1
|
Panahi Y, Gharekhani A, Hamishehkar H, Zakeri-Milani P, Gharekhani H. Stomach-Specific Drug Delivery of Clarithromycin Using a Semi Interpenetrating Polymeric Network Hydrogel Made of Montmorillonite and Chitosan: Synthesis, Characterization and In Vitro Drug Release Study. Adv Pharm Bull 2019; 9:159-173. [PMID: 31011570 PMCID: PMC6468236 DOI: 10.15171/apb.2019.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/07/2018] [Accepted: 01/19/2019] [Indexed: 01/09/2023] Open
Abstract
Purpose: In this study, we aimed to prepare an extended drug delivery formulation of clarithromycin (CAM) based on a semi-interpenetrating polymer network (semi-IPN) hydrogel. Methods: Synthesis of semi-IPN hydrogel nanocomposite made of chitosan (CS), acrylic acid (AA), acrylamide (AAm), polyvinylpyrrolidone (PVP), and montmorillonite (MMT) was performed by free radical graft copolymerization method. Swelling kinetic studies were done in acidic buffer solutions of hydrochloric acid (pH = 1.2), acetate (pH = 4), and also distilled water. Also, the effects of MMT on the swelling kinetic, thermal stability, and mechanical strength of the hydrogels were evaluated. Moreover, in vitro release behavior of CAM and its release kinetics from hydrogels were studied in a hydrochloric acid buffer solution. Results: Fourier transform infrared spectroscopy (FTIR) results revealed that synthesis of semi- IPN superabsorbent nanocomposite and CAM incorporation into hydrogel was performed, successfully. Introducing MMT into hydrogel network not only improved its thermal stability but also increased mechanical strength of the final hydrogel product. Also, in comparison with neat hydrogel (1270 g/g), hydrogel nanocomposite containing 13 wt% MMT exhibited greater equilibrium swelling capacity (1568 g/g) with lower swelling rate. In vitro drug release experiments showed that CS-g-poly(AA-co-AAm)/PVP/MMT/CAM formulation possesses a sustained release character over extended period of time compared with CS-g-poly(AA-co- AAm)/PVP/CAM formulation. Conclusion: In the presence of MMT, the effective life time of drug is prolonged, demonstrating a sustained release property. The reason is that interlinked porous channels within superabsorbent nanocomposite network hinder penetration of aqueous solutions into hydrogel and subsequently cause a slower drug release.
Collapse
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, P.O. Box 1435916-471, Tehran, Iran
| | - Afshin Gharekhani
- Drug Applied Research Center, Department of Clinical Pharmacy (Pharmacotherapy), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Gharekhani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Dual thermo-and pH-sensitive injectable hydrogels of chitosan/(poly(N-isopropylacrylamide-co-itaconic acid)) for doxorubicin delivery in breast cancer. Int J Biol Macromol 2019; 128:957-964. [PMID: 30685304 DOI: 10.1016/j.ijbiomac.2019.01.122] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022]
Abstract
In this work, dual thermo- and pH-responsive hydrogels were developed and loaded with doxorubicin (DOX) with potential therapy of breast cancer. Hydrogels were engineered by blending synthesized poly(N-isopropylacrylamide-co-itaconic acid) (PNIAAm-co-IA) with chitosan (CS) through ionic crosslinking using glycerophosphate (GP). The synthesized copolymer and hydrogels were characterized by means of various techniques such as FT-IR, 1H NMR, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Lower critical solution temperature (LCST) of the copolymer was determined around 39 °C using UV-Vis spectroscopy. Swelling studies of hydrogels and their morphology implied the porous structure, high water content with rapid swelling/deswelling rate in response to abrupt changes of pH and temperature. The release investigation of DOX at different concentration, temperature and pH values confirmed the accelerated release of DOX in lower concentration and acidic condition at 37 °C as compared to neutral pH and the temperature of 40 °C. The MTT cytotoxicity study revealed that the hydrogels are cytocompatible and exert no/negligible cytotoxicity on MCF-7 cells. The proliferation of MCF-7 cells on the prepared hydrogel and DOX-loaded hydrogel was evaluated by 4',6-diamidino-2-phenylindole (DAPI) staining which further demonstrated the potential of developed hydrogels for local therapy of breast cancer.
