2
|
Li Z, Zhang X, Li K, Li F, Kou J, Wang Y, Wei X, Sun Y, Jing Y, Song Y, Yu Q, Yu H, Wang S, Chen S, Wang Y, Xie S, Zhu X, Zhan Y, Sun G, Ni Y. IL-36 antagonism blunts the proliferation and migration of oral squamous cell carcinoma cells. Cell Signal 2024; 117:111096. [PMID: 38346528 DOI: 10.1016/j.cellsig.2024.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
IL-36 is known to mediate inflammation and fibrosis. Nevertheless, IL-36 signalling axis has also been implicated in cancer, although understanding of exact contribution of IL-36 to cancer progression is very limited, partly due to existence of multiple IL-36 ligands with agonistic and antagonistic function. Here we explored the role of IL-36 in oral squamous cell carcinoma (OSCC). Firstly, we analyzed expression of IL-36 ligands and receptor and found that the expression of IL-36γ was significantly higher in head and neck cancer (HNSCC) than that of normal tissues, and that the high expression of IL-36γ predicted poor clinical outcomes. Secondly, we investigated the direct effect of IL-36γ on OSCC cells and found that IL-36γ stimulated proliferation of OSCC cells with high expression of IL-36R expression. Interestingly, IL-36γ also promoted migration of OSCC cells with low to high IL-36R expression. Critically, both proliferation and migration of OSCC cells induced by IL-36γ were abrogated by anti-IL-36R mAb. Fittingly, RNA sequence analysis revealed that IL-36γ regulated genes involved in cell cycle and cell division. In summary, our results showed that IL-36γ can be a tumor-promoting factor, and targeting of IL-36R signalling may be a beneficial targeted therapy for patients with abnormal IL-36 signalling.
Collapse
Affiliation(s)
- Zihui Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ke Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fuyan Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiahao Kou
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuhan Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyue Wei
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yawei Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - QiuYa Yu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haijia Yu
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Shuai Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shi Chen
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yangtin Wang
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Simin Xie
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xiangyang Zhu
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yifan Zhan
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China.
| | - Guowen Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Idel C, Fleckner J, Plötze-Martin K, Werner L, Rades D, Theodoraki MN, Hofmann L, Huber D, Leichtle A, Hoffmann TK, Bruchhage KL, Pries R. Partial recovery of peripheral blood monocyte subsets in head and neck squamous cell carcinoma patients upon radio(chemo)therapy is associated with decreased plasma CXCL11. BMC Cancer 2024; 24:459. [PMID: 38609887 PMCID: PMC11015641 DOI: 10.1186/s12885-024-12177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) represents a common and heterogeneous malignancy of the oral cavity, pharynx and larynx. Surgery and radio(chemo)therapy are the standard treatment options and also have great influence on the composition of the tumor microenvironment and immune cell functions. However, the impact of radio(chemo)therapy on the distribution and characteristics of circulating monocyte subsets in HNSCC are not fully understood. METHODS Expression patterns of adhesion molecules and chemokine receptors CD11a (integrin-α L; LFA-1), CD11b (integrin-α M; Mac-1), CD11c (integrin-α X), CX3CR1 (CX3CL1 receptor) and checkpoint molecule PD-L1 (programmed cell death ligand-1) were investigated upon radio(chemo)therapeutic treatment using flow cytometry. Furthermore, comprehensive analysis of plasma cytokines was performed before and after treatment using ELISA measurements. RESULTS Our data reveal a partial recovery of circulating monocytes in HNSCC patients upon radio(chemo)therapeutic treatment, with differential effects of the individual therapy regimen. PD-L1 expression on non-classical monocytes significantly correlates with the individual plasma levels of chemokine CXCL11 (C-X-C motif chemokine 11). CONCLUSIONS Further comprehensive investigations on larger patient cohorts are required to elucidate the meaningfulness of peripheral blood monocyte subsets and chemokine CXCL11 as potential bioliquid indicators in HNSCC with regard to therapy response and the individual immunological situation.
