1
|
Altuwayrish A, Ghorbani M, Bakhshandeh M, Roozmand Z, Hoseini-Ghahfarokhi M. Comparison of PRIMO Monte Carlo code and Eclipse treatment planning system in calculation of dosimetric parameters in brain cancer radiotherapy. Rep Pract Oncol Radiother 2022; 27:863-874. [PMID: 36523800 PMCID: PMC9746651 DOI: 10.5603/rpor.a2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background It is important to evaluate the dose calculated by treatment planning systems (TPSs) and dose distribution in tumor and organs at risk (OARs). The aim of this study is to compare dose calculated by the PRIMO Monte Carlo code and Eclipse TPS in radiotherapy of brain cancer patients. Materials and methods PRIMO simulation code was used to simulate a Varian Clinac 600C linac. The simulations were validated for the linac by comparison of the simulation and measured results. In the case of brain cancer patients, the dosimetric parameters obtained by the PRIMO code were compared with those calculated by Eclipse TPS. Gamma function analysis with 3%, 3 mm criteria was utilized to compare the dose distributions. The evaluations were based on the dosimetric parameters for the planning target volume (PTV) and OAR including D min, D mean, and D max, homogeneity index (HI), and conformity index (CI). Results The gamma function analysis showed a 98% agreement between the results obtained by the PRIMO code and measurement for the percent depth dose (PDD) and dose profiles. The corresponding value in comparing the dosimetric parameters from PRIMO code and Eclipse TPS for the brain patients was 94%, on average. The results of the PRIMO simulation were in good agreement with the measured data and Eclipse TPS calculations. Conclusions Based on the results of this study, the PRIMO code can be utilized to simulate a medical linac with good accuracy and to evaluate the accuracy of treatment plans for patients with brain cancer.
Collapse
Affiliation(s)
- Ali Altuwayrish
- Biomedical Engineering and Medical Physics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Ghorbani
- Biomedical Engineering and Medical Physics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Bakhshandeh
- Department of Radiation Technology, Faculty of Allied Radiation Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Roozmand
- Medical Physics Department, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
2
|
Tabor Z, Kabat D, Waligórski MPR. DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software. Radiat Oncol 2021; 16:124. [PMID: 34187495 PMCID: PMC8243564 DOI: 10.1186/s13014-021-01847-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background Any Monte Carlo simulation of dose delivery using medical accelerator-generated megavolt photon beams begins by simulating electrons of the primary electron beam interacting with a target. Because the electron beam characteristics of any single accelerator are unique and generally unknown, an appropriate model of an electron beam must be assumed before MC simulations can be run. The purpose of the present study is to develop a flexible framework with suitable regression models for estimating parameters of the model of primary electron beam in simulators of medical linear accelerators using real reference dose profiles measured in a water phantom. Methods All simulations were run using PRIMO MC simulator. Two regression models for estimating the parameters of the simulated primary electron beam, both based on machine learning, were developed. The first model applies Principal Component Analysis to measured dose profiles in order to extract principal features of the shapes of the these profiles. The PCA-obtained features are then used by Support Vector Regressors to estimate the parameters of the model of the electron beam. The second model, based on deep learning, consists of a set of encoders processing measured dose profiles, followed by a sequence of fully connected layers acting together, which solve the regression problem of estimating values of the electron beam parameters directly from the measured dose profiles. Results of the regression are then used to reconstruct the dose profiles based on the PCA model. Agreement between the measured and reconstructed profiles can be further improved by an optimization procedure resulting in the final estimates of the parameters of the model of the primary electron beam. These final estimates are then used to determine dose profiles in MC simulations. Results Analysed were a set of actually measured (real) dose profiles of 6 MV beams from a real Varian 2300 C/D accelerator, a set of simulated training profiles, and a separate set of simulated testing profiles, both generated for a range of parameters of the primary electron beam of the Varian 2300 C/D PRIMO simulator. Application of the two-stage procedure based on regression followed by reconstruction-based minimization of the difference between measured (real) and reconstructed profiles resulted in achieving consistent estimates of electron beam parameters and in a very good agreement between the measured and simulated photon beam profiles. Conclusions The proposed framework is a readily applicable and customizable tool which may be applied in tuning virtual primary electron beams of Monte Carlo simulators of linear accelerators. The codes, training and test data, together with readout procedures, are freely available at the site: https://github.com/taborzbislaw/DeepBeam. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01847-w.
