1
|
Lutke Schipholt IJ, Coppieters MW, Meijer OG, Tompra N, de Vries RBM, Scholten-Peeters GGM. Effects of joint and nerve mobilisation on neuroimmune responses in animals and humans with neuromusculoskeletal conditions: a systematic review and meta-analysis. Pain Rep 2021; 6:e927. [PMID: 34104836 PMCID: PMC8177878 DOI: 10.1097/pr9.0000000000000927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. There is evidence that joint and nerve mobilisations compared with sham or no intervention positively influence various neuroimmune responses in animal and human neuromusculoskeletal conditions. Several animal and human studies revealed that joint and nerve mobilisations positively influence neuroimmune responses in neuromusculoskeletal conditions. However, no systematic review and meta-analysis has been performed. Therefore, this study aimed to synthesize the effects of joint and nerve mobilisation compared with sham or no intervention on neuroimmune responses in animals and humans with neuromusculoskeletal conditions. Four electronic databases were searched for controlled trials. Two reviewers independently selected studies, extracted data, assessed the risk of bias, and graded the certainty of the evidence. Where possible, meta-analyses using random effects models were used to pool the results. Preliminary evidence from 13 animal studies report neuroimmune responses after joint and nerve mobilisations. In neuropathic pain models, meta-analysis revealed decreased spinal cord levels of glial fibrillary acidic protein, dorsal root ganglion levels of interleukin-1β, number of dorsal root ganglion nonneuronal cells, and increased spinal cord interleukin-10 levels. The 5 included human studies showed mixed effects of spinal manipulation on salivary/serum cortisol levels in people with spinal pain, and no significant effects on serum β-endorphin or interleukin-1β levels in people with spinal pain. There is evidence that joint and nerve mobilisations positively influence various neuroimmune responses. However, as most findings are based on single studies, the certainty of the evidence is low to very low. Further studies are needed.
Collapse
Affiliation(s)
- Ivo J Lutke Schipholt
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Clinical Chemistry, Laboratory Medical Immunology, Amsterdam UMC, Location VU Medical Centre, Amsterdam, the Netherlands
| | - Michel W Coppieters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Menzies Health Institute Queensland, Griffith University, Brisbane & Gold Coast, Australia
| | - Onno G Meijer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Orthopaedic Biomechanics Laboratory, Fujian Medical University, Quanzhou, Fujian, PR China
| | - Nefeli Tompra
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Rob B M de Vries
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gwendolyne G M Scholten-Peeters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ronchi G, Morano M, Fregnan F, Pugliese P, Crosio A, Tos P, Geuna S, Haastert-Talini K, Gambarotta G. The Median Nerve Injury Model in Pre-clinical Research - A Critical Review on Benefits and Limitations. Front Cell Neurosci 2019; 13:288. [PMID: 31316355 PMCID: PMC6609919 DOI: 10.3389/fncel.2019.00288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The successful introduction of innovative treatment strategies into clinical practise strongly depends on the availability of effective experimental models and their reliable pre-clinical assessment. Considering pre-clinical research for peripheral nerve repair and reconstruction, the far most used nerve regeneration model in the last decades is the sciatic nerve injury and repair model. More recently, the use of the median nerve injury and repair model has gained increasing attention due to some significant advantages it provides compared to sciatic nerve injury. Outstanding advantages are the availability of reliable behavioural tests for assessing posttraumatic voluntary motor recovery and a much lower impact on the animal wellbeing. In this article, the potential application of the median nerve injury and repair model in pre-clinical research is reviewed. In addition, we provide a synthetic overview of a variety of methods that can be applied in this model for nerve regeneration assessment. This article is aimed at helping researchers in adequately adopting this in vivo model for pre-clinical evaluation of peripheral nerve reconstruction as well as for interpreting the results in a translational perspective.
Collapse
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Pierfrancesco Pugliese
- Dipartimento di Chirurgia Generale e Specialistica, Azienda Ospedaliera Universitaria, Ancona, Italy
| | - Alessandro Crosio
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Pierluigi Tos
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|