal group, the sum of the SAs showed the best Area Under the Curve (AUC), with a sensitivity/specificity of 62.4/72.6% using Youden’s index with a >8 mm cutoff. In the per-patient analysis, the sum of the SAs of all LNs in the loco-regional nodal groups showed the best AUC with a sensitivity/specificity of 65.6%/83.7%, using Youden’s index with a >39 mm cutoff. Conclusion. In patients with GC, the sum of the SAs of all the LNs at staging CT is the best predictor among dimensional LNs criteria of both metastatic invasion of the nodal group and the presence of metastatic LNs.
Collapse
Affiliation(s)
- Filippo Crimì
- Institute of Radiology, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (F.C.); (C.Z.); (G.C.); (E.Q.)
| | - Quoc Riccardo Bao
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences-DISCOG, University of Padova, 35128 Padova, Italy; (Q.R.B.); (V.M.); (S.P.)
| | - Valentina Mari
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences-DISCOG, University of Padova, 35128 Padova, Italy; (Q.R.B.); (V.M.); (S.P.)
| | - Chiara Zanon
- Institute of Radiology, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (F.C.); (C.Z.); (G.C.); (E.Q.)
| | - Giulio Cabrelle
- Institute of Radiology, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (F.C.); (C.Z.); (G.C.); (E.Q.)
| | - Gaya Spolverato
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences-DISCOG, University of Padova, 35128 Padova, Italy; (Q.R.B.); (V.M.); (S.P.)
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences-DISCOG, University of Padova, 35128 Padova, Italy; (Q.R.B.); (V.M.); (S.P.)
| | - Emilio Quaia
- Institute of Radiology, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (F.C.); (C.Z.); (G.C.); (E.Q.)
| |
Collapse
|
28
|
Yang J, Wang L, Qin J, Du J, Ding M, Niu T, Li R. Multi-view learning for lymph node metastasis prediction using tumor and nodal radiomics in gastric cancer. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac515b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/02/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Purpose. This study aims to develop and validate a multi-view learning method by the combination of primary tumor radiomics and lymph node (LN) radiomics for the preoperative prediction of LN status in gastric cancer (GC). Methods. A total of 170 contrast-enhanced abdominal CT images from GC patients were enrolled in this retrospective study. After data preprocessing, two-step feature selection approach including Pearson correlation analysis and supervised feature selection method based on test-time budget (FSBudget) was performed to remove redundance of tumor and LN radiomics features respectively. Two types of discriminative features were then learned by an unsupervised multi-view partial least squares (UMvPLS) for a latent common space on which a logistic regression classifier is trained. Five repeated random hold-out experiments were employed. Results. On 20-dimensional latent common space, area under receiver operating characteristic curve (AUC), precision, accuracy, recall and F1-score are 0.9531 ± 0.0183, 0.9260 ± 0.0184, 0.9136 ± 0.0174, 0.9468 ± 0.0106 and 0.9362 ± 0.0125 for the training cohort respectively, and 0.8984 ± 0.0536, 0.8671 ± 0.0489, 0.8500 ± 0.0599, 0.9118 ± 0.0550 and 0.8882 ± 0.0440 for the validation cohort respectively (reported as mean ± standard deviation). It shows a better discrimination capability than single-view methods, our previous method, and eight baseline methods. When the dimension was reduced to 2, the model not only has effective prediction performance, but also is convenient for data visualization. Conclusions. Our proposed method by integrating radiomics features of primary tumor and LN can be helpful in predicting lymph node metastasis in patients of GC. It shows multi-view learning has great potential for guiding the prognosis and treatment decision-making in GC.
Collapse
|
29
|
Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol 2022; 19:132-146. [PMID: 34663898 PMCID: PMC9034765 DOI: 10.1038/s41571-021-00560-7] [Citation(s) in RCA: 351] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
The successful use of artificial intelligence (AI) for diagnostic purposes has prompted the application of AI-based cancer imaging analysis to address other, more complex, clinical needs. In this Perspective, we discuss the next generation of challenges in clinical decision-making that AI tools can solve using radiology images, such as prognostication of outcome across multiple cancers, prediction of response to various treatment modalities, discrimination of benign treatment confounders from true progression, identification of unusual response patterns and prediction of the mutational and molecular profile of tumours. We describe the evolution of and opportunities for AI in oncology imaging, focusing on hand-crafted radiomic approaches and deep learning-derived representations, with examples of their application for decision support. We also address the challenges faced on the path to clinical adoption, including data curation and annotation, interpretability, and regulatory and reimbursement issues. We hope to demystify AI in radiology for clinicians by helping them to understand its limitations and challenges, as well as the opportunities it provides as a decision-support tool in cancer management.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Nathaniel Braman
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Tempus Labs, Chicago, IL, USA
| | - Amit Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Vamsidhar Velcheti
- Department of Hematology and Oncology, NYU Langone Health, New York, NY, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Medical Center, Cleveland, OH, USA.