Collapse
|
3
|
Işıklan N, Altınışık Z. Temperature-responsive alginate-g
-poly(N
,N
-diethylacrylamide) copolymer: Synthesis, characterization, and swelling behavior. J Appl Polym Sci 2018. [DOI: 10.1002/app.46688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences; Kırıkkale University; Yahşihan Kırıkkale 71450 Turkey
| | - Zeynep Altınışık
- Department of Chemistry, Faculty of Arts and Sciences; Kırıkkale University; Yahşihan Kırıkkale 71450 Turkey
| |
Collapse
|
4
|
Moshe H, Davizon Y, Menaker Raskin M, Sosnik A. Novel poly(vinyl alcohol)-based amphiphilic nanogels by non-covalent boric acid crosslinking of polymeric micelles. Biomater Sci 2018; 5:2295-2309. [PMID: 29019482 DOI: 10.1039/c7bm00675f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, we report a new type of poly(vinyl alcohol)-g-poly(N-isopropylacrylamide) (PVA-g-PNiPAAm) amphiphilic nanogel produced by the non-covalent crosslinking of PVA polyol domains in preformed polymeric micelles with boric acid. The nanomaterials showed sizes in the 100-250 nm range (DLS) and a spherical morphology (HR-SEM). We demonstrated that the size of the polymeric micelles could be fine-tuned by changing the concentration (and the aggregation pattern) of the polymeric amphiphile in water. Upon crosslinking, the polymeric micelles turned into physically stable amphiphilic nanogels that displayed both size and size distribution similar to the micellar precursor for up to two weeks, even under disfavored conditions of concentration and temperature that, in the case of non-crosslinked counterparts, resulted in quick disassembly. In addition, we show for the first time the feasibility of spray-drying technology to consolidate the 3D network formed between PVA and boric acid and to produce stable powders that can be reconstituted upon use at any desired concentration. Moreover, the formation of a borated surface conferred the nanogels with good mucoadhesiveness in vitro. Finally, these novel nanomaterials showed optimal cell compatibility in a model of the intestinal epithelium, the Caco2 cell line. Overall results demonstrate the unprecedented versatility of the proposed modular approach and opens completely new horizons in the application of polymeric micelles and other self-assembled polymeric nanomaterials in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hen Moshe
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel.
| | | | | | | |
Collapse
|
5
|
Fathi M, Majidi S, Zangabad PS, Barar J, Erfan-Niya H, Omidi Y. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev 2018; 38:2110-2136. [DOI: 10.1002/med.21506] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sima Majidi
- Faculty of Chemical and Petroleum Engineering; University of Tabriz; Tabriz Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Pharmaceutics, Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering; University of Tabriz; Tabriz Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Pharmaceutics, Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
6
|
Sattari M, Fathi M, Daei M, Erfan-Niya H, Barar J, Entezami AA. Thermoresponsive graphene oxide - starch micro/nanohydrogel composite as biocompatible drug delivery system. BIOIMPACTS : BI 2017; 7:167-175. [PMID: 29159144 PMCID: PMC5684508 DOI: 10.15171/bi.2017.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/09/2017] [Accepted: 07/23/2017] [Indexed: 12/20/2022]
Abstract
Introduction: Stimuli-responsive hydrogels, which indicate a significant response to the environmental change (e.g., pH, temperature, light, …), have potential applications for tissue engineering, drug delivery systems, cell therapy, artificial muscles, biosensors, etc. Among the temperature-responsive materials, poly (N-isopropylacrylamide) (PNIPAAm) based hydrogels have been widely developed and their properties can be easily tailored by manipulating the properties of the hydrogel and the composite material. Graphene oxide (GO), as a multifunctional and biocompatible nanosheet, can efficiently improve the mechanical strength and response rate of PNIPAAm-based hydrogels. Here, hydrogel composites (HCs) of PNIPAAm with GO was developed using the modified starch as a biodegradable cross-linker. Methods: Micro/nanohydrogel composites were synthesized by free radical polymerization of NIPAAm in the suspension of different feed ratio of GO using maleate-modified starch (St-MA) as cross-linker and Tetrakis (hydroxymethyl) phosphonium chloride (THPC) as a strong oxygen scavenger. The HCs were characterized by FT-IR, DSC, TGA, SEM, and DLS. Also, the phase transition, swelling/deswelling behavior, hemocompatibility and biocompatibility of the synthesized HCs were investigated. Results: The thermal stability, phase transition temperature and internal network crosslinking of HCs increases with increasing of the GO feed ratio. Also, the swelling/deswelling, hemolysis, and MTT assays studies confirmed that the HCs are a fast response, hemocompatible and biocompatible materials. Conclusion: The employed facile approach for the synthesis of HCs yields an intelligent material with great potential for biomedical applications.
