1
|
Ansari M, Ahmed S, Abbasi A, Khan MT, Subhan M, Bukhari NA, Hatamleh AA, Abdelsalam NR. Plant mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant. Sci Rep 2023; 13:18048. [PMID: 37872286 PMCID: PMC10593853 DOI: 10.1038/s41598-023-45038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023] Open
Abstract
Nanotechnology is one of the fastest-growing markets, but developing eco-friendly products, their maximum production, stability, and higher yield is a challenge. In this study, silver nanoparticles were synthesized using an easily available resource, leaves extract of the Neem (Azadirachta indica) plant, as a reducing and capping agent, determined their effect on germination and growth of tomato plants. The maximum production of silver nanoparticles was noted at 70 °C after 3 h of reaction time while treating the 10 ml leaf extract of Neem plant with 10 ml of 1 mM silver nitrate. The impact of the extract preparation method and solvent type on the plant mediated fabrication of silver nanoparticles was also investigated. The UV-spectrophotometric analysis confirmed the synthesis of silver nanoparticles and showed an absorption spectrum within Δ420-440 nm range. The size of the fabricated silver nanoparticles was 22-30 nm. The functional groups such as ethylene, amide, carbonyl, methoxy, alcohol, and phenol attached to stabilize the nanoparticles were observed using the FTIR technique. SEM, EDX, and XRD analyses were performed to study the physiochemical characteristics of synthesized nanoparticles. Silver nanoparticles increased the germination rate of tomato seeds up to 70% while decreasing the mean germination time compared to the control. Silver nanoparticles applied at varying concentrations significantly increased the shoot length (25 to 80%), root length (10 to 60%), and fresh biomass (10 to 80%) biomass of the tomato plant. The production of total chlorophyll, carotenoid, flavonoids, soluble sugar, and protein was significantly increased in tomato plants treated with 5 and 10 ppm silver nanoparticles compared to the control. Green synthesized silver nanoparticles are cost-effective and nontoxic and can be applied in agriculture, biomedical, and other fields.
Collapse
Affiliation(s)
- Madeeha Ansari
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan.
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan.
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Muhammad Tajammal Khan
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan
| | - Mishal Subhan
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, 66000, Pakistan
| | - Najat A Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
2
|
Aboelezz E, Pogue BW. Review of nanomaterial advances for ionizing radiation dosimetry. APPLIED PHYSICS REVIEWS 2023; 10:021312. [PMID: 37304732 PMCID: PMC10249220 DOI: 10.1063/5.0134982] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
There are a wide range of applications with ionizing radiation and a common theme throughout these is that accurate dosimetry is usually required, although many newer demands are provided by improved features in higher range, multi-spectral and particle type detected. Today, the array of dosimeters includes both offline and online tools, such as gel dosimeters, thermoluminescence (TL), scintillators, optically stimulated luminescence (OSL), radiochromic polymeric films, gels, ionization chambers, colorimetry, and electron spin resonance (ESR) measurement systems. Several future nanocomposite features and interpretation of their substantial behaviors are discussed that can lead to improvements in specific features, such as (1) lower sensitivity range, (2) less saturation at high range, (3) overall increased dynamic range, (4) superior linearity, (5) linear energy transfer and energy independence, (6) lower cost, (7) higher ease of use, and (8) improved tissue equivalence. Nanophase versions of TL and ESR dosimeters and scintillators each have potential for higher range of linearity, sometimes due to superior charge transfer to the trapping center. Both OSL and ESR detection of nanomaterials can have increased dose sensitivity because of their higher readout sensitivity with nanoscale sensing. New nanocrystalline scintillators, such as perovskite, have fundamentally important advantages in sensitivity and purposeful design for key new applications. Nanoparticle plasmon coupled sensors doped within a lower Zeff material have been an effective way to achieve enhanced sensitivity of many dosimetry systems while still achieving tissue equivalency. These nanomaterial processing techniques and unique combinations of them are key steps that lead to the advanced features. Each must be realized through industrial production and quality control with packaging into dosimetry systems that maximize stability and reproducibility. Ultimately, recommendations for future work in this field of radiation dosimetry were summarized throughout the review.
