1
|
Gonda M, Rufo C, Gonzalez-Andujar JL, Vero S. Mitigating aflatoxin B1 in high-moisture sorghum silage: Aspergillus flavus growth and aflatoxin B1 prediction. Front Microbiol 2024; 15:1360343. [PMID: 38846571 PMCID: PMC11153755 DOI: 10.3389/fmicb.2024.1360343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Aspergillus flavus (A. flavus), a frequent contaminant in silage, is a significant producer of aflatoxins, notably the potent carcinogen aflatoxin B1. This contaminant poses a potential risk during the initial aerobic phase of ensiling. The present work studied the impact of temperature on A. flavus growth and aflatoxin B1 production in laboratory-scale sorghum silos during the initial aerobic phase. Growth curves of A. flavus were generated at various temperatures and modeled with the Gompertz model. Results indicated that the optimal temperature range for the maximum growth rate in sorghum mini-silos is between 25 and 30°C. Mold biomass and aflatoxin B1 levels were quantified using qPCR and HPLC, respectively. A predictive model for aflatoxin B1 synthesis in the initial ensiling phase was established, in function of grain moisture, external temperature, and time. Within the studied range, A. flavus's initial concentration did not significantly influence aflatoxin B1 production. According to the model maximum aflatoxin production is expected at 30% moisture and 25°C temperature, after 6 days in the aerobic phase. Aflatoxin B1 production in such conditions was corroborated experimentally. Growth curves and aflatoxin B1 production highlighted that at 48 h of incubation under optimal conditions, aflatoxin B1 concentrations in mini-silos exceeded national legislation limits, reaching values close to 100 ppb. These results underscore the risk associated with A. flavus presence in ensiling material, emphasizing the importance of controlling its development in sorghum silos.
Collapse
Affiliation(s)
- Mariana Gonda
- Laboratorio de Biotecnología, Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Caterina Rufo
- Laboratorio de Alimentos y Nutrición, Instituto Polo Tecnológico, Facultad de Química, Universidad de la República, Pando, Uruguay
| | | | - Silvana Vero
- Laboratorio de Biotecnología, Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Cid-Pérez TS, Munguía-Pérez R, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Avila-Sosa R. Carvacrol and thymol effect in vapor phase on Escherichia coli and Salmonella serovar Typhimurium growth inoculated in a fresh salad. Heliyon 2024; 10:e29638. [PMID: 38694112 PMCID: PMC11058290 DOI: 10.1016/j.heliyon.2024.e29638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024] Open
Abstract
This study aimed to evaluate the antimicrobial effect of thymol and carvacrol in inhibiting Escherichia coli and Salmonella serovar Typhimurium inoculated on a fresh green salad through the vapor phase. A film-forming solution was prepared by dissolving starch, sorbitol, and variying concentrations of carvacrol, thymol, and a mixture of both. The film-forming solution containing the respective antimicrobial agent was then added lid, which was sealed rigidly and hermetically to achieve different concentrations (105 mg/L of air of carvacrol, 105 mg/L of air of thymol, and a mixture of 52 mg/L of air of carvacrol and 52 mg/L of air of thymol). Each active package contained fresh green salad inoculated with E. coli or Salmonella serovar Typhimurium. The active packages were then sealed and refrigerated at a temperature of 6 °C for 48 h. Growth/inhibition curves were modelled using the Weibull equation, and consumer acceptance was evaluated. Carvacrol can reduce up to 0.5 log-cycles, while thymol can reach almost 1 log cycle. Blending the components with half the concentration has a synergistic effect, inhibiting up to 2.5 log cycles. Consumer ratings revealed no significant differences between the packages. However, the average score was 5.4 on a 9-point hedonic scale, evaluators' comments did not indicate dislike or a strong taste characteristic of thymol and carvacrol.