| |
Collapse
|
30
|
Ma XH, Shu L, Jia X, Zhou HC, Liu TT, Liang JW, Ding YS, He M, Shu Q. Machine Learning-Based CT Radiomics Method for Identifying the Stage of Wilms Tumor in Children. Front Pediatr 2022; 10:873035. [PMID: 35676904 PMCID: PMC9168275 DOI: 10.3389/fped.2022.873035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To develop and validate a machine learning-based CT radiomics method for preoperatively predicting the stages (stage I and non-stage I) of Wilms tumor (WT) in pediatric patients. METHODS A total of 118 patients with WT, who underwent contrast-enhanced computed tomography (CT) scans in our center between 2014 and 2021, were studied retrospectively and divided into two groups: stage I and non-stage I disease. Patients were randomly divided into training cohorts (n = 94) and test cohorts (n = 24). A total of 1,781 radiomic features from seven feature classes were extracted from preoperative portal venous-phase images of abdominal CT. Synthetic Minority Over-Sampling Technique (SMOTE) was used to handle imbalanced datasets, followed by a t-test and Least Absolute Shrinkage and Selection Operator (LASSO) regularization for feature selection. Support Vector Machine (SVM) was deployed using the selected informative features to develop the predicting model. The performance of the model was evaluated according to its accuracy, sensitivity, and specificity. The receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC) was also arranged to assess the model performance. RESULTS The SVM model was fitted with 15 radiomic features obtained by t-test and LASSO concerning WT staging in the training dataset and demonstrated favorable performance in the testing dataset. Cross-validated AUC on the training dataset was 0.79 with a 95 percent confidence interval (CI) of 0.773-0.815 and a coefficient of variation of 3.76%, while AUC on the test dataset was 0.81, and accuracy, sensitivity, and specificity were 0.79, 0.87, and 0.69, respectively. CONCLUSIONS The machine learning model of SVM based on radiomic features extracted from CT images accurately predicted WT stage I and non-stage I disease in pediatric patients preoperatively, which provided a rapid and non-invasive way for investigation of WT stages.
Collapse
Affiliation(s)
- Xiao-Hui Ma
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Liqi Shu
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Xuan Jia
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hai-Chun Zhou
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ting-Ting Liu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jia-Wei Liang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yu-Shuang Ding
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Min He
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
31
|
Wang F, Tan R, Feng K, Hu J, Zhuang Z, Wang C, Hou J, Liu X. Magnetic Resonance Imaging-Based Radiomics Features Associated with Depth of Invasion Predicted Lymph Node Metastasis and Prognosis in Tongue Cancer. J Magn Reson Imaging 2021; 56:196-209. [PMID: 34888985 PMCID: PMC9299921 DOI: 10.1002/jmri.28019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Background Adequate safe margin in tongue cancer radical surgery is one of the most important prognostic factors. However, the role of peritumoral tissues in predicting lymph node metastasis (LNM) and prognosis using radiomics analysis remains unclear. Purpose To investigate whether magnetic resonance imaging (MRI)‐based radiomics analysis with peritumoral extensions contributes toward the prediction of LNM and prognosis in tongue cancer. Study type Retrospective. Population Two hundred and thirty‐six patients (38.56% female) with tongue cancer (training set, N = 157; testing set, N = 79; 37.58% and 40.51% female for each). Field Strength/Sequence 1.5 T; T2‐weighted turbo spin‐echo images. Assessment Radiomics models (Rprim, Rprim+3, Rprim+5, Rprim+10, Rprim+15) were developed with features extracted from the primary tumor without or with peritumoral extensions (3, 5, 10, and 15 mm, respectively). Clinicopathological characteristics selected from univariate analysis, including MRI‐reported LN status, radiological extrinsic lingual muscle invasion, and pathological depth of invasion (DOI) were further incorporated into radiomics models to develop combined radiomics models (CRprim, CRprim+3, CRprim+5, CRprim+10, CRprim+15). Finally, the model performance was validated in the testing set. DOI was measured from the adjacent normal mucosa to the deepest point of tumor invasion. Statistical Tests Chi‐square test, regression analysis, receiver operating characteristic curve (ROC) analysis, decision analysis, spearman correlation analysis. The Delong test was used to compare area under the ROC (AUC). P < 0.05 was considered statistically significant. Results Of all the models, the CRprim+10 reached the highest AUC of 0.995 in the training set and 0.872 in the testing set. Radiomics features were significantly correlated with pathological DOI (correlation coefficients, −0.157 to −0.336). The CRprim+10 was an independent indicator for poor disease‐free survival (hazard ratio, 5.250) and overall survival (hazard ratio, 17.464) in the testing set. Data Conclusion Radiomics analysis with a 10‐mm peritumoral extension had excellent power to predict LNM and prognosis in tongue cancer.