Collapse
Affiliation(s)
- Eslam Aboelezz
- Ionizing Radiation Metrology Department, National Institute of Standards, Giza, Egypt
| | - Brian W. Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison 53705, USA
| |
Collapse
|
3
|
Długosz O, Matyjasik W, Hodacka G, Szostak K, Matysik J, Krawczyk P, Piasek A, Pulit-Prociak J, Banach M. Inorganic Nanomaterials Used in Anti-Cancer Therapies:Further Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061130. [PMID: 36986024 PMCID: PMC10051539 DOI: 10.3390/nano13061130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/14/2023]
Abstract
In this article, we provide an overview of the progress of scientists working to improve the quality of life of cancer patients. Among the known methods, cancer treatment methods focusing on the synergistic action of nanoparticles and nanocomposites have been proposed and described. The application of composite systems will allow precise delivery of therapeutic agents to cancer cells without systemic toxicity. The nanosystems described could be used as a high-efficiency photothermal therapy system by exploiting the properties of the individual nanoparticle components, including their magnetic, photothermal, complex, and bioactive properties. By combining the advantages of the individual components, it is possible to obtain a product that would be effective in cancer treatment. The use of nanomaterials to produce both drug carriers and those active substances with a direct anti-cancer effect has been extensively discussed. In this section, attention is paid to metallic nanoparticles, metal oxides, magnetic nanoparticles, and others. The use of complex compounds in biomedicine is also described. A group of compounds showing significant potential in anti-cancer therapies are natural compounds, which have also been discussed.
Collapse
|
4
|
Gayol A, Malano F, Ribo Montenovo C, Pérez P, Valente M. Dosimetry Effects Due to the Presence of Fe Nanoparticles for Potential Combination of Hyperthermic Cancer Treatment with MRI-Based Image-Guided Radiotherapy. Int J Mol Sci 2022; 24:ijms24010514. [PMID: 36613959 PMCID: PMC9820326 DOI: 10.3390/ijms24010514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
Nanoparticles have proven to be biocompatible and suitable for many biomedical applications. Currently, hyperthermia cancer treatments based on Fe nanoparticle infusion excited by alternating magnetic fields are commonly used. In addition to this, MRI-based image-guided radiotherapy represents, nowadays, one of the most promising accurate radiotherapy modalities. Hence, assessing the feasibility of combining both techniques requires preliminary characterization of the corresponding dosimetry effects. The present work reports on a theoretical and numerical simulation feasibility study aimed at pointing out preliminary dosimetry issues. Spatial dose distributions incorporating magnetic nanoparticles in MRI-based image-guided radiotherapy have been obtained by Monte Carlo simulation approaches accounting for all relevant radiation interaction properties as well as charged particles coupling with strong external magnetic fields, which are representative of typical MRI-LINAC devices. Two main effects have been evidenced: local dose enhancement (up to 60% at local level) within the infused volume, and non-negligible changes in the dose distribution at the interfaces between different tissues, developing to over 70% for low-density anatomical cavities. Moreover, cellular uptakes up to 10% have been modeled by means of considering different Fe nanoparticle concentrations. A theoretical temperature-dependent model for the thermal enhancement ratio (TER) has been used to account for radiosensitization due to hyperthermia. The outcomes demonstrated the reliability of the Monte Carlo approach in accounting for strong magnetic fields and mass distributions from patient-specific anatomy CT scans to assess dose distributions in MRI-based image-guided radiotherapy combined with magnetic nanoparticles, while the hyperthermic radiosensitization provides further and synergic contributions.
Collapse
Affiliation(s)
- Amiel Gayol
- Instituto de Física E. Gaviola (IFEG), CONICET & Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Francisco Malano
- Centro de Excelencia de Física e Ingeniería en Salud (CFIS), Departamento de Ciencias Físicas, Universidad de La Frontera, Av. Salazar 01145, Casilla 54D, Temuco 4811230, Chile
- Correspondence: (F.M.); (M.V.)
| | - Clara Ribo Montenovo
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Pedro Pérez
- Instituto de Física E. Gaviola (IFEG), CONICET & Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Mauro Valente
- Instituto de Física E. Gaviola (IFEG), CONICET & Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
- Centro de Excelencia de Física e Ingeniería en Salud (CFIS), Departamento de Ciencias Físicas, Universidad de La Frontera, Av. Salazar 01145, Casilla 54D, Temuco 4811230, Chile
- Correspondence: (F.M.); (M.V.)
