1
|
Fang Z, Peltz G. Twenty-first century mouse genetics is again at an inflection point. Lab Anim (NY) 2025; 54:9-15. [PMID: 39592878 PMCID: PMC11695262 DOI: 10.1038/s41684-024-01491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
The laboratory mouse has been the premier model organism for biomedical research owing to the availability of multiple well-characterized inbred strains, its mammalian physiology and its homozygous genome, and because experiments can be performed under conditions that control environmental variables. Moreover, its genome can be genetically modified to assess the impact of allelic variation on phenotype. Mouse models have been used to discover or test many therapies that are commonly used today. Mouse genetic discoveries are often made using genome-wide association study methods that compare allelic differences in panels of inbred mouse strains with their phenotypic responses. Here we examine changes in the methods used to analyze mouse genetic models of biomedical traits during the twenty-first century. To do this, we first examine where mouse genetics was before the first inflection point, which was just before the revolution in genome sequencing that occurred 20 years ago, and then describe the factors that have accelerated the pace of mouse genetic discovery. We focus on mouse genetic studies that have generated findings that either were translated to humans or could impact clinical medicine or drug development. We next explore how advances in computational capabilities and in DNA sequencing methodology during the past 20 years could enhance the ability of mouse genetics to produce solutions for twenty-first century public-health problems.
Collapse
Affiliation(s)
- Zhuoqing Fang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Kromrey ML, Steiner L, Schön F, Gamain J, Roller C, Malsch C. Navigating the Spectrum: Assessing the Concordance of ML-Based AI Findings with Radiology in Chest X-Rays in Clinical Settings. Healthcare (Basel) 2024; 12:2225. [PMID: 39595423 PMCID: PMC11593407 DOI: 10.3390/healthcare12222225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The integration of artificial intelligence (AI) into radiology aims to improve diagnostic accuracy and efficiency, particularly in settings with limited access to expert radiologists and in times of personnel shortage. However, challenges such as insufficient validation in actual real-world settings or automation bias should be addressed before implementing AI software in clinical routine. Methods: This cross-sectional study in a maximum care hospital assesses the concordance between diagnoses made by a commercial AI-based software and conventional radiological methods augmented by AI for four major thoracic pathologies in chest X-ray: fracture, pleural effusion, pulmonary nodule and pneumonia. Chest radiographs of 1506 patients (median age 66 years, 56.5% men) consecutively obtained between January and August 2023 were re-evaluated by the AI software InferRead DR Chest®. Results: Overall, AI software detected thoracic pathologies more often than radiologists (18.5% vs. 11.1%). In detail, it detected fractures, pneumonia, and nodules more frequently than radiologists, while radiologists identified pleural effusions more often. Reliability was highest for pleural effusions (0.63, 95%-CI 0.58-0.69), indicating good agreement, and lowest for fractures (0.39, 95%-CI 0.32-0.45), indicating moderate agreement. Conclusions: The tested software shows a high detection rate, particularly for fractures, pneumonia, and nodules, but hereby produces a nonnegligible number of false positives. Thus, AI-based software shows promise in enhancing diagnostic accuracy; however, cautious interpretation and human oversight remain crucial.
Collapse
Affiliation(s)
- Marie-Luise Kromrey
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany (J.G.); (C.R.)
- Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany;
| | - Laura Steiner
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany (J.G.); (C.R.)
| | - Felix Schön
- Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany;
| | - Julie Gamain
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany (J.G.); (C.R.)
| | - Christian Roller
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany (J.G.); (C.R.)
| | - Carolin Malsch
- Institute for Mathematics and Computer Science, University Greifswald, 17489 Greifswald, Germany;
| |
Collapse
|
3
|
Chang JY, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Thoracic Imaging. Diagnostics (Basel) 2024; 14:1456. [PMID: 39001346 PMCID: PMC11240935 DOI: 10.3390/diagnostics14131456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
The advent of artificial intelligence (AI) is revolutionizing medicine, particularly radiology. With the development of newer models, AI applications are demonstrating improved performance and versatile utility in the clinical setting. Thoracic imaging is an area of profound interest, given the prevalence of chest imaging and the significant health implications of thoracic diseases. This review aims to highlight the promising applications of AI within thoracic imaging. It examines the role of AI, including its contributions to improving diagnostic evaluation and interpretation, enhancing workflow, and aiding in invasive procedures. Next, it further highlights the current challenges and limitations faced by AI, such as the necessity of 'big data', ethical and legal considerations, and bias in representation. Lastly, it explores the potential directions for the application of AI in thoracic radiology.