Collapse
Affiliation(s)
- Teresa Soledad Cid-Pérez
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Ricardo Munguía-Pérez
- Laboratorio de Micología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
| | | | - Carlos Enrique Ochoa-Velasco
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Addí Rhode Navarro-Cruz
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Raúl Avila-Sosa
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| |
Collapse
|
3
|
Zhao L, Wang J, Zhang H, Wang P, Wang C, Zhou Y, Li H, Yu S, Wu R. Inhibitory effect of carvacrol against Alternaria alternata causing goji fruit rot by disrupting the integrity and composition of cell wall. Front Microbiol 2023; 14:1139749. [PMID: 36891390 PMCID: PMC9986456 DOI: 10.3389/fmicb.2023.1139749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Goji (Lycium barbarum L.) is a widely planted crop in China that is easily infected by the pathogenic fungus Alternaria alternata, which causes rot after harvest. Previous studies showed that carvacrol (CVR) significantly inhibited the mycelial growth of A. alternata in vitro and reduced Alternaria rot in goji fruits in vivo. The present study aimed to explore the antifungal mechanism of CVR against A. alternata. Optical microscopy and calcofluor white (CFW) fluorescence observations showed that CVR affected the cell wall of A. alternata. CVR treatment affected the integrity of the cell wall and the content of substances in the cell wall as measured by alkaline phosphatase (AKP) activity, Fourier transform-infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Chitin and β-1,3-glucan contents in cells decreased after CVR treatment, and the activities of β-glucan synthase and chitin synthase decreased. Transcriptome analysis revealed that CVR treatment affected cell wall-related genes in A. alternata, thereby affecting cell wall growth. Cell wall resistance also decreased with CVR treatment. Collectively, these results suggest that CVR may exert antifungal activity by interfering with cell wall construction, leading to impairment of cell wall permeability and integrity.
Collapse
Affiliation(s)
- Lunaike Zhao
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Junjie Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Huaiyu Zhang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Peng Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Cong Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Yueli Zhou
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Huanhuan Li
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Shukun Yu
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Rina Wu
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
4
|
Benavides V, Pinto-Ibieta F, Serrano A, Rubilar O, Ciudad G. Use of Anthracophyllum Discolor and Stereum Hirsutum as a Suitable Strategy for Delignification and Phenolic Removal of Olive Mill Solid Waste. Foods 2022; 11:foods11111587. [PMID: 35681337 PMCID: PMC9180551 DOI: 10.3390/foods11111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the use of the white-rot fungi (WRF) Anthracophyllum discolor and Stereum hirsutum as a biological pretreatment for olive mill solid mill waste (OMSW). The WRF strains proposed were added directly to OMSW. The assays consisted of determining the need to add supplementary nutrients, an exogenous carbon source or use agitation systems, and evaluating WRF growth, enzyme activity, phenolic compound removal and lignin degradation. The highest ligninolytic enzyme activity was found at day 10, reaching 176.7 U/L of manganese-independent peroxidase (MniP) produced by A. discolor, and the highest phenolic removal (more than 80% with both strains) was reached after 24 days of incubation. The confocal laser scanning microscopy analysis (CLSM) confirmed lignin degradation through the drop in lignin relative fluorescence units (RFU) from 3967 for untreated OMSW to 235 and 221 RFU, showing a lignin relative degradation of 94.1% and 94.4% after 24 days of treatment by A. discolor and S. hirsutum, respectively. The results demonstrate for the first time that A. discolor and S. hirsutum were able to degrade lignin and remove phenolic compounds from OMSW using this as the sole substrate without adding other nutrients or using agitation systems. This work indicates that it could be possible to design an in situ pretreatment of the valorization of OMSW, avoiding complex systems or transportation. In this sense, future research under non-sterile conditions is needed to evaluate the competition of WRF with other microorganisms present in the OMSW. The main drawbacks of this work are associated with both the low reaction time and the water addition. However, OMSW is seasonal waste produced in one season per year, being stored for a long time. In terms of water addition, the necessary optimization will be addressed in future research.
Collapse
Affiliation(s)
- Viviana Benavides
- Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile;
| | - Fernanda Pinto-Ibieta
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile; (F.P.-I.); (O.R.)
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Casilla 15-D, Temuco 4780000, Chile
| | - Antonio Serrano
- Departamento de Microbiología, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, 18011 Granada, Spain;
- Instituto de Investigación del Agua, Universidad de Granada, 18071 Granada, Spain
| | - Olga Rubilar
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile; (F.P.-I.); (O.R.)
- Scientific and Technological Bioresources Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile
| | - Gustavo Ciudad
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile; (F.P.-I.); (O.R.)
