Kassab GS. Biomechanics of the cardiovascular system: the aorta as an illustratory example.
J R Soc Interface 2006;
3:719-40. [PMID:
17015300 PMCID:
PMC1885359 DOI:
10.1098/rsif.2006.0138]
[Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 05/31/2006] [Indexed: 11/12/2022] Open
Abstract
Biomechanics relates the function of a physiological system to its structure. The objective of biomechanics is to deduce the function of a system from its geometry, material properties and boundary conditions based on the balance laws of mechanics (e.g. conservation of mass, momentum and energy). In the present review, we shall outline the general approach of biomechanics. As this is an enormously broad field, we shall consider a detailed biomechanical analysis of the aorta as an illustration. Specifically, we will consider the geometry and material properties of the aorta in conjunction with appropriate boundary conditions to formulate and solve several well-posed boundary value problems. Among other issues, we shall consider the effect of longitudinal pre-stretch and surrounding tissue on the mechanical status of the vessel wall. The solutions of the boundary value problems predict the presence of mechanical homeostasis in the vessel wall. The implications of mechanical homeostasis on growth, remodelling and postnatal development of the aorta are considered.
Collapse