1
|
Kudrevicius L, Jaselskė E, Stankus G, Arslonova S, Adliene D. Post-Irradiation Behavior of Colored PVA-Based Films Containing Ag Nanoparticles as Radiation Detectors/Exposure Indicators. Gels 2024; 10:290. [PMID: 38786207 PMCID: PMC11121668 DOI: 10.3390/gels10050290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Ionizing radiation covers a broad spectrum of applications. Since radioactive/radiation pollution is directly related to radiation risk, radiation levels should be strictly controlled. Different detection methods can be applied for radiation registration and monitoring. In this paper, radiation-induced variations in the optical properties of silver-enriched PVA-based hydrogel films with and without azo dye (Toluidine blue O, TBO, and Methyl red, MR) additives were investigated, and the feasibility of these free-standing films to serve as radiation detectors/exposure indicators was assessed. AgNO3 admixed with PVA gel was used as a source for the radiation-induced synthesis of silver nanoparticles (AgNPs) in irradiated gel films. Three types of sensors were prepared: silver-enriched PVA films containing a small amount of glycerol (AgPVAGly); silver-enriched PVA films with toluidine blue adducts (AgPVAGlyTBO); and silver-enriched PVA films with methyl red additives (AgPVAGlyMR). The selection of TBO and MR was based on their sensitivity to irradiation. The irradiation of the samples was performed in TrueBeam2.1 (VARIAN) using 6 MeV photons. Different doses up to 10 Gy were delivered to the films. The sensitivity of the films was assessed by analyzing the characteristic UV-Vis absorbance peaks on the same day as irradiation and 7, 30, 45, 90, and 180 days after irradiation. It was found that the addition of azo dyes led to an enhanced radiation sensitivity of the AgNPs containing films (0.6 Gy-1 for AgPVAGlyTBO and 0.4 Gy-1 for AgPVAGlyMR) irradiated with <2 Gy doses, indicating their applicability as low-dose exposure indicators. The irradiated films were less sensitive to higher doses. Almost no dose fading was detected between the 7th and 45th day after irradiation. Based on the obtained results, competing AgNP formation and color-bleaching effects in the AgPVAGly films with dye additives are discussed.
Collapse
Affiliation(s)
- Linas Kudrevicius
- Physics Department, Kaunas University of Technology, 51368 Kaunas, Lithuania;
| | - Evelina Jaselskė
- Neurosurgery Department, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gabrielius Stankus
- Physics Department, Kaunas University of Technology, 51368 Kaunas, Lithuania;
| | - Shirin Arslonova
- Tashkent City Branch of Republican Specialized Scientific-Practical Medical Centre of Oncology and Radiology, Boguston Str. 1, Tashkent P.O. Box 100070, Uzbekistan
| | - Diana Adliene
- Physics Department, Kaunas University of Technology, 51368 Kaunas, Lithuania;
| |
Collapse
|
2
|
Tripathy D, Gadtya AS, Moharana S. Supramolecular Gel, Its classification, preparation, properties, and applications: A review. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Debajani Tripathy
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Ankita Subhrasmita Gadtya
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
3
|
Mendes JP, Coelho LCC, Jorge PAS, Pereira CM. Differential Refractometric Biosensor for Reliable Human IgG Detection: Proof of Concept. BIOSENSORS 2022; 12:515. [PMID: 35884318 PMCID: PMC9312733 DOI: 10.3390/bios12070515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
A new sensing platform based on long-period fiber gratings (LPFGs) for direct, fast, and selective detection of human immunoglobulin G (IgG; Mw = 150 KDa) was developed and characterized. The transducer's high selectivity is based on the specific interaction of a molecularly imprinted polymer (MIPs) design for IgG detection. The sensing scheme is based on differential refractometric measurements, including a correction system based on a non-imprinted polymer (NIP)-coated LPFG, allowing reliable and more sensitive measurements, improving the rejection of false positives in around 30%. The molecular imprinted binding sites were performed on the surface of a LPFG with a sensitivity of about 130 nm/RIU and a FOM of 16 RIU-1. The low-cost and easy to build device was tested in a working range from 1 to 100 nmol/L, revealing a limit of detection (LOD) and a sensitivity of 0.25 nmol/L (0.037 µg/mL) and 0.057 nm.L/nmol, respectively. The sensor also successfully differentiates the target analyte from the other abundant elements that are present in the human blood plasma.
Collapse
Affiliation(s)
- João P. Mendes
- Centro de Investigação em Química UP (CIQUP)—Instituto de Ciências Moleculares (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (J.P.M.); (C.M.P.)
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Luís C. C. Coelho
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro A. S. Jorge
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Carlos M. Pereira
- Centro de Investigação em Química UP (CIQUP)—Instituto de Ciências Moleculares (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (J.P.M.); (C.M.P.)
