1
|
Direct cleavage during the first mitosis is a sign of abnormal fertilization in cattle. Theriogenology 2023; 200:96-105. [PMID: 36805250 DOI: 10.1016/j.theriogenology.2023.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Direct cleavage, a type of abnormal cleavage in which one zygote divides into three or more blastomeres, has been reported in mammals. The incidence of direct cleavage increases in zygotes with three or more pronuclei (multi-PN) and those showing abnormal pronuclei migration. However, there are few reports on the relationship between pronuclei and direct cleavage, and the effects of these relationships on subsequent embryogenesis have not been clarified. It is difficult to observe pronuclei under visible light, especially in bovine zygotes, because of abundant dark lipid droplets in the cytoplasm. We visualized pronuclei by removing lipid droplets from bovine zygotes and analyzed the relationship between the number of pronuclei and direct cleavage using time-lapse cinematography. The direct cleavage rate of multi-PN zygotes was 78.6%, which was significantly higher than that of zygotes with one pronucleus (1 PN, 0.0%) and two pronuclei (2 PN, 8.2%). Observation of pronuclei migration in 2 PN zygotes showed that 3.1% of 2 PN zygotes had non-apposed pronuclei. The direct cleavage rate of zygotes with non-apposed pronuclei was 66.7%, which was significantly higher than that of zygotes with apposed pronuclei (6.4%). Among multi-PN zygotes, the proportions of zygotes with apposed pronuclei and non-apposed pronuclei were 37.5% and 64.3%, respectively. The direct cleavage rate of multi-PN zygotes with non-apposed pronuclei was 100.0%, which was significantly higher than that of zygotes with apposed pronuclei (40.0%). Three-dimensional live-cell imaging of bovine zygotes injected with the mRNA-encoding histone H2B-mCherry showed that the direct cleavage rates of 2 PN and multi-PN zygotes bypassing syngamy were 63.2% and 75.5%, respectively. These rates were significantly higher than that of 2 PN and multi-PN zygotes that underwent syngamy (5.6% and 20.0%, respectively). Regardless of the number of pronuclei, a high frequency of direct cleavage was observed in zygotes in which the pronuclei did not migrate inward the cytoplasm and bypassed syngamy. These results suggest that abnormal fertilization such as multi-PN and migration error of pronuclei in cattle is the primary reason for direct cleavage during the first mitosis. Assessment of direct cleavage during the first mitosis allows exclusion of embryos with abnormal fertilization and may contribute to in vitro produced embryo transfer success.
Collapse
|
2
|
So C, Menelaou K, Uraji J, Harasimov K, Steyer AM, Seres KB, Bucevičius J, Lukinavičius G, Möbius W, Sibold C, Tandler-Schneider A, Eckel H, Moltrecht R, Blayney M, Elder K, Schuh M. Mechanism of spindle pole organization and instability in human oocytes. Science 2022; 375:eabj3944. [PMID: 35143306 DOI: 10.1126/science.abj3944] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katerina Menelaou
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Julia Uraji
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - K Bianka Seres
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Jonas Bucevičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | | | | | - Heike Eckel
- Kinderwunschzentrum Göttingen, Göttingen, Germany
| | | | | | | | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Suzuki R, Okada M, Nagai H, Kobayashi J, Sugimura S. Morphokinetic analysis of pronuclei using time-lapse cinematography in bovine zygotes. Theriogenology 2021; 166:55-63. [PMID: 33689928 DOI: 10.1016/j.theriogenology.2021.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
The morphokinetics of pronuclei (PN) are considered crucial factors affecting embryogenesis in mammals. Whereas, since bovine zygotes contain a large number of cytosolic lipid droplets, detailed observation of PN has not been performed. In this study, we visualized PN using time-lapse cinematography (TLC) with light microscopy for the first time in delipidated bovine zygotes. The proportions of 0 PN, 1PN, 2PN, and multi-PN in delipidated bovine zygotes were 10.1%, 6.5%, 72.7%, and 10.8%, respectively. Abnormal fertilization, including 1 PN and multi-PN, was observed in 15.6% of blastocysts. The times from IVF to PN appearance, PN fading, and first cleavage in 2 PN bovine zygotes that developed into blastocysts were 10.4, 25.5, and 27.6 h, respectively, which were similar to PN morphokinetics in humans. The 2 PN zygotes showed that the prolonged time from IVF to the appearance of PN and from the fading of PN to the first cleavage negatively affected blastocyst formation. The time from appearance to fading of PN in multi-PN zygotes that developed into blastocysts was longer than that in multi-PN zygotes that did not develop into blastocysts. Besides, among zygotes that developed into blastocysts, the time from appearance to fading of PN in multi-PN zygotes was longer than that in 2 PN and 1 PN zygotes. These results suggest that PN morphokinetic abnormalities are associated with subsequent embryonic development. Observation of PN in bovine zygotes by using non-invasive visible light TLC by delipidation could be a powerful tool to clarify the relationship between PN morphokinetics and developmental competence.