| |
Collapse
|
5
|
Chemical Overview of Gel Dosimetry Systems: A Comprehensive Review. Gels 2022; 8:gels8100663. [PMID: 36286165 PMCID: PMC9601373 DOI: 10.3390/gels8100663] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Advances in radiotherapy technology during the last 25 years have significantly improved both dose conformation to tumors and the preservation of healthy tissues, achieving almost real-time feedback by means of high-precision treatments and theranostics. Owing to this, developing high-performance systems capable of coping with the challenging requirements of modern ionizing radiation is a key issue to overcome the limitations of traditional dosimeters. In this regard, a deep understanding of the physicochemical basis of gel dosimetry, as one of the most promising tools for the evaluation of 3D high-spatial-resolution dose distributions, represents the starting point for developing new and innovative systems. This review aims to contribute thorough descriptions of the chemical processes and interactions that condition gel dosimetry outputs, often phenomenologically addressed, and particularly formulations reported since 2017.
Collapse
|
6
|
Gaddam SA, Kotakadi VS, Subramanyam GK, Penchalaneni J, Challagundla VN, Dvr SG, Pasupuleti VR. Multifaceted phytogenic silver nanoparticles by an insectivorous plant Drosera spatulata Labill var. bakoensis and its potential therapeutic applications. Sci Rep 2021; 11:21969. [PMID: 34753977 PMCID: PMC8578548 DOI: 10.1038/s41598-021-01281-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022] Open
Abstract
The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (− 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.
Collapse
Affiliation(s)
- Susmila Aparna Gaddam
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | | | - Josthna Penchalaneni
- Department of Biotechnology, Sri Padmavathi Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh, India
| | | | - Sai Gopal Dvr
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.,DST-PURSE Centre, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia. .,Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Jl Riau Ujung No. 73, Pekanbaru, 28292, Riau, Indonesia. .,Centre for Excellence in Biomaterials Engineering (CoEBE), AIMST University, 08100, Bedong, Kedah, Malaysia.
| |
Collapse
|
7
|
Sankarganesh P, Ganesh Kumar A, Parthasarathy V, Joseph B, Priyadharsini G, Anbarasan R. Synthesis of Murraya koenigii Mediated Silver Nanoparticles and Their In Vitro and In Vivo Biological Potential. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01894-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Garg D, Sarkar A, Chand P, Bansal P, Gola D, Sharma S, Khantwal S, Surabhi, Mehrotra R, Chauhan N, Bharti RK. Synthesis of silver nanoparticles utilizing various biological systems: mechanisms and applications-a review. Prog Biomater 2020; 9:81-95. [PMID: 32654045 PMCID: PMC7544790 DOI: 10.1007/s40204-020-00135-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022] Open
Abstract
The evolving technology of nanoparticle synthesis, especially silver nanoparticle (AgNPs) has already been applied in various fields i.e., electronics, optics, catalysis, food, health and environment. With advancement in research, it is possible to develop nanoparticles of various size, shape, morphology, and surface to volume ratio utilizing biological systems. A number of different agents and methods can be employed to develop choice based AgNPs using algae, plants, fungi and bacteria. The use of plant extracts to produce AgNPs appears to be more convenient, as the method is simple, environmental friendly and inexpensive, also requiring a single-step. The microbial synthesis of AgNps showed intracellular and extracellular mechanisms to reduce metal ions into nanoparticles. Studies have shown that different size (1-100 nm) and shapes (spherical, triangular and hexagonal etc.) of nanoparticles can be produced from various biological routes and these diverse nanoparticles have various functions and usability i.e., agriculture, medical-science, textile, cosmetics and environment protection. The present review provides an overview of various biological systems used for AgNP synthesis, its underlying mechanisms, further highlighting the current research and applications of variable shape and sized AgNPs.