- Scientific and Technological Bioresources Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile
- Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile
- Correspondence: ; Tel.: +56-45-2325556
| |
Collapse
|
5
|
Effectiveness of the Influence of Selected Essential Oils on the Growth of Parasitic Fusarium Isolated from Wheat Kernels from Central Europe. Molecules 2021; 26:molecules26216488. [PMID: 34770893 PMCID: PMC8588391 DOI: 10.3390/molecules26216488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to determine the effectiveness of selected seven commercial essential oils (EsO) (grapefruit, lemongrass, tea tree (TTO), thyme, verbena, cajeput, and Litsea cubeba) on isolates of common Central European parasitic fungal species of Fusarium obtained from infected wheat kernels, and to evaluate the oils as potential natural fungicides. The study was conducted in 2 stages. At each stage, the fungicidal activity of EsO (with concentrations of 0.025; 0.05; 0.125; 0.25; 0.50; 1.0, and 2.0%) against Fusarium spp. was evaluated using the disc plate method and zones of growth inhibition were measured. At the first stage, the fungistatic activity of EsO was evaluated against four species of Fusarium from the Polish population (F. avenaceum FAPL, F. culmorum FCPL, F. graminearum FGPL and F. oxysporum FOPL). The correlation coefficient between the mycelial growth rate index (T) and the fungistatic activity (FA) was calculated. At the second stage, on the basis of the mycelium growth rate index, the effectiveness of the EsO in limiting the development of Fusarium isolates from the German population (F. culmorum FC1D, F. culmorum FC2D, F. graminearum FG1D, F. graminearum FG2D and F. poae FP0D) was assessed. The first and second stage results presented as a growth rate index were then used to indicate essential oils (as potential natural fungicides) effectively limiting the development of various common Central European parasitic species Fusarium spp. Finally, the sensitivity of four Fusarium isolates from the Polish population and five Fusarium isolates from the German population was compared. The data were compiled in STATISTICA 13.0 (StatSoft, Inc, CA, USA) at the significance level of 0.05. Fusarium isolates from the German population were generally more sensitive than those from the Polish population. The sensitivity of individual Fusarium species varied. Their vulnerability, regardless of the isolate origin, in order from the most to the least sensitive, is as follows: F. culmorum, F. graminearum, F. poae, F. avenaceum and F. oxysporum. The strongest fungicidal activity, similar to Funaben T, showed thyme oil (regardless of the concentration). Performance of citral oils (lemongrass and Litsea cubeba) was similar but at a concentration above 0.025%.
Collapse
|
6
|
Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytonutrients are plant foods that contain many natural bioactive compounds, called phytochemicals, which show specific biological activities. These phytonutrients and their phytochemicals may play an important role in health care maintaining normal organism functions (as preventives) and fighting against diseases (as therapeutics). Phytonutrients’ components are the primary metabolites (i.e., proteins, carbohydrates, and lipids) and phytochemicals or secondary metabolites (i.e., phenolics, alkaloids, organosulfides, and terpenes). For years, several phytonutrients and their phytochemicals have demonstrated specific pharmacological and therapeutic effects in human health such as anticancer, antioxidant, antiviral, anti-inflammatory, antibacterial, antifungal, and immune response. This review summarizes the effects of the most studied or the most popular phytonutrients (i.e., turmeric, garlic, cinnamon, graviola, and oregano) and any reported contraindications. This article also presents the calculated physicochemical properties of the main phytochemicals in the selected phytonutrients using Lipinski’s, Veber’s, and Ghose’s rules. Based on our revisions for this article, all these phytonutrients have consistently shown great potential as preventives and therapeutics on many diseases in vitro, in vivo, and clinical studies.