Collapse
Affiliation(s)
- Zbisław Tabor
- AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059, Kraków, Poland.
| | - Damian Kabat
- Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Garncarska 11, 31-115, Kraków, Poland
| | | |
Collapse
|
3
|
Hermida-López M, Sánchez-Artuñedo D, Rodríguez M, Brualla L. Monte Carlo simulation of conical collimators for stereotactic radiosurgery with a 6 MV flattening-filter-free photon beam. Med Phys 2021; 48:3160-3171. [PMID: 33715167 DOI: 10.1002/mp.14837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Conical collimators, or cones, are tertiary collimators that attach to a radiotherapy linac and are suited for the stereotactic radiosurgery treatment of small brain lesions. The small diameter of the most used cones makes difficult the acquisition of the dosimetry data needed for the commissioning of treatment planning systems. Although many publications report dosimetric data of conical collimators for stereotactic radiosurgery, most of the works use different setups, which complicates comparisons. In other cases, the cone output factors reported do not take into account the effect of the small cone diameter on the detector response. Finally, few data exist on the dosimetry of cones with flattening-filter-free (FFF) beams from modern linac models. This work aims at obtaining a dosimetric characterization of the conical collimators manufactured by Brainlab AG (Munich, Germany) in a 6 MV FFF beam from a TrueBeam STx linac (Varian Medical Systems). METHODS Percentage depth dose curves, lateral dose profiles and cone output factors were obtained using Monte Carlo simulations for the cones with diameters of 4, 5, 6, 7.5, 8, 10, 12.5, 15, 17.5, 20, 25, and 30 mm. The simulation of the linac head was carried out with the PRIMO Monte Carlo software, and the simulations of the cones and the water phantom were run with the general-purpose Monte Carlo code PENELOPE. The Monte Carlo model was validated by comparing the simulation results with measurements performed for the cones of 4, 5, and 7.5 mm of diameter using a stereotactic field diode, a microDiamond detector and EBT3 radiochromic film. In addition, for those cones, simulations and measurements were done for comparison purposes, by reproducing the experimental setups from the available publications. RESULTS The experimental data acquired for the cones of 4, 5, and 7.5 mm validated the developed Monte Carlo model. The simulations accurately reproduced the experimental depths of maximum dose and the dose ratio at 20- and 10-cm depth (PDD20/10 ). A good agreement was obtained between simulated and experimental lateral dose profiles: The differences in the full-width at half-maximum were smaller than 0.2 mm, and the differences in the penumbra 80%-20% were smaller than 0.25 mm. The difference between the simulated and the average of the experimental output factors for the cones of 4, 5, and 7.5 mm of diameter was 0.0%, 0.0%, and 3.0%, respectively, well within the statistical uncertainty of the simulations (4.4% with coverage factor k = 2). It was also found that the simulated cone output factors agreed within 2% with the average of output factors reported in the literature for a variety of setup conditions, detectors, beam qualities, and cone manufacturers. CONCLUSION A Monte Carlo model of cones for stereotactic radiosurgery has been developed and validated. The cone dosimetry dataset obtained in this work, consisting of percentage depth doses, lateral dose profiles and output factors, is useful to benchmark data acquired for the commissioning of cone-based radiosurgery treatment planning systems.