Collapse
Affiliation(s)
- Divyanshi Garg
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Aritri Sarkar
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Pooja Chand
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Pulkita Bansal
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Deepak Gola
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Shivangi Sharma
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Sukirti Khantwal
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Surabhi
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Rekha Mehrotra
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Nitin Chauhan
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India.
| | - Randhir K Bharti
- University School of Environmental Management, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
9
|
Casanelli B, Santibáñez M, Valente M. Particle size effect on fluorescence emission for Au-infused soft tissues. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Popescu RC, Andronescu E, Vasile BS. Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1791. [PMID: 31888236 PMCID: PMC6956201 DOI: 10.3390/nano9121791] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Functionalization of nanomaterials can enhance and modulate their properties and behaviour, enabling characteristics suitable for medical applications. Magnetite (Fe3O4) nanoparticles are one of the most popular types of nanomaterials used in this field, and many technologies being already translated in clinical practice. This article makes a summary of the surface modification and functionalization approaches presented lately in the scientific literature for improving or modulating magnetite nanoparticles for their applications in nanomedicine.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| |
Collapse
|
11
|
Santibáñez M, Saavedra R, Vedelago J, Malano F, Valente M. Optimized EDXRF system for simultaneous detection of gold and silver nanoparticles in tumor phantom. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.108415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Malano F, Mattea F, Geser FA, Pérez P, Barraco D, Santibáñez M, Figueroa R, Valente M. Assessment of FLUKA, PENELOPE and MCNP6 Monte Carlo codes for estimating gold fluorescence applied to the detection of gold-infused tumoral volumes. Appl Radiat Isot 2019; 151:280-288. [PMID: 31229928 DOI: 10.1016/j.apradiso.2019.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022]
Abstract
Different kinds of nanoparticles have been widely studied for biomedical purposes, including applications like dose enhancement in radiotherapy treatments and contrast agent in radiological studies. Recent work suggests that gold nanoparticles can be used as contrast agents in K-edge imaging and X-ray Fluorescence Computed Tomography, mainly due to their high K-edge energy value and good biocompatibility. However, the gold X-ray fluorescence (XRF) signal obtained in these procedures is relatively week when compared with Compton or bremsstrahlung radiation emitted in the surrounding tissues, mainly because it is not possible to achieve large gold nanoparticles concentrations within biological tissues added to the XRF is attenuated by other tissues when leaving the patient body. This work presents a feasibility study on implementation of FLUKA, PENELOPE and MCNP6 Monte Carlo codes to model the detection of gold XRF emitted by a small volume containing different gold concentrations and located at different depths in a tissue-equivalent phantom. Results indicate that there is good agreement between PENELOPE and FLUKA for gold Kα and Kβ lines estimations when highly symmetric simulation scenario and kilovoltage X-ray beam were used, achieving differences lower than 2%; however, differences up to 6 times were observed between FLUKA and MCNP6 under the same conditions. In addition, remarkable differences were obtained when megavoltage X-ray beam was used, being up to 11 times between PENELOPE and FLUKA and up to 4 times between FLUKA and MCNP6 for gold Kα and Kβ lines estimations. In this regard, a suitable normalization method was proposed and implemented to perform cross-comparisons of XRF estimations obtained from the Monte Carlo codes. By means of the proposed method, FLUKA, PENELOPE and MCNP6 can be successfully implemented to assess which configuration (gold concentration and target volume depth) leads to a better detection of gold XRF, despite differences in XRF estimation between the codes.
Collapse
Affiliation(s)
- Francisco Malano
- Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile; Centro de Física e Ingeniería en Medicina (CFIM), Universidad de la Frontera, Temuco, Chile; Instituto de Física Enrique Gaviola, CONICET, Córdoba, Argentina; Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), FaMAF, Universidad Nacional de Córdoba, Argentina.