Collapse
Affiliation(s)
- Fei Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Rukeng Tan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Kun Feng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jing Hu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehang Zhuang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Cheng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Radiomics as a New Frontier of Imaging for Cancer Prognosis: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11101796. [PMID: 34679494 PMCID: PMC8534713 DOI: 10.3390/diagnostics11101796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evaluation of the efficacy of different therapies is of paramount importance for the patients and the clinicians in oncology, and it is usually possible by performing imaging investigations that are interpreted, taking in consideration different response evaluation criteria. In the last decade, texture analysis (TA) has been developed in order to help the radiologist to quantify and identify parameters related to tumor heterogeneity, which cannot be appreciated by the naked eye, that can be correlated with different endpoints, including cancer prognosis. The aim of this work is to analyze the impact of texture in the prediction of response and in prognosis stratification in oncology, taking into consideration different pathologies (lung cancer, breast cancer, gastric cancer, hepatic cancer, rectal cancer). Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used. This paper contains a narrative report and a critical discussion of radiomics approaches related to cancer prognosis in different fields of diseases.
Collapse
|
33
|
Wan Y, Yang P, Xu L, Yang J, Luo C, Wang J, Chen F, Wu Y, Lu Y, Ruan D, Niu T. Radiomics analysis combining unsupervised learning and handcrafted features: A multiple-disease study. Med Phys 2021; 48:7003-7015. [PMID: 34453332 DOI: 10.1002/mp.15199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To study and investigate the synergistic benefit of incorporating both conventional handcrafted and learning-based features in disease identification across a wide range of clinical setups. METHODS AND MATERIALS In this retrospective study, we collected 170, 150, 209, and 137 patients with four different disease types associated with identification objectives : Lymph node metastasis status of gastric cancer (GC), 5-year survival status of patients with high-grade osteosarcoma (HOS), early recurrence status of intrahepatic cholangiocarcinoma (ICC), and pathological grades of pancreatic neuroendocrine tumors (pNETs). Computed tomography (CT) and magnetic resonance imaging (MRI) were used to derive image features for GC/HOS/pNETs and ICC, respectively. In each study, 67 universal handcrafted features and study-specific features based on the sparse autoencoder (SAE) method were extracted and fed into the subsequent feature selection and learning model to predict the corresponding disease identification. Models using handcrafted alone, SAE alone, and hybrid features were optimized and their performance was compared. Prominent features were analyzed both qualitatively and quantitatively to generate study-specific and cross-study insight. In addition to direct performance gain assessment, correlation analysis was performed to assess the complementarity between handcrafted features and SAE features. RESULTS On the independent hold-off test, the handcrafted, SAE, and hybrid features based prediction yielded area under the curve of 0.761 versus 0.769 versus 0.829 for GC, 0.629 versus 0.740 versus 0.709 for HOS, 0.717 versus 0.718 versus 0.758 for ICC, and 0.739 versus 0.715 versus 0.771 for pNETs studies, respectively. In three out of the four studies, prediction using the hybrid features yields the best performance, demonstrating the general benefit in using hybrid features. Prediction with SAE features alone had the best performance in the HOS study, which may be explained by the complexity of HOS prognosis and the possibility of a slight overfit due to higher correlation between handcrafted and SAE features. CONCLUSION This study demonstrated the general benefit of combing handcrafted and learning-based features in radiomics modeling. It also clearly illustrates the task-specific and data-specific dependency on the performance gain and suggests that while the common methodology of feature combination may be applied across various studies and tasks, study-specific feature selection and model optimization are still necessary to achieve high accuracy and robustness.