Collapse
Affiliation(s)
- Marcelino Hermida-López
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - David Sánchez-Artuñedo
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Miguel Rodríguez
- Centro Médico Paitilla, Calle 53 y ave. Balboa, Panama City, Panama.,Instituto de Investigaciones Científicas y de Alta Tecnología, INDICASAT-AIP, City of Knowledge, Building 219, Panama City, Panama
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen, 45147, Germany.,West German Cancer Centre (WTZ), Hufelandstr. 55, Essen, 45147, Germany.,Faculty of Medicine, University of Duisburg-Essen, Hufelandstr. 55, Essen, 45147, Germany
| |
Collapse
|
4
|
Ghareeb F, Esposito A, Lencart J, Santos JA. Localized extra focal dose collimator angle dependence during VMAT: An out-of-field Monte Carlo study using PRIMO software. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Rodriguez M, Brualla L. Treatment verification using Varian's dynalog files in the Monte Carlo system PRIMO. Radiat Oncol 2019; 14:67. [PMID: 31014356 PMCID: PMC6480709 DOI: 10.1186/s13014-019-1269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background The PRIMO system is a computer software that allows the Monte Carlo simulation of linear accelerators and the estimation of the subsequent absorbed dose distributions in phantoms and computed tomographies. The aim of this work is to validate the methods incorporated in PRIMO to evaluate the deviations introduced in the dose distributions by errors in the positioning of the leaves of the multileaf collimator recorded in the dynalog files during patient treatment. Methods The reconstruction of treatment plans from Varian’s dynalog files was implemented in the PRIMO system. Dose distributions were estimated for volumetric-modulated arc therapy clinical cases of prostate and head&neck using the PRIMO fast Monte Carlo engine DPM. Accuracy of the implemented reconstruction methods was evaluated by comparing dose distributions obtained from the simulations of the plans imported from the treatment planning system with those obtained from the simulations of the plans reconstructed from the expected leaves positions recorded in the dynalog files. The impact on the dose of errors in the positions of the leaves was evaluated by comparing dose distributions estimated for plans reconstructed from expected leaves positions with dose distributions estimated from actual leaves positions. Gamma pass rate (GPR), a hereby introduced quantity named percentage of agreement (PA) and the percentage of voxels with a given systematic difference (α/Δ) were the quantities used for the comparisons. Errors were introduced in leaves positions in order to study the sensitivity of these quantities. Results A good agreement of the dose distributions obtained from the plan imported from the TPS and from the plan reconstructed from expected leaves positions was obtained. Not a significantly better agreement was obtained for an imported plan with an increased number of control points such as to approximately match the number of records in the dynalogs. When introduced errors were predominantly in one direction, the methods employed in this work were sensitive to dynalogs with root-mean-square errors (RMS) ≥0.2 mm. Nevertheless, when errors were in both directions, only RMS >1.2 mm produced detectable deviations in the dose. The PA and the α/Δ showed more sensitive to errors in the leaves positions than the GPR. Conclusions Methods to verify the accuracy of the radiotherapy treatment from the information recorded in the Varian’s dynalog files were implemented and verified in this work for the PRIMO system. Tolerance limits could be established based on the values of PA and α/Δ. GPR 3,3 is not recommended as a solely evaluator of deviations introduced in the dose by errors captured in the dynalog files.
Collapse
Affiliation(s)
- Miguel Rodriguez
- Centro Médico Paitilla, Calle 53 y ave. Balboa, Panama City, Panama.,Instituto de Investigaciones Científicas y de Alta Tecnología, INDICASAT-AIP, City of Knowledge, Building 219, Panama City, Panama
| | - Lorenzo Brualla
- West German Proton Therapy Centre (WPE), Hufelandstraße 55, Essen, D-45147, Germany. .,West German Cancer Center (WTZ), Hufelandstraße 55, Essen, D-45147, Germany. .,University Hospital Essen, Hufelandstraße 55, Essen, D-45147, Germany. .,Universität Duisburg-Essen. Medizinische Fakultät, Hufelandstraße 55, Essen, D-45147, Germany.
| |
Collapse
|
6
|
Brualla L, Rodriguez M, Sempau J, Andreo P. PENELOPE/PRIMO-calculated photon and electron spectra from clinical accelerators. Radiat Oncol 2019; 14:6. [PMID: 30634994 PMCID: PMC6330451 DOI: 10.1186/s13014-018-1186-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of photon and electron spectra in digital form from current accelerators and Monte Carlo (MC) systems is scarce, and one of the packages widely used refers to linacs with a reduced clinical use nowadays. Such spectra are mainly intended for the MC calculation of detector-related quantities in conventional broad beams, where the use of detailed phase-space files (PSFs) is less critical than for MC-based treatment planning applications, but unlike PSFs, spectra can easily be transferred to other computer systems and users. METHODS A set of spectra for a range of Varian linacs has been calculated using the PENELOPE/PRIMO MC system. They have been extracted from PSFs tallied for field sizes of 10 cm × 10 cm and 15 cm × 15 cm for photon and electron beams, respectively. The influence of the spectral bin width and of the beam central axis region used to extract the spectra have been analyzed. RESULTS Spectra have been compared to those by other authors showing good agreement with those obtained using the, now superseded, EGS4/BEAM MC code, but significant differences with the most widely used photon data set. Other spectra, particularly for electron beams, have not been published previously for the machines simulated in this work. The influence of the bin width on the spectrum mean energy for 6 and 10 MV beams has been found to be negligible. The size of the region used to extract the spectra yields differences of up to 40% for the mean energies in 10 MV beams, but the maximum difference for TPR 20,10 values derived from depth-dose distributions does not exceed 2% relative to those obtained using the PSFs. This corresponds to kQ differences below 0.2% for a typical Farmer-type chamber, considered to be negligible for reference dosimetry. Different configurations for using electron spectra have been compared for 6 MeV beams, concluding that the geometry used for tallying the PSFs used to extract the spectra must be accounted for in subsequent calculations using the spectra as a source. CONCLUSIONS An up-to-date set of consistent spectra for Varian accelerators suitable for the calculation of detector-related quantities in conventional broad beams has been developed and made available in digital form.