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Zhang P, Jiang L, Chen H, Hu L. Recent Advances in Hydrogel-Based Sensors Responding to Ionizing Radiation. Gels 2022; 8:gels8040238. [PMID: 35448139 PMCID: PMC9024575 DOI: 10.3390/gels8040238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/10/2022] [Indexed: 12/20/2022] Open
Abstract
Ionizing radiation and its applications are widely spread throughout life. Similar to many other things, both the positive and negative aspects of ionizing radiation should always be kept in mind. For example, a proper radiation dose can be delivered to tumor tissue to kill malignant cells in radiotherapy. On the other hand, exceeding this dose can damage the normal tissues of a human organism. Therefore, the application of sensors for measuring ionizing radiation doses is of utmost importance in many fields, especially in cancer therapy. Traditional dosimeters, such as ionization chambers, silicon diodes and thermoluminescence dosimeters, are widely used. However, they have limitations in certain aspects. Hydrogel-based sensors (or dosimeters) for measuring ionizing radiation doses attract extensive attention for decades due to their equivalence to living tissue and biocompatibility. In this review, we catalog hydrogel-based dosimeters such as polymer, Fricke, radio-chromic, radio-fluorescence and NPs-embedded dosimeters. Most of them demonstrate desirable linear response and sensitivity regardless of energy and dose rate of ionizing radiation. We aim to review these dosimeters and their potential applications in radiotherapy as well as to stimulate a joint work of the experts from different fields such as materials science, chemistry, cancer therapy, radiobiology and nuclear science.
Collapse
Affiliation(s)
- Ping Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (P.Z.); (H.C.)
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| | - Li Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (P.Z.); (H.C.)
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
- Correspondence:
| |
Collapse
|
5
|
|
6
|
Low-Diffusion Fricke Gel Dosimeters with Core-Shell Structure Based on Spatial Confinement. MATERIALS 2021; 14:ma14143932. [PMID: 34300851 PMCID: PMC8304938 DOI: 10.3390/ma14143932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/17/2022]
Abstract
The diffusion of ferric ions is an important challenge to limit the application of Fricke gel dosimeters in accurate three-dimensional dose verification of modern radiotherapy. In this work, low-diffusion Fricke gel dosimeters, with a core-shell structure based on spatial confinement, were constructed by utilizing microdroplet ultrarapid freezing and coating technology. Polydimethylsiloxane (PDMS), with its excellent hydrophobicity, was coated on the surface of the pellets. The concentration gradient of the ferric ion was realized through shielding half of a Co-60 photon beam field size, and ion diffusion was measured by both ultraviolet-visible spectrophotometry and magnetic resonance imaging. No diffusion occurred between the core-shell pellets, even at 96 h after irradiation, and the diffusion length at the irradiation boundary was limited to the diameter (2-3 mm) of the pellets. Furthermore, Monte Carlo calculations were conducted to study dosimetric properties of the core-shell dosimeter, which indicated that a PDMS shell hardly affected the performance of the dosimeter.
Collapse
|
7
|
Adhikari C. Polymer nanoparticles-preparations, applications and future insights: a concise review. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1939715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chandan Adhikari
- School of Basic Science and Humanities, Institute of Engineering & Management, Kolkata, India
| |
Collapse
|
8
|
Marrale M, d’Errico F. Hydrogels for Three-Dimensional Ionizing-Radiation Dosimetry. Gels 2021; 7:74. [PMID: 34205640 PMCID: PMC8293215 DOI: 10.3390/gels7020074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022] Open
Abstract
Radiation-sensitive gels are among the most recent and promising developments for radiation therapy (RT) dosimetry. RT dosimetry has the twofold goal of ensuring the quality of the treatment and the radiation protection of the patient. Benchmark dosimetry for acceptance testing and commissioning of RT systems is still based on ionization chambers. However, even the smallest chambers cannot resolve the steep dose gradients of up to 30-50% per mm generated with the most advanced techniques. While a multitude of systems based, e.g., on luminescence, silicon diodes and radiochromic materials have been developed, they do not allow the truly continuous 3D dose measurements offered by radiation-sensitive gels. The gels are tissue equivalent, so they also serve as phantoms, and their response is largely independent of radiation quality and dose rate. Some of them are infused with ferrous sulfate and rely on the radiation-induced oxidation of ferrous ions to ferric ions (Fricke-gels). Other formulations consist of monomers dispersed in a gelatinous medium (Polyacrylamide gels) and rely on radiation-induced polymerization, which creates a stable polymer structure. In both gel types, irradiation causes changes in proton relaxation rates that are proportional to locally absorbed dose and can be imaged using magnetic resonance imaging (MRI). Changes in color and/or opacification of the gels also occur upon irradiation, allowing the use of optical tomography techniques. In this work, we review both Fricke and polyacrylamide gels with emphasis on their chemical and physical properties and on their applications for radiation dosimetry.
Collapse
Affiliation(s)
- Maurizio Marrale
- Department of Physics and Chemistry, “Emilio Segrè” ATeN Center, University of Palermo, 90128 Palermo, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Catania, 95123 Catania, Italy
| | - Francesco d’Errico
- Scuola di Ingegneria, Università degli Studi di Pisa, 56126 Pisa, Italy;
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, 56127 Pisa, Italy
- School of Medicine, Yale University New Haven, CT 06510, USA
| |
Collapse
|