Collapse
Affiliation(s)
- Jin Y Chang
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mina S Makary
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Zhang L, LaBelle W, Unberath M, Chen H, Hu J, Li G, Dreizin D. A vendor-agnostic, PACS integrated, and DICOM-compatible software-server pipeline for testing segmentation algorithms within the clinical radiology workflow. Front Med (Lausanne) 2023; 10:1241570. [PMID: 37954555 PMCID: PMC10637622 DOI: 10.3389/fmed.2023.1241570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Background Reproducible approaches are needed to bring AI/ML for medical image analysis closer to the bedside. Investigators wishing to shadow test cross-sectional medical imaging segmentation algorithms on new studies in real-time will benefit from simple tools that integrate PACS with on-premises image processing, allowing visualization of DICOM-compatible segmentation results and volumetric data at the radiology workstation. Purpose In this work, we develop and release a simple containerized and easily deployable pipeline for shadow testing of segmentation algorithms within the clinical workflow. Methods Our end-to-end automated pipeline has two major components- 1. A router/listener and anonymizer and an OHIF web viewer backstopped by a DCM4CHEE DICOM query/retrieve archive deployed in the virtual infrastructure of our secure hospital intranet, and 2. An on-premises single GPU workstation host for DICOM/NIfTI conversion steps, and image processing. DICOM images are visualized in OHIF along with their segmentation masks and associated volumetry measurements (in mL) using DICOM SEG and structured report (SR) elements. Since nnU-net has emerged as a widely-used out-of-the-box method for training segmentation models with state-of-the-art performance, feasibility of our pipleine is demonstrated by recording clock times for a traumatic pelvic hematoma nnU-net model. Results Mean total clock time from PACS send by user to completion of transfer to the DCM4CHEE query/retrieve archive was 5 min 32 s (± SD of 1 min 26 s). This compares favorably to the report turnaround times for whole-body CT exams, which often exceed 30 min, and illustrates feasibility in the clinical setting where quantitative results would be expected prior to report sign-off. Inference times accounted for most of the total clock time, ranging from 2 min 41 s to 8 min 27 s. All other virtual and on-premises host steps combined ranged from a minimum of 34 s to a maximum of 48 s. Conclusion The software worked seamlessly with an existing PACS and could be used for deployment of DL models within the radiology workflow for prospective testing on newly scanned patients. Once configured, the pipeline is executed through one command using a single shell script. The code is made publicly available through an open-source license at "https://github.com/vastc/," and includes a readme file providing pipeline config instructions for host names, series filter, other parameters, and citation instructions for this work.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Wayne LaBelle
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Mathias Unberath
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Haomin Chen
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jiazhen Hu
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Guang Li
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - David Dreizin
- School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
5
|
Mervak BM, Fried JG, Wasnik AP. A Review of the Clinical Applications of Artificial Intelligence in Abdominal Imaging. Diagnostics (Basel) 2023; 13:2889. [PMID: 37761253 PMCID: PMC10529018 DOI: 10.3390/diagnostics13182889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Artificial intelligence (AI) has been a topic of substantial interest for radiologists in recent years. Although many of the first clinical applications were in the neuro, cardiothoracic, and breast imaging subspecialties, the number of investigated and real-world applications of body imaging has been increasing, with more than 30 FDA-approved algorithms now available for applications in the abdomen and pelvis. In this manuscript, we explore some of the fundamentals of artificial intelligence and machine learning, review major functions that AI algorithms may perform, introduce current and potential future applications of AI in abdominal imaging, provide a basic understanding of the pathways by which AI algorithms can receive FDA approval, and explore some of the challenges with the implementation of AI in clinical practice.
Collapse
Affiliation(s)
| | | | - Ashish P. Wasnik
- Department of Radiology, University of Michigan—Michigan Medicine, 1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA; (B.M.M.); (J.G.F.)
| |
Collapse
|
6
|
Suter B, Anthis AHC, Zehnder A, Mergen V, Rosendorf J, Gerken LRH, Schlegel AA, Korcakova E, Liska V, Herrmann IK. Surgical Sealant with Integrated Shape-Morphing Dual Modality Ultrasound and Computed Tomography Sensors for Gastric Leak Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301207. [PMID: 37276437 PMCID: PMC10427398 DOI: 10.1002/advs.202301207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Postoperative anastomotic leaks are the most feared complications after gastric surgery. For diagnostics clinicians mostly rely on clinical symptoms such as fever and tachycardia, often developing as a result of an already fully developed, i.e., symptomatic, surgical leak. A gastric fluid responsive, dual modality, electronic-free, leak sensor system integrable into surgical adhesive suture support materials is introduced. Leak sensors contain high atomic number carbonates embedded in a polyacrylamide matrix, that upon exposure to gastric fluid convert into gaseous carbon dioxide (CO2 ). CO2 bubbles remain entrapped in the hydrogel matrix, leading to a distinctly increased echogenic contrast detectable by a low-cost and portable ultrasound transducer, while the dissolution of the carbonate species and the resulting diffusion of the cation produces a markedly reduced contrast in computed tomography imaging. The sensing elements can be patterned into a variety of characteristic shapes and can be combined with nonreactive tantalum oxide reference elements, allowing the design of shape-morphing sensing elements visible to the naked eye as well as artificial intelligence-assisted automated detection. In summary, shape-morphing dual modality sensors for the early and robust detection of postoperative complications at deep tissue sites, opening new routes for postoperative patient surveillance using existing hospital infrastructure is reported.