Collapse
Affiliation(s)
- Lorenzo Brualla
- West German Proton Therapy Centre Essen (WPE), Essen, D-45147, Germany. .,West German Cancer Center (WTZ), Essen, D-45147, Germany. .,University Hospital Essen, Essen, D-45147, Germany. .,Universität Duisburg-Essen, Medizinische Fakultät, Essen, D-45147, Germany.
| | - Miguel Rodriguez
- Centro Médico Paitilla, Panama City, 0816-03075, Panama.,Instituto de Investigaciones Científicas y de Alta Tecnología, INDICASAT-AIP, City of Knowledge, Building 219, Panama City, Panama
| | - Josep Sempau
- Department of Physics and Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona, E-08028, Spain
| | - Pedro Andreo
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, and Department of Oncology-Pathology, Karolinska Institutet, Stockholm, SE-171 76, Sweden
| |
Collapse
|
7
|
Townson R, Egglestone H, Zavgorodni S. A fast jaw-tracking model for VMAT and IMRT Monte Carlo simulations. J Appl Clin Med Phys 2018; 19:26-34. [PMID: 29745009 PMCID: PMC6036353 DOI: 10.1002/acm2.12343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/25/2018] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
Modern radiotherapy techniques involve routine use of volumetric arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) with jaw‐tracking – dynamic motion of the secondary collimators (jaws) in tandem with multi‐leaf collimators (MLCs). These modalities require accurate dose calculations for the purposes of treatment planning and dose verification. Monte Carlo (MC) methods for radiotherapy dose calculation are widely accepted as capable of achieving high accuracy. This paper presents an efficiency‐enhancement method for secondary collimator modeling, presented in the context of a tool for MC‐based dose second checks. The model constitutes an accuracy trade‐off in the source model for the sake of efficiency enhancement, but maintains the advantages of MC transport in patient heterogeneities. The secondary collimator model is called Flat‐Absorbing‐Jaw‐Tracking (FAJT). Transmission through and scatter from the secondary collimators is neglected, and jaws are modeled as perfectly absorbing planes. To couple the motion of secondary collimators with MLCs for jaw‐tracking, the FAJT model was built into the VCU‐MLC model. Gamma‐index analysis of the dose distributions from FAJT against the full BEAMnrc MC simulations showed over 99% pass rate for a range of open fields, two clinical IMRT, and one VMAT treatment plan, for 2%/2 mm criteria above 10%. Using FAJT, the simulation speed of the secondary collimators for open fields increased by a factor of 237, 1489, and 1395 for 4 × 4, 10 × 10, and 30 × 30 cm2, respectively. In general, clinically oriented simulation times are reduced from “hours” to “minutes” on identical hardware. Results for nine representative clinical cases (seven with jaw‐tracking) are presented. The average 2%/2 mm γ‐test success rate above the 80% isodose was 96.8% when tested against the EPIDose electronic portal image‐based dose reconstruction method and 97.3% against the Eclipse analytical anisotropic algorithm.