Collapse
Affiliation(s)
- Ryosuke Suzuki
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, 183-8538, Japan; Kanagawa Ladies Clinic, Kanagawa, 221-0822, Japan
| | - Mai Okada
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, 183-8538, Japan
| | - Hiroki Nagai
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, 183-8538, Japan
| | | | - Satoshi Sugimura
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, 183-8538, Japan.
| |
Collapse
|
4
|
Zhu HY, Kang XJ, Jin L, Zhang PY, Wu H, Tan T, Yu Y, Fan Y. Histone demethylase KDM4A overexpression improved the efficiency of corrected human tripronuclear zygote development. Mol Hum Reprod 2021; 27:6143036. [PMID: 33599278 PMCID: PMC7939728 DOI: 10.1093/molehr/gaab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/03/2021] [Indexed: 01/22/2023] Open
Abstract
Human zygotes are difficult to obtain for research because of limited resources and ethical debates. Corrected human tripronuclear (ch3PN) zygotes obtained by removal of the extra pronucleus from abnormally fertilized tripronuclear (3PN) zygotes are considered an alternative resource for basic scientific research. In the present study, eight-cell and blastocyst formation efficiency were significantly lower in both 3PN and ch3PN embryos than in normal fertilized (2PN) embryos, while histone H3 lysine 9 trimethylation (H3K9me3) levels were much higher. It was speculated that the aberrant H3K9me3 level detected in ch3PN embryos may be related to low developmental competence. Microinjection of 1000 ng/µl lysine-specific demethylase 4A (KDM4A) mRNA effectively reduced the H3K9me3 level and significantly increased the developmental competence of ch3PN embryos. The quality of ch3PN zygotes improved as the grading criteria, cell number and pluripotent expression significantly increased in response to KDM4A mRNA injection. Developmental genes related to zygotic genome activation (ZGA) were also upregulated. These results indicate that KDM4A activates the transcription of the ZGA program by enhancing the expression of related genes, promoting epigenetic modifications and regulating the developmental potential of ch3PN embryos. The present study will facilitate future studies of ch3PN embryos and could provide additional options for infertile couples.
Collapse
Affiliation(s)
- Hai-Ying Zhu
- Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiang-Jin Kang
- Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Long Jin
- Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Pu-Yao Zhang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Han Wu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yong Fan
- Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| |
Collapse
|
5
|
Wang W, Shao S, Chen W, Wang W, Chuai Y, Li Y, Guo Y, Han S, Shu M, Wang Q, Zhang L, Shang W. Electrofusion Stimulation Is an Independent Factor of Chromosome Abnormality in Mice Oocytes Reconstructed via Spindle Transfer. Front Endocrinol (Lausanne) 2021; 12:705837. [PMID: 34413830 PMCID: PMC8370092 DOI: 10.3389/fendo.2021.705837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022] Open
Abstract
Oocytes reconstructed by spindle transfer (ST) are prone to chromosome abnormality, which is speculated to be caused by mechanical interference or premature activation, the mechanism is controversial. In this study, C57BL/6N oocytes were used as the model, and electrofusion ST was performed under normal conditions, Ca2+ free, and at room temperature, respectively. The effect of enucleation and electrofusion stimulation on MPF activity, spindle morphology, γ-tubulin localization and chromosome arrangement was compared. We found that electrofusion stimulation could induce premature chromosome separation and abnormal spindle morphology and assembly by decreasing the MPF activity, leading to premature activation, and thus resulting in chromosome abnormality in oocytes reconstructed via ST. Electrofusion stimulation was an independent factor of chromosome abnormality in oocytes reconstructed via ST, and was not related to enucleation, fusion status, temperature, or Ca2+. The electrofusion stimulation number should be minimized, with no more than 2 times being appropriate. As the electrofusion stimulation number increased, several typical abnormalities in chromosome arrangement and spindle assembly occurred. Although blastocyst culture could eliminate embryos with chromosomal abnormalities, it would significantly decrease the number of normal embryos and reduce the availability of embryos. The optimum operating condition for electrofusion ST was the 37°C group without Ca2+.