| | - Facundo Mattea
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Córdoba, Argentina
| | - Federico Alejandro Geser
- Instituto de Física Enrique Gaviola, CONICET, Córdoba, Argentina; Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), FaMAF, Universidad Nacional de Córdoba, Argentina
| | - Pedro Pérez
- Instituto de Física Enrique Gaviola, CONICET, Córdoba, Argentina; Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), FaMAF, Universidad Nacional de Córdoba, Argentina
| | - Daniel Barraco
- Instituto de Física Enrique Gaviola, CONICET, Córdoba, Argentina; Laboratorio de Energías Sustentables (LAES), FaMAF, Universidad Nacional de Córdoba, Argentina
| | - Mauricio Santibáñez
- Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile; Centro de Física e Ingeniería en Medicina (CFIM), Universidad de la Frontera, Temuco, Chile
| | - Rodolfo Figueroa
- Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile; Centro de Física e Ingeniería en Medicina (CFIM), Universidad de la Frontera, Temuco, Chile
| | - Mauro Valente
- Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile; Centro de Física e Ingeniería en Medicina (CFIM), Universidad de la Frontera, Temuco, Chile; Instituto de Física Enrique Gaviola, CONICET, Córdoba, Argentina; Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), FaMAF, Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
13
|
Santibáñez M, Fuentealba M, Torres F, Vargas A. Experimental determination of the gadolinium dose enhancement in phantom irradiated with low energy X-ray sources by a spectrophotometer -Gafchromic-EBT3 dosimetry system. Appl Radiat Isot 2019; 154:108857. [PMID: 31434044 DOI: 10.1016/j.apradiso.2019.108857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/22/2023]
Abstract
This work reports the experimental determination of dose enhancement produced in phantoms containing target volumes doped with Gadolinium and irradiated with low-energy X-ray beams. EBT3 Gafchromic films were immersed into 5 ml target volumes to simulate tumor filling with 100% ultra-pure water (blank sample) and ultra-pure water infused with Gd solution (Omniscan®) in different concentration (9-24 mg/ml). The dose enhancement due to excitation of Gd K-edge (50.2 keV) was evaluated in terms of the increment in optical density, obtained by a Spectrophotometer-Gafchromic-EBT3 dosimetry system calibrated in terms of the dose-response for 1-8 Gy range. The dose enhancement was evaluated in two condition: a beam quality with spectrum above the absorption edge in a medium with and without Gd; and two beam qualities (above and below the absorption edge) in a medium with a fixed Gd concentration (18 mg/ml). The obtained results confirmed increments in relative dose enhancement according to Gd concentrations up to 18 mg/ml, with a dose enhancement of 1.1 Gy and an average percentage enhancement of 28.4%. For higher values of concentration, the attenuation interaction of the primary beam is more relevant instead of dose enhancement process. On the other hand, the dose enhancement obtained to comparison the spectra above and below the absorption edge, shown results up to 3.3 Gy of enhancement and average percentage enhancement of 88%.
Collapse
Affiliation(s)
- M Santibáñez
- Departamento de Ciencias Físicas, Universidad de La Frontera, F. Salazar, 01145, Temuco, Chile; Centro de Física e Ingeniería en Medicina (CFIM), Facultad de Ingenieria y Ciencias, Universidad de La Frontera, Temuco, Chile.
| | - M Fuentealba
- Departamento de Ciencias Físicas, Universidad de La Frontera, F. Salazar, 01145, Temuco, Chile
| | - F Torres
- Departamento de Ciencias Físicas, Universidad de La Frontera, F. Salazar, 01145, Temuco, Chile
| | - A Vargas
- Departamento de Ciencias Físicas, Universidad de La Frontera, F. Salazar, 01145, Temuco, Chile
| |
Collapse
|
14
|
Noori A, Donnelly T, Colbert J, Cai W, Newman LA, White JC. Exposure of tomato ( Lycopersicon esculentum) to silver nanoparticles and silver nitrate: physiological and molecular response. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:40-51. [PMID: 31282192 DOI: 10.1080/15226514.2019.1634000] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) are among the most widely used nanomaterials, with applications in sectors as diverse as communications, energy, medicine, and agriculture. This diverse application of AgNPs increases the risk of the release of these materials into the environment and raises the potential for transfer into plants and, subsequently, the human body. To better understand the effects of NPs in agricultural systems, this study investigates plant physiological and molecular responses upon exposure to AgNPs in comparison to silver nitrate (AgNO3). Tomato seedlings (Lycopersison esculentum) were exposed to 10, 20, or 30 mg/L silver (Ag), AgNO3, or AgNPs in hydroponic media for 7 days. A number of endpoints were measured, including plant growth, photosynthetic pigments, oxidative and antioxidant responses. The results showed 2-7 times lower growth rate in plants exposed to silver compared to the control. H2O2 and malondialdehyde as oxidative stress indicators were, respectively, 1.7 and 4 times higher in plants exposed to all forms of silver compared to the control. The antioxidative responses increased significantly in plants exposed to Ag and AgNPs compared to the control. However, plants exposed to AgNO3 showed up to 50% lower enzymatic antioxidant activity. At the molecular level, the expression of genes involved in defense responses, including ethylene-inducing xylanase (EIX), peroxidase 51 (POX), and phenylalanine ammonia lyase, were significantly upregulated upon exposure to silver. The molecular and physiological data showed exposure to all forms of silver resulted in oxidative stress and exposure to AgNPs induced antioxidative and defense responses. However, exposure to AgNO3 resulted in phytotoxicity and failure in antioxidative responses. It indicates the higher reactivity and phytotoxicity of the ionic form of silver compared to NPs. The findings of this study add important information to efforts in attempting to characterize the exposure and risk associated with the release of nanomaterials in the environment.