Collapse
Affiliation(s)
- Reid Townson
- Measurement Science and Standards, National Research Council Canada, Ottawa, ON, Canada
| | - Hilary Egglestone
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.,Department of Medical Physics, BC Cancer Agency, Vancouver Island Centre, Victoria, BC, Canada
| | - Sergei Zavgorodni
- Department of Medical Physics, BC Cancer Agency, Vancouver Island Centre, Victoria, BC, Canada
| |
Collapse
|
8
|
Alhakeem E, Zavgorodni S. Evaluation of latent variances in Monte Carlo dose calculations with Varian TrueBeam photon phase-spaces used as a particle source. Phys Med Biol 2017; 63:01NT03. [PMID: 29205177 DOI: 10.1088/1361-6560/aa9f39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study was to evaluate the latent variance (LV) of Varian TrueBeam photon phase-space files (PSF) for open 10 × 10 cm2 and small stereotactic fields and estimate the number of phase spaces required to be summed up in order to maintain sub-percent LV in Monte Carlo (MC) dose calculations. BEAMnrc/DOSXYZnrc software was used to transport particles from Varian phase-space files (PSFA) through the secondary collimators. Transported particles were scored into another phase-space located under the jaws (PSFB), or transported further through the cone collimators and scored straight below, forming PSFC. Phase-space files (PSFB) were scored for 6 MV-FFF, 6 MV, 10 MV-FFF, 10 MV and 15 MV beams with 10 × 10 cm2 field size, and PSFC were scored for 6 MV beam under circular cones of 0.13, 0.25, 0.35, and 1 cm diameter. Both PSFB and PSFC were transported into a water phantom with particle recycling number ranging from 10 to 1000. For 10 × 10 cm2 fields 0.5 × 0.5 × 0.5 cm3 voxels were used to score the dose, whereas the dose was scored in 0.1 × 0.1 × 0.5 cm3 voxels for beams collimated with small cones. In addition, for small 0.25 cm diameter cone-collimated 6 MV beam, phantom voxel size varied as 0.02 × 0.02 × 0.5 cm3, 0.05 × 0.05 × 0.5 cm3 and 0.1 × 0.1 × 0.5 cm3. Dose variances were scored in all cases and LV evaluated as per Sempau et al. For the 10 × 10 cm2 fields calculated LVs were greatest at the phantom surface and decreased with depth until they reached a plateau at 5 cm depth. LVs were found to be 0.54%, 0.96%, 0.35%, 0.69% and 0.57% for the 6 MV-FFF, 6 MV, 10 MV-FFF, 10 MV and 15 MV energies, respectively at the depth of 10 cm. For the 6 MV phase-space collimated with cones of 0.13, 0.25, 0.35, 1.0 cm diameter, the LVs calculated at 1.5 cm depth were 75.6%, 25.4%, 17.6% and 8.0% respectively. Calculated LV for the 0.25 cm cone-collimated 6 MV beam were 61.2%, 40.7%, 22.5% in 0.02 × 0.02 × 0.5 cm3, 0.05 × 0.05 × 0.5 cm3 and 0.1 × 0.1 × 0.5 cm3 voxels respectively. In order to achieve sub-percent LV in open 10 × 10 cm2 field MC simulations a single PSF can be used, whereas for small SRS fields (0.13-1.0 cm) more PSFs (66-8 PSFs) would have to be summed.
Collapse
Affiliation(s)
- Eyad Alhakeem
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6, Canada. Department of Medical Physics, British Columbia Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5, Canada
| | | |
Collapse
|
9
|
Mayorga PA, Brualla L, Flühs A, Sauerwein W, Lallena AM. Testing Monte Carlo absolute dosimetry formalisms for a small field ‘D’-shaped collimator used in retinoblastoma external beam radiotherapy. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/6/065008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Brualla L, Rodriguez M, Lallena AM. Monte Carlo systems used for treatment planning and dose verification. Strahlenther Onkol 2016; 193:243-259. [PMID: 27888282 DOI: 10.1007/s00066-016-1075-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations.
Collapse
Affiliation(s)
- Lorenzo Brualla
- NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, D-45122, Essen, Germany.
| | | | - Antonio M Lallena
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071, Granada, Spain
| |
Collapse
|
11
|
Belosi MF, Rodriguez M, Fogliata A, Cozzi L, Sempau J, Clivio A, Nicolini G, Vanetti E, Krauss H, Khamphan C, Fenoglietto P, Puxeu J, Fedele D, Mancosu P, Brualla L. Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data. Med Phys 2014; 41:051707. [DOI: 10.1118/1.4871041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Rodriguez M, Sempau J, Brualla L. PRIMO: a graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol 2013; 189:881-6. [PMID: 24005581 DOI: 10.1007/s00066-013-0415-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/19/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The accurate Monte Carlo simulation of a linac requires a detailed description of its geometry and the application of elaborate variance-reduction techniques for radiation transport. Both tasks entail a substantial coding effort and demand advanced knowledge of the intricacies of the Monte Carlo system being used. METHODS PRIMO, a new Monte Carlo system that allows the effortless simulation of most Varian and Elekta linacs, including their multileaf collimators and electron applicators, is introduced. PRIMO combines (1) accurate physics from the PENELOPE code, (2) dedicated variance-reduction techniques that significantly reduce the computation time, and (3) a user-friendly graphical interface with tools for the analysis of the generated data. PRIMO can tally dose distributions in phantoms and computerized tomographies, handle phase-space files in IAEA format, and import structures (planning target volumes, organs at risk) in the DICOM RT-STRUCT standard. RESULTS A prostate treatment, conformed with a high definition Millenium multileaf collimator (MLC 120HD) from a Varian Clinac 2100 C/D, is presented as an example. The computation of the dose distribution in 1.86×3.00×1.86 mm3 voxels with an average 2% standard statistical uncertainty, performed on an eight-core Intel Xeon at 2.67 GHz, took 1.8 h-excluding the patient-independent part of the linac, which required 3.8 h but it is simulated only once. CONCLUSION PRIMO is a self-contained user-friendly system that facilitates the Monte Carlo simulation of dose distributions produced by most currently available linacs. This opens the door for routine use of Monte Carlo in clinical research and quality assurance purposes. It is free software that can be downloaded from http://www.primoproject.net.