Collapse
Affiliation(s)
- Yidong Wan
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Pengfei Yang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Chen Luo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jing Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.,Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Lu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Ruan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California, USA
| | - Tianye Niu
- Nuclear & Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Qin Y, Deng Y, Jiang H, Hu N, Song B. Artificial Intelligence in the Imaging of Gastric Cancer: Current Applications and Future Direction. Front Oncol 2021; 11:631686. [PMID: 34367946 PMCID: PMC8335156 DOI: 10.3389/fonc.2021.631686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/07/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers and one of the leading causes of cancer-related death worldwide. Precise diagnosis and evaluation of GC, especially using noninvasive methods, are fundamental to optimal therapeutic decision-making. Despite the recent rapid advancements in technology, pretreatment diagnostic accuracy varies between modalities, and correlations between imaging and histological features are far from perfect. Artificial intelligence (AI) techniques, particularly hand-crafted radiomics and deep learning, have offered hope in addressing these issues. AI has been used widely in GC research, because of its ability to convert medical images into minable data and to detect invisible textures. In this article, we systematically reviewed the methodological processes (data acquisition, lesion segmentation, feature extraction, feature selection, and model construction) involved in AI. We also summarized the current clinical applications of AI in GC research, which include characterization, differential diagnosis, treatment response monitoring, and prognosis prediction. Challenges and opportunities in AI-based GC research are highlighted for consideration in future studies.
Collapse
Affiliation(s)
- Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqi Deng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Na Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Iacobellis F, Narese D, Berritto D, Brillantino A, Di Serafino M, Guerrini S, Grassi R, Scaglione M, Mazzei MA, Romano L. Large Bowel Ischemia/Infarction: How to Recognize It and Make Differential Diagnosis? A Review. Diagnostics (Basel) 2021; 11:diagnostics11060998. [PMID: 34070924 PMCID: PMC8230100 DOI: 10.3390/diagnostics11060998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Ischemic colitis represents the most frequent form of intestinal ischemia occurring when there is an acute impairment or chronic reduction in the colonic blood supply, resulting in mucosal ulceration, inflammation, hemorrhage and ischemic necrosis of variable severity. The clinical presentation is variable and nonspecific, so it is often misdiagnosed. The most common etiology is hypoperfusion, almost always associated with generalized atherosclerotic disease. The severity ranges from localized and transient ischemia to transmural necrosis of the bowel wall, becoming a surgical emergency, with significant associated morbidity and mortality. The diagnosis is based on clinical, laboratory suspicion and radiological, endoscopic and histopathological findings. Among the radiological tests, enhanced-CT is the diagnostic investigation of choice. It allows us to make the diagnosis in an appropriate clinical setting, and to define the entity of the ischemia. MR may be adopted in the follow-up in patients with iodine allergy or renal dysfunctions, or younger patients who should avoid radiological exposure. In the majority of cases, supportive therapy is the only required treatment. In this article we review the pathophysiology and the imaging findings of ischemic colitis.
Collapse
Affiliation(s)
- Francesca Iacobellis
- Department of General and Emergency Radiology, “Antonio Cardarelli” Hospital, Antonio Cardarelli St. 9, 80131 Naples, Italy; (M.D.S.); (L.R.)
- Correspondence:
| | - Donatella Narese
- Department of Radiology, University of Campania “L. Vanvitelli”, Miraglia 2 Sq., 80138 Naples, Italy; (D.N.); (R.G.)
| | - Daniela Berritto
- Department of Radiology, Hospital “Villa Fiorita”, Appia St., km 199,00, 81043 Capua, Italy;
| | - Antonio Brillantino
- Department of Emergency Surgery, “Antonio Cardarelli” Hospital, Antonio Cardarelli St. 9, 80131 Naples, Italy;
| | - Marco Di Serafino
- Department of General and Emergency Radiology, “Antonio Cardarelli” Hospital, Antonio Cardarelli St. 9, 80131 Naples, Italy; (M.D.S.); (L.R.)
| | - Susanna Guerrini
- Unit of Diagnostic Imaging, Department of Radiological Sciences, Azienda Ospedaliero-Universitaria Senese, Bracci St. 10, 53100 Siena, Italy;
| | - Roberta Grassi
- Department of Radiology, University of Campania “L. Vanvitelli”, Miraglia 2 Sq., 80138 Naples, Italy; (D.N.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Mariano Scaglione
- Department of Radiology, James Cook University Hospital, Marton Road, Middlesbrough TS4 3BW, UK;
- Teesside University School of Health and Life Sciences, Middlesbrough TS1 3BX, UK
- Department of Radiology, Pineta Grande Hospital, Domitiana St. km 30/00, 81030 Castel Volturno, Italy
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, Bracci St. 10, 53100 Siena, Italy;
| | - Luigia Romano
- Department of General and Emergency Radiology, “Antonio Cardarelli” Hospital, Antonio Cardarelli St. 9, 80131 Naples, Italy; (M.D.S.); (L.R.)