Collapse
|
7
|
Singh BK, Tiwari S, Dubey NK. Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4879-4890. [PMID: 33852733 DOI: 10.1002/jsfa.11255] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Postharvest food spoilage due to fungal and mycotoxin contamination is a major challenge in tropical countries, leading to severe adverse effects on human health. Because of the negative effects of synthetic preservatives on both human health and the environment, it has been recommended that chemicals that have a botanical origin, with an eco-friendly nature and a favorable safety profile, should be used as green preservatives. Recently, the food industry and consumers have been shifting drastically towards green consumerism because of their increased concerns about health and the environment. Among different plant-based products, essential oils (EOs) and their bioactive components are strongly preferred as antimicrobial food preservatives. Despite having potent antimicrobial efficacy and preservation potential against fungal and mycotoxin contamination, essential oils and their bioactive components have limited practical applicability caused by their high volatility and their instability, implying the development of techniques to overcome the challenges associated with EO application. Essential oils and their bioactive components are promising alternatives to synthetic preservatives. To overcome challenges associated with EOs, nanotechnology has emerged as a novel technology in the food industries. Nanoencapsulation may boost the preservative potential of different essential oils by improving their solubility, stability, and targeted sustainable release. Nanoencapsulation of EOs is therefore currently being practiced to improve the stability and bioactivity of natural products. The present review has dealt extensively with the application of EOs and their nanoformulated products encapsulated in suitable polymeric matrices, so as to recommend them as novel green preservatives against foodborne molds and mycotoxin-induced deterioration of stored food commodities. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bijendra Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shikha Tiwari
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Evaluating the Antifungal Potential of Botanical Compounds to Control Botryotinia fuckeliana and Rhizoctonia solani. Molecules 2021; 26:molecules26092472. [PMID: 33922682 PMCID: PMC8122953 DOI: 10.3390/molecules26092472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
The European Union is promoting regulatory changes to ban fungicides because of the impact their use has on the ecosystem and the adverse effects they can pose for humans. An ecofriendly alternative to these chemicals to fight against fungal species with low toxicity is essential oils and their compounds extracted from aromatic plants. The purpose of this study was to evaluate the in vitro antifungal capacity of the botanical compounds eugenol, carvacrol, thymol, and cinnamaldehyde, and the synergy or antagonism of their mixtures, against Botryotinia fuckeliana and Rhizoctonia solani. Different bioassays were performed at doses of 300, 200, 150, and 100 µg/mL using pure commercial compounds and their combination in potato dextrose agar culture medium. Growth rate and the mycelium growth inhibition parameters were calculated. Phenolic compounds and their combination inhibited the development of species at the different concentrations, with fungicidal or fungistatic activity shown under almost all the tested conditions. When comparing the growth rates of the species in the control plates and treatments, the statistical analysis showed that there were statistically significant differences. The mixture of compounds improved fungicidal activity against the studied species and at a lower concentration of monoterpenes.
Collapse
|
9
|
Ochoa-Velasco CE, Pérez-Pérez JC, Varillas-Torres JM, Navarro-Cruz AR, Hernández-Carranza P, Munguía-Pérez R, Cid-Pérez TS, Avila-Sosa R. Starch Edible Films/Coatings Added with Carvacrol and Thymol: In Vitro and In Vivo Evaluation against Colletotrichum gloeosporioides. Foods 2021; 10:foods10010175. [PMID: 33467171 PMCID: PMC7830592 DOI: 10.3390/foods10010175] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 01/30/2023] Open
Abstract
The aim of this work was to evaluate the in vitro and in vivo effectiveness of thymol and carvacrol added to edible starch films and coatings against Colletotrichum gloeosporioides. In vitro evaluation consisted of determining minimal inhibitory concentration (MIC) of carvacrol and thymol was determined at different pH values against Colletotrichum gloeosporioides. With MIC values, binary mixtures were developed. From these results, two coatings formulations were in vivo evaluated on mango and papaya. Physicochemical analysis, color change, fruit lesions and C. gloeosporioides growth were determined during storage. In vitro assay indicated that the MIC value of carvacrol and thymol against C. gloeosporioides was 1500 mg/L at pH 5. An additive effect was determined with 750/750 and 1125/375 mg/L mixtures of carvacrol and thymol, respectively. Coated fruits with selected mixtures of carvacrol and thymol presented a delay in firmness, maturity index and color change. Moreover, a fungistatic effect was observed due to a reduction of lesions in coated fruits. These results were corroborated by the increase in the lag phase value and the reduction of the growth rate. Carvacrol and thymol incorporated into edible films and coatings are able to reduce the incidence of anthracnose symptoms on mango and papaya.