Collapse
Affiliation(s)
- Christian Idel
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Luebeck, Luebeck, 23538, Germany
| | - Jonas Fleckner
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Luebeck, Luebeck, 23538, Germany
| | - Kirstin Plötze-Martin
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Luebeck, Luebeck, 23538, Germany
| | - Lotte Werner
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Luebeck, Luebeck, 23538, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University of Luebeck, Luebeck, 23538, Germany
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Ulm, 89075, Germany
- Department of Otorhinolaryngology, Technical University Munich, Munich, Germany
| | - Linda Hofmann
- Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Ulm, 89075, Germany
| | - Diana Huber
- Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Ulm, 89075, Germany
| | - Anke Leichtle
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Luebeck, Luebeck, 23538, Germany
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Ulm, 89075, Germany
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Luebeck, Luebeck, 23538, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Luebeck, Luebeck, 23538, Germany.
| |
Collapse
|
4
|
Faccio R, Lee S, Ricci B, Tran J, Ye J, Clever D, Eul E, Wang J, Wong P, Ma C, Fehniger T. Cancer-associated fibroblast-derived Dickkopf-1 suppresses NK cell cytotoxicity in breast cancer. RESEARCH SQUARE 2024:rs.3.rs-4202878. [PMID: 38659818 PMCID: PMC11042392 DOI: 10.21203/rs.3.rs-4202878/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Breast cancer is poorly immunogenic, hence able to evade T cell recognition and respond poorly to immune checkpoint blockade. Breast cancer cells can also evade NK cell-mediated immune surveillance, but the mechanism remains enigmatic. Dickkopf-1 (DKK1) is a Wnt/b-catenin inhibitor, whose levels are increased in breast cancer patients and correlate with reduced overall survival. DKK1 is expressed by cancer-associated fibroblasts (CAFs) in orthotopic breast tumors and patient samples, and at higher levels by bone cells. While bone-derived DKK1 contributes to the systemic elevation of DKK1 in tumor-bearing mice, CAFs represent the primary source of DKK1 at the tumor site. Systemic or bone-specific DKK1 targeting reduces primary tumor growth. Intriguingly, specific deletion of CAF-derived DKK1 also limits breast cancer progression, regardless of its elevated levels in circulation and in the bone. DKK1 does not support tumor proliferation directly but rather suppresses the activation and tumoricidal activity of NK cells. Importantly, increased DKK1 levels and reduced number of cytotoxic NK cells are detected in breast cancer patients with progressive bone metastases compared to those with stable disease. Our findings indicate that DKK1 creates a tumor-supporting environment through the suppression of NK cells in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Jiayu Ye
- Washington University in St. Louis
| | | | | | | | | | | | | |
Collapse
|
5
|
Chen K, Li J, Ouyang Y, Xie Y, Xu G, Xia T, You R, Liu G, He H, Huang R, Chen M. Prognostic significance of Dickkopf-1 in head and neck squamous cell carcinoma. Expert Rev Anticancer Ther 2024; 24:147-154. [PMID: 38044867 DOI: 10.1080/14737140.2023.2289597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Dickkopf-1 (DKK1) exhibits abnormal expression in various cancers and correlates with poor prognosis. This study investigates DKK1's prognostic relevance in head and neck squamous cell carcinoma (HNSC). METHODS We conducted a comprehensive search across literature and sequencing databases to gather eligible studies and HNSC datasets. We calculated pooled standardized mean differences (SMD) and 95% confidence intervals (CI) for clinical characteristics, as well as hazard ratios (HR) with 95% CIs for overall survival (OS) and progression-free/disease-free survival (PFS/DFS). Sensitivity analysis gauged result stability, and Egger's test assessed publication bias. RESULTS Pooled results indicated that HNSC patients with higher T-stage exhibited elevated DKK1 expression levels, and this elevated expression was associated with shorter OS and PFS/DFS. While sensitivity analysis identified some studies significantly affecting pooled results, most were unaffected, and no publication bias was detected. CONCLUSION DKK1 holds promise as a potential biomarker for predicting poor prognosis in HNSC patients, but further research is needed for confirmation.
Collapse
Affiliation(s)
- Kai Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin Li
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yanfeng Ouyang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yulong Xie
- Department of Radiotherapy, Cancer Center, The People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Guiqiong Xu
- Department of Radiotherapy, Cancer Center, The People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Tianliang Xia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Rui You
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Guichao Liu
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Han He
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Rong Huang
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Mingyuan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|