| |
Collapse
|
36
|
Sugai Y, Kadoya N, Tanaka S, Tanabe S, Umeda M, Yamamoto T, Takeda K, Dobashi S, Ohashi H, Takeda K, Jingu K. Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients. Radiat Oncol 2021; 16:80. [PMID: 33931085 PMCID: PMC8086112 DOI: 10.1186/s13014-021-01810-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background Radiomics is a new technology to noninvasively predict survival prognosis with quantitative features extracted from medical images. Most radiomics-based prognostic studies of non-small-cell lung cancer (NSCLC) patients have used mixed datasets of different subgroups. Therefore, we investigated the radiomics-based survival prediction of NSCLC patients by focusing on subgroups with identical characteristics. Methods A total of 304 NSCLC (Stages I–IV) patients treated with radiotherapy in our hospital were used. We extracted 107 radiomic features (i.e., 14 shape features, 18 first-order statistical features, and 75 texture features) from the gross tumor volume drawn on the free breathing planning computed tomography image. Three feature selection methods [i.e., test–retest and multiple segmentation (FS1), Pearson's correlation analysis (FS2), and a method that combined FS1 and FS2 (FS3)] were used to clarify how they affect survival prediction performance. Subgroup analysis for each histological subtype and each T stage applied the best selection method for the analysis of All data. We used a least absolute shrinkage and selection operator Cox regression model for all analyses and evaluated prognostic performance using the concordance-index (C-index) and the Kaplan–Meier method. For subgroup analysis, fivefold cross-validation was applied to ensure model reliability. Results In the analysis of All data, the C-index for the test dataset is 0.62 (FS1), 0.63 (FS2), and 0.62 (FS3). The subgroup analysis indicated that the prediction model based on specific histological subtypes and T stages had a higher C-index for the test dataset than that based on All data (All data, 0.64 vs. SCCall, 060; ADCall, 0.69; T1, 0.68; T2, 0.65; T3, 0.66; T4, 0.70). In addition, the prediction models unified for each T stage in histological subtype showed a different trend in the C-index for the test dataset between ADC-related and SCC-related models (ADCT1–ADCT4, 0.72–0.83; SCCT1–SCCT4, 0.58–0.71). Conclusions Our results showed that feature selection methods moderately affected the survival prediction performance. In addition, prediction models based on specific subgroups may improve the prediction performance. These results may prove useful for determining the optimal radiomics-based predication model. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01810-9.
Collapse
Affiliation(s)
- Yuto Sugai
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Shohei Tanaka
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Shunpei Tanabe
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Mariko Umeda
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Takaya Yamamoto
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Kazuya Takeda
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Suguru Dobashi
- Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Tohoku University, Sendai, Japan
| | - Haruna Ohashi
- Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Tohoku University, Sendai, Japan
| | - Ken Takeda
- Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Tohoku University, Sendai, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
37
|
Jiang Y, Sun J, Xia Y, Cheng Y, Xie L, Guo X, Guo Y. Preoperative Assessment for Event-Free Survival With Hepatoblastoma in Pediatric Patients by Developing a CT-Based Radiomics Model. Front Oncol 2021; 11:644994. [PMID: 33937051 PMCID: PMC8086552 DOI: 10.3389/fonc.2021.644994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: To explore a CT-based radiomics model for preoperative prediction of event-free survival (EFS) in patients with hepatoblastoma and to compare its performance with that of a clinicopathologic model. Patients and Methods: Eighty-eight patients with histologically confirmed hepatoblastoma (mean age: 2.28 ± 2.72 years) were recruited from two institutions between 2002 and 2019 for this retrospective study. They were divided into a training cohort (65 patients from institution A) and a validation cohort (23 patients from institution B). Radiomics features were extracted manually from pretreatment CT images in the portal venous (PV) phase. The least absolute shrinkage and selection operator (LASSO) Cox regression model was applied to construct a “radiomics signature” and radiomics score (Rad-score) for EFS prediction. Then, a nomogram incorporating the Rad-score, updated staging system, and significant variables of clinicopathologic risk (age, alpha-fetoprotein (AFP) level, histology subtype, tumor diameter) as the radiomic model, clinicopathologic model, and combined clinicopathologic-radiomic model were built for EFS estimation in the training cohort, the performance of which was assessed in an external-validation cohort