Collapse
Affiliation(s)
- Carlos Enrique Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico; (C.E.O.-V.); (J.C.P.-P.); (J.M.V.-T.); (A.R.N.-C.); (P.H.-C.); (T.S.C.-P.)
| | - Julio César Pérez-Pérez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico; (C.E.O.-V.); (J.C.P.-P.); (J.M.V.-T.); (A.R.N.-C.); (P.H.-C.); (T.S.C.-P.)
| | - José Mauricio Varillas-Torres
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico; (C.E.O.-V.); (J.C.P.-P.); (J.M.V.-T.); (A.R.N.-C.); (P.H.-C.); (T.S.C.-P.)
| | - Addí Rhode Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico; (C.E.O.-V.); (J.C.P.-P.); (J.M.V.-T.); (A.R.N.-C.); (P.H.-C.); (T.S.C.-P.)
| | - Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico; (C.E.O.-V.); (J.C.P.-P.); (J.M.V.-T.); (A.R.N.-C.); (P.H.-C.); (T.S.C.-P.)
| | - Ricardo Munguía-Pérez
- Centro de Investigaciones en Ciencias Microbiológicas, Laboratorio de Micología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico;
| | - Teresa Soledad Cid-Pérez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico; (C.E.O.-V.); (J.C.P.-P.); (J.M.V.-T.); (A.R.N.-C.); (P.H.-C.); (T.S.C.-P.)
| | - Raúl Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico; (C.E.O.-V.); (J.C.P.-P.); (J.M.V.-T.); (A.R.N.-C.); (P.H.-C.); (T.S.C.-P.)
- Correspondence:
| |
Collapse
|
10
|
Nunes J, Farias I, Vieira C, Ribeiro T, Sampaio F, Menezes V. Antimicrobial activity and toxicity of glass ionomer cement containing an essential oil. Braz J Med Biol Res 2020; 53:e9468. [PMID: 33146285 PMCID: PMC7643930 DOI: 10.1590/1414-431x20209468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/28/2020] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to evaluate the antimicrobial activity and toxicity of glass ionomer cement (GIC) modified with 5-methyl-2-(1-methylethyl)phenol (thymol) against Streptococcus mutans in silico and in vitro. The antimicrobial activity of thymol on GIC modified with concentrations of 2% (GIC-2) and 4% (GIC-4) was evaluated in a model of planktonic cell biofilm using agar diffusion test, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), dynamic biofilm (continuous flow cell parallel), and bacterial kinetics. Conventional GIC (GIC-0) was used as a control. Thymol toxicity was evaluated in Artemia salina and in silico using Osiris® software. Differences between groups were estimated by analysis of variance, followed by Tukey post hoc test, with a 5% significance level. The results of the agar diffusion test between groups were not significantly different (P≥0.05). Thymol had potential bacteriostatic and bactericidal activity against Streptococcus mutans with respect to planktonic growth, with MIC of 100 µg/mL and MBC of 400 µg/mL. The groups GIC-0, GIC-2, and GIC-4 reduced the biofilm by approximately 10, 85, and 95%, respectively. Bacterial kinetics showed efficiency of the modified GICs for up to 96 h. GIC with thymol was effective against S. mutans, with significant inhibition of the biofilms. Analyses in silico and using Artemia salina resulted in no relevant toxicity, suggesting potential for use in humans. GIC-2 was effective against S. mutans biofilm, with decreased cell viability.