Collapse
Affiliation(s)
- Wei Wang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Department of Reproductive Medicine, Harrison International Peace Hospital, Hengshui, China
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Wei Chen
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Weizhou Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Yunhai Chuai
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Yunfei Li
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Yiming Guo
- Department of Biology, Kenneth P. Dietrich School of Art & Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shujie Han
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Navy Clinical Medical School, Anhui Medical University, Beijing, China
| | - Mingming Shu
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Qihang Wang
- Department of Reproductive Medicine, First Hospital of Tsinghua University, Beijing, China
| | - Lei Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Lei Zhang, ; Wei Shang,
| | - Wei Shang
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Navy Clinical Medical School, Anhui Medical University, Beijing, China
- *Correspondence: Lei Zhang, ; Wei Shang,
| |
Collapse
|
6
|
Gu YF, OuYang Q, Dai C, Lu CF, Lin G, Gong F, Lu GX. Abnormalities in centrosome number in human embryos and embryonic stem cells. Mol Reprod Dev 2016; 83:392-404. [PMID: 26946049 DOI: 10.1002/mrd.22633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 02/26/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Yi-Fan Gu
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- Reproductive and Genetic Hospital of CITIC-XIANGYA; Changsha China
| | - Qi OuYang
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- National Engineering and Research Center of Human Stem Cell; Changsha China
| | - Can Dai
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- National Engineering and Research Center of Human Stem Cell; Changsha China
| | - Chang-Fu Lu
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- Reproductive and Genetic Hospital of CITIC-XIANGYA; Changsha China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- Reproductive and Genetic Hospital of CITIC-XIANGYA; Changsha China
- National Engineering and Research Center of Human Stem Cell; Changsha China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- Reproductive and Genetic Hospital of CITIC-XIANGYA; Changsha China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- Reproductive and Genetic Hospital of CITIC-XIANGYA; Changsha China
- National Engineering and Research Center of Human Stem Cell; Changsha China
| |
Collapse
|
7
|
Pronuclear removal of tripronuclear zygotes can establish heteroparental normal karyotypic human embryonic stem cells. J Assist Reprod Genet 2016; 33:255-63. [PMID: 26727933 DOI: 10.1007/s10815-015-0634-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022] Open
Abstract
PURPOSE This study aimed to derive heteroparental normal karyotypic human embryonic stem cells (hESCs) from microsurgically corrected tripronuclear (3PN) zygotes. METHODS After sequential culture for 5-6 days, embryos developed from microsurgically corrected 3PN zygotes were analyzed by fluorescence in situ hybridization (FISH) using probes for chromosomes 17, X and Y. Intact 3PN zygotes from clinical in vitro fertilization (IVF) cycles were cultured as the control group. The inner cell mass (ICM) of blastocysts that developed from microsurgically corrected 3PN zygotes was used to derive hESC lines, and the stem cell characteristics of these lines were evaluated. G-banding analysis was adopted to identify the karyotype of the hESC line, and the heteroparental inheritance of the hESC line was analyzed by DNA fingerprinting analysis. RESULTS The blastocyst formation rate (13.5 %) of the microsurgically corrected 3PN zygotes was significantly higher (P < 0.05) than that of intact 3PN zygotes (8.7 %). The diploid rate of the blastocysts (55.0 %) was significantly higher (P < 0.05) than that of the arrested cleavage-stage embryos (18.4 %) in microsurgically corrected 3PN zygotes. The triploid rate of the microsurgically corrected 3PN zygotes (5.7 %) was significantly lower (P < 0.01) than that of intact 3PN zygotes (19.4 %). Furthermore, we established one heteroparental normal karyotypic hESC line from the microsurgically corrected tripronuclear zygotes. CONCLUSIONS Pronuclear removal can effectively remove the surplus chromosome set of 3PN zygotes. A combination of pronuclear removal and blastocyst culture enables the selection of diploidized blastocysts from which heteroparental normal karyotypic hESC lines can be derived.
Collapse
|
8
|
Jin HX, Dai SJ, Song WY, Yao GD, Shi SL, Sun YP. Embryo developmental potential of microsurgically corrected human three-pronuclear zygotes. Syst Biol Reprod Med 2014; 61:96-102. [PMID: 25411094 DOI: 10.3109/19396368.2014.986693] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We explored the embryo development potential of human three-pronuclear (3PN) zygotes reduced to two-pronuclear (2PN) zygotes (3 → 2PN zygotes) by micropuncture. In this study, there were three groups, the 3 → 2PN group (338 zygotes), the non-corrected 3PN group (381 zygotes), and the normal 2PN group (359 zygotes). The first cleavage mode (2-cell cleavage or 3-cell cleavage), 6-8 cell embryogenesis rate, high-quality embryogenesis rate and Day 5/Day 6 blastulation rate were compared between the three groups. The success rate of enucleation was 92.9%. The 2-cell cleavage rate was significantly higher in the 3 → 2PN group (74.3%) than in the 3PN group (36.4%) (P < 0.05), but had no statistical difference compared with the 2PN group (86.0%) (P > 0.05). The 6-8 cell embryogenesis rate was significantly higher in the 3 → 2PN group (91.1%) as compared to the 2PN group (85.6%) (P < 0.05), but had no statistical difference compared with the 3PN group (95.0%) (P > 0.05). Total blastulation rate was significantly higher in the 2PN group (58.8%) as compared to the 3PN group (21.5%) (P < 0.01), and in the 3 → 2PN group as compared to the 3PN group (5.6%) (P < 0.01). Also D5 blastulation rate was significantly higher in the 2PN group (53.7%) as compared to the 3 → 2PN group (8.9%) (P < 0.01), and in the 3 → 2PN group as compared to the 3PN group (1.9%) (P < 0.01). In 3 → 2PN zygotes, the first cleavage mode is mainly 2 cells which is significantly higher than that in 3PN zygotes. Compared with 3PN zygotes, the embryo developmental potential of 3 → 2PN zygotes is improved, but still is lower than that in 2PN zygotes.