with respect to clinical usefulness, discrimination, and calibration. Results: Nine survival-relevant features were selected for a radiomics signature and Rad-score building. Multivariable analysis revealed that histology subtype (P = 0.01), PV (P = 0.001) invasion, and metastasis (P = 0.047) were independent risk factors of EFS. Patients were divided into low- and high-risk groups based on the Rad-score with a cutoff of 0.08 according to survival outcome. The radiomics signature-incorporated nomogram showed good performance (P < 0.001) for EFS estimation (C-Index: 0.810; 95% CI: 0.738–0.882), which was comparable with that of the clinicopathological model for EFS estimation (C-Index: 0.81 vs. 0.85). The radiomics-based nomogram failed to show incremental prognostic value compared with that using the clinicopathologic model. The combined model (radiomics signature plus clinicopathologic parameters) showed significant improvement in the discriminatory accuracy, along with good calibration and greater net clinical benefit, of EFS (C-Index: 0.88; 95% CI: 0.829–0.933). Conclusion: The radiomics signature can be used as a prognostic indicator for EFS in patients with hepatoblastoma. A combination of the radiomics signature and clinicopathologic risk factors showed better performance in terms of EFS prediction in patients with hepatoblastoma, which enabled precise clinical decision-making.
Collapse
Affiliation(s)
- Yi Jiang
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingjing Sun
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuwei Xia
- Huiying Medical Technology, Beijing, China
| | - Yan Cheng
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linjun Xie
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xia Guo
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingkun Guo
- West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Wang X, Li C, Fang M, Zhang L, Zhong L, Dong D, Tian J, Shan X. Integrating No.3 lymph nodes and primary tumor radiomics to predict lymph node metastasis in T1-2 gastric cancer. BMC Med Imaging 2021; 21:58. [PMID: 33757460 PMCID: PMC7989204 DOI: 10.1186/s12880-021-00587-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND This study aimed to develope and validate a radiomics nomogram by integrating the quantitative radiomics characteristics of No.3 lymph nodes (LNs) and primary tumors to better predict preoperative lymph node metastasis (LNM) in T1-2 gastric cancer (GC) patients. METHODS A total of 159 T1-2 GC patients who had undergone surgery with lymphadenectomy between March 2012 and November 2017 were retrospectively collected and divided into a training cohort (n = 80) and a testing cohort (n = 79). Radiomic features were extracted from both tumor region and No. 3 station LNs based on computed tomography (CT) images per patient. Then, key features were selected using minimum redundancy maximum relevance algorithm and fed into two radiomic signatures, respectively. Meanwhile, the predictive performance of clinical risk factors was studied. Finally, a nomogram was built by merging radiomic signatures and clinical risk factors and evaluated by the area under the receiver operator characteristic curve (AUC) as well as decision curve. RESULTS Two radiomic signatures, reflecting phenotypes of the tumor and LNs respectively, were significantly associated with LN metastasis. A nomogram incorporating two radiomic signatures and CT-reported LN metastasis status showed good discrimination of LN metastasis in both the training cohort (AUC 0.915; 95% confidence interval [CI] 0.832-0.998) and testing cohort (AUC 0.908; 95% CI 0.814-1.000). The decision curve also indicated its potential clinical usefulness. CONCLUSIONS The nomogram received favorable predictive accuracy in predicting No.3 LNM in T1-2 GC, and the nomogram showed positive role in predicting LNM in No.4 LNs. The nomogram may be used to predict LNM in T1-2 GC and could assist the choice of therapy.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Radiology, Affiliated People's Hospital of JiangSu University, Zhenjiang, People's Republic of China
| | - Cong Li
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mengjie Fang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Liwen Zhang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lianzhen Zhong
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China. .,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, People's Republic of China. .,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, People's Republic of China. .,Zhuhai Precision Medical Center, Zhuhai People's Hospital (Affiliated With Jinan University), Zhuhai, People's Republic of China.
| | - Xiuhong Shan
- Department of Radiology, Affiliated People's Hospital of JiangSu University, Zhenjiang, People's Republic of China.
| |
Collapse
|
39
|
Interpreting clinical significance of machine learning approaches and radiomics in radiation oncology trials. Radiother Oncol 2020; 152:78-79. [DOI: 10.1016/j.radonc.2020.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022]
|