Collapse
Affiliation(s)
- J.M.F.F. Nunes
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - I.A.P. Farias
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - C.A. Vieira
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - T.M. Ribeiro
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - F.C. Sampaio
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - V.A. Menezes
- Departamento de Odontologia, Faculdade de Odontologia, Universidade de Pernambuco, Camaragibe, PE, Brasil
| |
Collapse
|
11
|
Levario-Gómez A, Ávila-Sosa R, Gutiérrez-Méndez N, López-Malo A, Nevárez-Moorillón GV. Modeling the Combined Effect of pH, Protein Content, and Mexican Oregano Essential Oil Against Food Spoilage Molds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Perczak A, Gwiazdowska D, Gwiazdowski R, Juś K, Marchwińska K, Waśkiewicz A. The Inhibitory Potential of Selected Essential Oils on Fusarium spp. Growth and Mycotoxins Biosynthesis in Maize Seeds. Pathogens 2019; 9:pathogens9010023. [PMID: 31887989 PMCID: PMC7168669 DOI: 10.3390/pathogens9010023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/30/2022] Open
Abstract
Owing to their rich chemical composition, essential oils (EOs) have many interesting properties, including antimicrobial activities. The presence of Fusarium and their secondary metabolites, mycotoxins, in cereal crops is a serious problem in agriculture, which consequently affects food quality. The aim of the present study was to investigate the effects of selected EOs on the growth of Fusarium graminearum and F. culmorum and the biosynthesis of mycotoxins in maize seeds. Chromatographic analysis of ergosterol as a fungal growth indicator showed a significant inhibition of Fusarium growth (83.24–99.99%) compared to the control samples, which as a consequence resulted in a reduction in mycotoxin concentrations. The addition of cinnamon, palmarosa, orange, and spearmint EOs was shown to be the most effective in reducing zearalenone concentration (99.10–99.92%). Deoxynivalenol analysis confirmed a very high reduction of this compound at the application all tested EOs (90.69–100%). The obtained results indicated that EOs have a great potential to inhibit growth of Fusarium fungi as well as reduce the concentration of mycotoxins in maize seed.
Collapse
Affiliation(s)
- Adam Perczak
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
- Correspondence: ; Tel.: +48-618-487-824
| | - Daniela Gwiazdowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Niepodległości 10, 61-875 Poznań, Poland; (D.G.); (K.J.); (K.M.)
| | - Romuald Gwiazdowski
- Department of Pesticide Investigation, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland;
| | - Krzysztof Juś
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Niepodległości 10, 61-875 Poznań, Poland; (D.G.); (K.J.); (K.M.)
| | - Katarzyna Marchwińska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Niepodległości 10, 61-875 Poznań, Poland; (D.G.); (K.J.); (K.M.)
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| |
Collapse
|
13
|
Zhou D, Wei Y, Peng J, Tu S, Wang Z, Tu K. Carvacrol and eugenol inhibit postharvest soft rot disease by enhancing defense response in peaches during storage. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dandan Zhou
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Yingying Wei
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
- Department of Food Science and Engineering Ningbo University Ningbo China
| | - Jing Peng
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Sicong Tu
- Medical Sciences Division University of Oxford Oxford UK
| | - Zhuo Wang
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Kang Tu
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| |
Collapse
|
14
|
Zhang J, Ma S, Du S, Chen S, Sun H. Antifungal activity of thymol and carvacrol against postharvest pathogens Botrytis cinerea. Journal of Food Science and Technology 2019; 56:2611-2620. [PMID: 31168143 DOI: 10.1007/s13197-019-03747-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/20/2019] [Accepted: 03/21/2019] [Indexed: 11/26/2022]
Abstract
Botrytis cinerea is a primary pathogen causing stem and fruit rot during pre- and post-harvest. In the present study, the main purpose was to inquire into the antifungal activity and potential mechanisms of thymol and carvacrol against B. cinerea. During the experiment, the effects of thymol and carvacrol on physical and biochemical parameters of B. cinerea were evaluated. Results indicated that thymol and carvacrol exhibited strong antifungal activity against the targeted pathogen, with minimum inhibitory concentration and minimum fungicidal concentration of 65 mg/L and 100 mg/L for thymol, and 120 μL/L and 140 μL/L for carvacrol. Thymol and carvacrol changed obviously the morphology of B. cinerea hyphae by disrupting and distorting the mycelia through scanning electron microscopy. The membrane permeability of B. cinerea hyphae was prompted with the increment of two chemical agents' concentration, as evidenced by extracellular conductivity increase, the release of cell constituent, and the decrease of extracellular pH. Furthermore, a marked decline in total lipid content of B. cinerea cells was induced by the two chemical agents, suggesting that the cell membrane structures were destructed. Therefore, present results indicated that thymol and carvacrol may be used as a good alternative to conventional fungicides against B. cinerea in controlling grey molds in horticultural products.