Collapse
Affiliation(s)
- Mina Sattari
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Daei
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Hamid Erfan-Niya
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Entezami
- Laboratory of Polymer Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
|
8
|
de Lima GG, de Souza RO, Bozzi AD, Poplawska MA, Devine DM, Nugent MJD. Extraction Method Plays Critical Role in Antibacterial Activity of Propolis-Loaded Hydrogels. J Pharm Sci 2016; 105:1248-57. [PMID: 26886307 DOI: 10.1016/j.xphs.2015.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 01/19/2023]
Abstract
Extracted propolis has been used for a long time as a remedy. However, if the release rate of propolis is not controlled, the efficacy is reduced. To overcome this issue, extracted propolis was added to a cryogel system. Propolis collected from southern Brazil was extracted using different methods and loaded at different concentrations into polyvinyl alcohol (PVA) and polyacrylic acid hydrogels as carrier systems. The material properties were investigated with a focus on the propolis release profiles and the cryogel antibacterial properties against 4 different bacteria, namely: Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Pseudomonas putida. Swelling studies indicated that the swelling of the hydrogel was inversely related to propolis content. In addition, propolis release studies indicated a decreased release rate with increased propolis loading. PVA and PVA/polyacrylic acid-loaded propolis were effective against all 4 bacteria studied. These results indicate that the efficacy of propolis can be enhanced by incorporation into hydrogel carrier systems and that hydrogels with higher concentrations of propolis can be considered for use as bactericide dressing.
Collapse
Affiliation(s)
- Gabriel G de Lima
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Ronaldo O de Souza
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Aline D Bozzi
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | | | - Declan M Devine
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland; Rehabilitation Medicine Centre, Mayo Clinic, Rochester, Minnesota 55902
| | - Michael J D Nugent
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland.
| |
Collapse
|
9
|
Nakielski P, Pawłowska S, Pierini F, Liwińska W, Hejduk P, Zembrzycki K, Zabost E, Kowalewski TA. Hydrogel Nanofilaments via Core-Shell Electrospinning. PLoS One 2015; 10:e0129816. [PMID: 26091487 PMCID: PMC4474634 DOI: 10.1371/journal.pone.0129816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022] Open
Abstract
Recent biomedical hydrogels applications require the development of nanostructures with controlled diameter and adjustable mechanical properties. Here we present a technique for the production of flexible nanofilaments to be used as drug carriers or in microfluidics, with deformability and elasticity resembling those of long DNA chains. The fabrication method is based on the core-shell electrospinning technique with core solution polymerisation post electrospinning. Produced from the nanofibers highly deformable hydrogel nanofilaments are characterised by their Brownian motion and bending dynamics. The evaluated mechanical properties are compared with AFM nanoindentation tests.
Collapse
Affiliation(s)
- Paweł Nakielski
- Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | - Sylwia Pawłowska
- Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Filippo Pierini
- Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | - Patryk Hejduk
- Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Zembrzycki
- Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Zabost
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Tomasz A. Kowalewski
- Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Fathi M, Entezami AA, Arami S, Rashidi MR. Preparation ofN-Isopropylacrylamide/Itaconic Acid Magnetic Nanohydrogels by Modified Starch as a Crosslinker for Anticancer Drug Carriers. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2014.996703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|