Collapse
Affiliation(s)
- M Rodriguez
- Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain,
| | | | | |
Collapse
|
13
|
Croce O, Hachem S, Franchisseur E, Marcié S, Gérard JP, Bordy JM. Contact radiotherapy using a 50kV X-ray system: Evaluation of relative dose distribution with the Monte Carlo code PENELOPE and comparison with measurements. Radiat Phys Chem Oxf Engl 1993 2012. [DOI: 10.1016/j.radphyschem.2012.01.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Rodriguez M, Sempau J, Brualla L. A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys Med Biol 2012; 57:3013-24. [DOI: 10.1088/0031-9155/57/10/3013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Sempau J, Badal A, Brualla L. A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. Med Phys 2012; 38:5887-95. [PMID: 22047353 DOI: 10.1118/1.3643029] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Two new codes, PENEASY and PENEASYLINAC, which automate the Monte Carlo simulation of Varian Clinacs of the 600, 1800, 2100, and 2300 series, together with their electron applicators and multileaf collimators, are introduced. The challenging case of a relatively small and far-from-axis field has been studied with these tools. METHODS PENEASY is a modular, general-purpose main program for the PENELOPE Monte Carlo system that includes various source models, tallies and variance-reduction techniques (VRT). The code includes a new geometry model that allows the superposition of voxels and objects limited by quadric surfaces. A variant of the VRT known as particle splitting, called fan splitting, is also introduced. PENEASYLINAC, in turn, automatically generates detailed geometry and configuration files to simulate linacs with PENEASY. These tools are applied to the generation of phase-space files, and of the corresponding absorbed dose distributions in water, for two 6 MV photon beams from a Varian Clinac 2100 C∕D: a 40 × 40 cm(2) centered field; and a 3 × 5 cm(2) field centered at (4.5, -11.5) cm from the beam central axis. This latter configuration implies the largest possible over-traveling values of two of the jaws. Simulation results for the depth dose and lateral profiles at various depths are compared, by using the gamma index, with experimental values obtained with a PTW 31002 ionization chamber. The contribution of several VRTs to the computing speed of the more demanding off-axis case is analyzed. RESULTS For the 40 × 40 cm(2) field, the percentages γ(1) and γ(1.2) of voxels with gamma indices (using 0.2 cm and 2% criteria) larger than unity and larger than 1.2 are 0.2% and 0%, respectively. For the 3 × 5 cm(2) field, γ(1) = 0%. These figures indicate an excellent agreement between simulation and experiment. The dose distribution for the off-axis case with voxels of 2.5 × 2.5 × 2.5 mm(3) and an average standard statistical uncertainty of 2% (1σ) is computed in 3.1 h on a single core of a 2.8 GHz Intel Core 2 Duo processor. This result is obtained with the optimal combination of the tested VRTs. In particular, fan splitting for the off-axis case accelerates execution by a factor of 240 with respect to standard particle splitting. CONCLUSIONS PENEASY and PENEASYLINAC can simulate the considered Varian Clinacs both in an accurate and efficient manner. Fan splitting is crucial to achieve simulation results for the off-axis field in an affordable amount of CPU time. Work to include Elekta linacs and to develop a graphical interface that will facilitate user input is underway.
Collapse
Affiliation(s)
- Josep Sempau
- Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Barcelona, Spain.
| | | | | |
Collapse
|