Collapse
Affiliation(s)
- Azam Noori
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Trevor Donnelly
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Joseph Colbert
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Wenjun Cai
- Department of Environmental and Forest Biology, State University of New York - College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Lee A Newman
- Department of Environmental and Forest Biology, State University of New York - College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| |
Collapse
|
15
|
Geser FA, Valente M. Analytical approach to the reaction cross section of the fusion of protons with boron isotopes aimed at cancer therapy. Appl Radiat Isot 2019; 151:96-101. [PMID: 31163393 DOI: 10.1016/j.apradiso.2019.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 01/30/2023]
Abstract
In recent years, the nuclear reaction known as proton-boron fusion has been thoroughly investigated, because it has been proposed as a suitable agent capable of significant improvements in cancer therapy with protons. Thereby, precise knowledge about physical properties involved represents the main strategy to assess actual potential of the proposed treatment method based on proton-boron fusion. In this work, the effective reaction cross section is studied from a theoretical point of view, and a direct application to the inelastic collisions distribution provided by Monte Carlo simulations is reported, weighting the importance of the reaction in the energy deposition process, and hence providing useful insight in the localized nature of the technique.
Collapse
Affiliation(s)
- Federico Alejandro Geser
- Instituto de Física Enrique Gaviola, CONICET, Córdoba, 5000, Argentina; Laboratorio de Investigaciones e Instrumentación en Física Aplicada a La Medicina e Imágenes por Rayos X - LIIFAMIR(⊗), FAMAF, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Mauro Valente
- Instituto de Física Enrique Gaviola, CONICET, Córdoba, 5000, Argentina; Laboratorio de Investigaciones e Instrumentación en Física Aplicada a La Medicina e Imágenes por Rayos X - LIIFAMIR(⊗), FAMAF, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina; Centro de Física e Ingeniería en Medicina CFIM, Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, 4780000, Chile.
| |
Collapse
|
16
|
Vedelago J, Mattea F, Valente M. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics. Appl Radiat Isot 2018; 141:182-186. [DOI: 10.1016/j.apradiso.2018.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/16/2022]
|
17
|
Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E681. [PMID: 30200373 PMCID: PMC6163202 DOI: 10.3390/nano8090681] [Citation(s) in RCA: 587] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022]
Abstract
During the past few years, silver nanoparticles (AgNPs) became one of the most investigated and explored nanotechnology-derived nanostructures, given the fact that nanosilver-based materials proved to have interesting, challenging, and promising characteristics suitable for various biomedical applications. Among modern biomedical potential of AgNPs, tremendous interest is oriented toward the therapeutically enhanced personalized healthcare practice. AgNPs proved to have genuine features and impressive potential for the development of novel antimicrobial agents, drug-delivery formulations, detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration and regeneration materials, complex healthcare condition strategies, and performance-enhanced therapeutic alternatives. Given the impressive biomedical-related potential applications of AgNPs, impressive efforts were undertaken on understanding the intricate mechanisms of their biological interactions and possible toxic effects. Within this review, we focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based nanostructures.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 313 Splaiul Independenței, Bucharest 060042, Romania.
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, Magurele 077125, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, Craiova 200349, Romania.
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| |
Collapse
|
18
|
Vedelago J, Gomez CG, Valente M, Mattea F. Green synthesis of silver nanoparticles aimed at improving theranostics. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Osman SM, Khattab SN, Aly ESA, Kenawy ER, El-Faham A. 1,3,5-Triazine-based polymer: synthesis, characterization and application for immobilization of silver nanoparticles. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1385-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Raghav S, Painuli R, Kumar D. Multifunctional Nanomaterials for Multifaceted Applications in Biomedical Arena. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.890.906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
One-Pot Green Synthesis of Silver Nanoparticles Using the Orchid Leaf Extracts of Anoectochilus elatus: Growth Inhibition Activity on Seven Microbial Pathogens. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1164-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|