Collapse
Affiliation(s)
- Hai-xia Jin
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | | | | | | | | | | |
Collapse
|
9
|
Joergensen MW, Agerholm I, Hindkjaer J, Bolund L, Sunde L, Ingerslev HJ, Kirkegaard K. Altered cleavage patterns in human tripronuclear embryos and their association to fertilization method: a time-lapse study. J Assist Reprod Genet 2014; 31:435-42. [PMID: 24458469 DOI: 10.1007/s10815-014-0178-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/13/2014] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To analyze the cleavage patterns in dipronuclear (2PN) and tripronuclear (3PN) embryos in relation to fertilization method. METHOD Time-lapse analysis. RESULTS Compared to 2PN, more 3PN IVF embryos displayed early cleavage into 3 cells (p < 0.001), displayed longer duration of the 3-cell stage (p < 0.001), and arrested development from the compaction stage and onwards (p < 0.001). For the IVF embryos, the 2nd and 3rd cleavage cycles were completed within the expected time frame. However, timing of the cell divisions within the cleavage cycles differed between the two groups. In contrast, the completion of the 1st, 2nd, and 3rd cleavage cycle was delayed, but with a similar division pattern for 3PN ICSI compared with the 2PN ICSI embryos. 3PN, more often than 2PN ICSI embryos, displayed early cleavage into 3 cells (p = 0.03) and arrested development from the compaction stage and onwards (p = 0.001). More 3PN IVF than ICSI embryos displayed early cleavage into 3 cells (p < 0.001). CONCLUSIONS This study reports differences in cleavage patterns between 2PN and 3PN embryos and for the first time demonstrates differences in the cleavage pattern between 3PN IVF and ICSI embryos.
Collapse
|
10
|
Fan Y, Li R, Huang J, Zhao HC, Ding T, Sun X, Yu Y, Qiao J. Improved efficiency of microsurgical enucleated tripronuclear zygotes development and embryonic stem cell derivation by supplementing epidermal growth factor, brain-derived neurotrophic factor, and insulin-like growth factor-1. Stem Cells Dev 2014; 23:563-75. [PMID: 24261581 DOI: 10.1089/scd.2013.0420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human embryonic stem cells (hESCs) hold great promise for future clinical cell therapies because of their unique potential to differentiate into all human cell types. However, the destruction of normal fertilized embryos and the derivation of hESCs for research has resulted in polarized ethical debates, with most of the controversy centered on embryo destruction. Therefore, due to less ethical controversy surrounding them, abnormal fertilized zygotes that are usually discarded are a potential feasible resource for the derivation of hESCs. Microsurgery on human polyspermic zygotes can contribute to the derivation of hESCs, but the efficiency is much lower. Here, we reported a culture system to enhance the developmental competence of such microsurgical human polyspermic zygotes by EGF-BDNF-IGF-1 combination, which eventually resulted in the increased derivation efficiency of hESCs from them. We found that the developmental efficiency of microsurgical enucleated tripronuclear (3PN) embryos cultured with the EGF-BDNF-IGF-1 combination was significantly increased compared with the control group. More importantly, when the microsurgical enucleated 3PN embryos were cultured in medium supplemented with EGF-BDNF-IGF-1, the frequency ratio of chromosome abnormality was reduced. Our present study will facilitate the development of hESC line derivation in subsequent studies and also provide an additional choice for infertile couples.
Collapse
Affiliation(s)
- Yong Fan
- 1 Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jiang C, Cai L, Huang B, Dong J, Chen A, Ning S, Cui Y, Qin L, Liu J. Normal human embryonic stem cell lines were derived from microsurgical enucleated tripronuclear zygotes. J Cell Biochem 2013; 114:2016-23. [PMID: 23564289 DOI: 10.1002/jcb.24547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/12/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | | | - Juan Dong
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Aiqin Chen
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | | |
Collapse
|
12
|
Fan Y, Li R, Huang J, Yu Y, Qiao J. Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes. Cell Cycle 2012; 12:302-11. [PMID: 23255130 DOI: 10.4161/cc.23103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells.
Collapse
Affiliation(s)
- Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|