Collapse
Affiliation(s)
- Jihong Zhang
- 1Department of Chemical Engineering, Xiangtan University, Xiangtan, 411105 China
- 2Present Address: Department of Biology and Food Engineering, Xiangtan University, Xiangtan, 411105 Hunan China
| | - Shuang Ma
- 1Department of Chemical Engineering, Xiangtan University, Xiangtan, 411105 China
| | - Shenglong Du
- 1Department of Chemical Engineering, Xiangtan University, Xiangtan, 411105 China
| | - Shaoyang Chen
- 1Department of Chemical Engineering, Xiangtan University, Xiangtan, 411105 China
| | - Helong Sun
- 1Department of Chemical Engineering, Xiangtan University, Xiangtan, 411105 China
| |
Collapse
|
15
|
Azizollahi Z, Ghaderian SM, Ghotbi-Ravandi AA. Cadmium accumulation and its effects on physiological and biochemical characters of summer savory ( Satureja hortensis L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1241-1253. [PMID: 31140292 DOI: 10.1080/15226514.2019.1619163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The objective of this study was to determine the effects of cadmium (Cd) toxicity on accumulation, growth, physiological responses, and biochemical characters in summer savory (Satureja hortensis L.). Plants were subjected to different levels of Cd concentrations including 0 (control), 2.5, 5, and 15 mg L-1 in the growing medium. Cd exposure led to a significant increase in root and shoot Cd content. Calculation of bioaccumulation factor, translocation factor, and transfer coefficient revealed that Cd mostly accumulated in roots of S. hortensis and root to shoot transport was effectively restricted. Cd toxicity negatively affected plant growth and significantly reduced chlorophyll content. Contrarily, proline, soluble and reducing carbohydrates, anthocyanin content, and the activity of antioxidant enzymes significantly increased as a result of Cd exposure. Cd application led to a significant increase in essential oil content of S. hortensis. GC-MS analysis revealed that percentage main constitute of S. hortensi, carvacrol, which determines the quality of oil increased under the highest Cd treatment. Based on our findings, S. hortensis can be considered an invaluable alternative crop for mildly Cd-contaminated soils. Besides, due to the high potential of Cd accumulation in the root, S. hortensis may offer a feasible tool for phytostabilization purposes.
Collapse
Affiliation(s)
- Zahra Azizollahi
- Department of Biology, Faculty of Sciences, University of Isfahan , Isfahan , Iran
| | | | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University , Tehran , Iran
| |
Collapse
|
16
|
Zhang Z, Xie Y, Hu X, Shi H, Wei M, Lin Z. Antifungal Activity of Monoterpenes against Botryosphaeria dothidea. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of natural plant extracts and essential oils will assist to decrease the negative effects of synthetic chemicals. The antifungal activity of 20 pure monoterpenes was assessed their efficacy against Botryosphaeria dothidea. 20 compounds were investigated the antifungal activity against B. dothidea at the concentration of 400 μg·mL−1. And components were used to the future test, which of the antifungal rate is greater than 50% against B. dothidea. Results from antifungal tests revealed that cuminaldehyde, β-citronellol, nerol, geraniol, citral and α-terpineol exhibited strong antifungal effect against B. dothidea. In addition, the antifungal activity of cuminaldehyde, β-citronellol, and geraniol had a highest effect toward B. dothidea with LC50 values of 105.15, 135.73, 132.69 μg·mL−1, respectively. In addition to the antagonistic effect of geraniol/β-citronellol (1/2) mixture, the combination of other compounds has synergistic effect on B. dothidea. The present results indicated that cuminaldehyde, geraniol, and β-citronellol are promising antifungal effect against B. dothidea and could be useful in the search for new natural fungicide. Several high activity monoterpenes and some combined with two monoterpenes were identified, and provided a rationale for pursuing further research on the fungicide and enhanced efficacy by the combined of fungicide.
Collapse
Affiliation(s)
- Zhilin Zhang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life and Technology, Hubei Engineering University, Xiaogan 432000, P.R. China
| | - Yongjian Xie
- School of Agricultural and Food Science, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Xian Hu
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life and Technology, Hubei Engineering University, Xiaogan 432000, P.R. China
| | - Hongan Shi
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life and Technology, Hubei Engineering University, Xiaogan 432000, P.R. China
| | - Mi Wei
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life and Technology, Hubei Engineering University, Xiaogan 432000, P.R. China
| | - Zhufeng Lin
- Institute of Plant Protection of Hainan Academy of Agricultural Sciences, Key Laboratory for Control of Plant Diseases and Insect Pests, Haikou 571100, P.R. China
| |
Collapse
|