Collapse
Affiliation(s)
- Benjamin Suter
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zürich8092Switzerland
- Particles‐Biology InteractionsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Alexandre H. C. Anthis
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zürich8092Switzerland
- Particles‐Biology InteractionsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Anna‐Katharina Zehnder
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zürich8092Switzerland
| | - Victor Mergen
- Diagnostic and Interventional RadiologyUniversity Hospital ZurichUniversity of ZurichRämistrasse 100Zürich8091Switzerland
| | - Jachym Rosendorf
- Department of SurgeryFaculty of Medicine in PilsenCharles UniversityAlej Svobody 923/80Pilsen32300Czech Republic
- Biomedical CenterFaculty of Medicine in PilsenCharles UniversityAlej Svobody 1655/76Pilsen32300Czech Republic
| | - Lukas R. H. Gerken
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zürich8092Switzerland
- Particles‐Biology InteractionsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Andrea A. Schlegel
- Department of Surgery and TransplantationSwiss HPB CentreUniversity Hospital ZurichRämistrasse 100Zurich8091Switzerland
- Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoCentre of Preclinical ResearchMilan20122Italy
- Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunity and Inflammation, Lerner Research InstituteCleveland Clinic9620 Carnegie AveClevelandOH44106United States
| | - Eva Korcakova
- Biomedical CenterFaculty of Medicine in PilsenCharles UniversityAlej Svobody 1655/76Pilsen32300Czech Republic
- Department of Imaging MethodsFaculty of Medicine in Pilsen, Charles UniversityAlej Svobody 80Pilsen30460Czech Republic
| | - Vaclav Liska
- Department of SurgeryFaculty of Medicine in PilsenCharles UniversityAlej Svobody 923/80Pilsen32300Czech Republic
- Biomedical CenterFaculty of Medicine in PilsenCharles UniversityAlej Svobody 1655/76Pilsen32300Czech Republic
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zürich8092Switzerland
- Particles‐Biology InteractionsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| |
Collapse
|
7
|
Dreizin D, Zhang L, Sarkar N, Bodanapally UK, Li G, Hu J, Chen H, Khedr M, Khetan U, Campbell P, Unberath M. Accelerating voxelwise annotation of cross-sectional imaging through AI collaborative labeling with quality assurance and bias mitigation. FRONTIERS IN RADIOLOGY 2023; 3:1202412. [PMID: 37485306 PMCID: PMC10362988 DOI: 10.3389/fradi.2023.1202412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
Background precision-medicine quantitative tools for cross-sectional imaging require painstaking labeling of targets that vary considerably in volume, prohibiting scaling of data annotation efforts and supervised training to large datasets for robust and generalizable clinical performance. A straight-forward time-saving strategy involves manual editing of AI-generated labels, which we call AI-collaborative labeling (AICL). Factors affecting the efficacy and utility of such an approach are unknown. Reduction in time effort is not well documented. Further, edited AI labels may be prone to automation bias. Purpose In this pilot, using a cohort of CTs with intracavitary hemorrhage, we evaluate both time savings and AICL label quality and propose criteria that must be met for using AICL annotations as a high-throughput, high-quality ground truth. Methods 57 CT scans of patients with traumatic intracavitary hemorrhage were included. No participant recruited for this study had previously interpreted the scans. nnU-net models trained on small existing datasets for each feature (hemothorax/hemoperitoneum/pelvic hematoma; n = 77-253) were used in inference. Two common scenarios served as baseline comparison- de novo expert manual labeling, and expert edits of trained staff labels. Parameters included time effort and image quality graded by a blinded independent expert using a 9-point scale. The observer also attempted to discriminate AICL and expert labels in a random subset (n = 18). Data were compared with ANOVA and post-hoc paired signed rank tests with Bonferroni correction. Results AICL reduced time effort 2.8-fold compared to staff label editing, and 8.7-fold compared to expert labeling (corrected p < 0.0006). Mean Likert grades for AICL (8.4, SD:0.6) were significantly higher than for expert labels (7.8, SD:0.9) and edited staff labels (7.7, SD:0.8) (corrected p < 0.0006). The independent observer failed to correctly discriminate AI and human labels. Conclusion For our use case and annotators, AICL facilitates rapid large-scale curation of high-quality ground truth. The proposed quality control regime can be employed by other investigators prior to embarking on AICL for segmentation tasks in large datasets.
Collapse
Affiliation(s)
- David Dreizin
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Lei Zhang
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nathan Sarkar
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Uttam K. Bodanapally
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Guang Li
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Jiazhen Hu
- Johns Hopkins University, Baltimore, MD, United States
| | - Haomin Chen
- Johns Hopkins University, Baltimore, MD, United States
| | - Mustafa Khedr
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Udit Khetan
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Peter Campbell
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | | |
Collapse
|
8
|
Agrawal A, Khatri GD, Khurana B, Sodickson AD, Liang Y, Dreizin D. A survey of ASER members on artificial intelligence in emergency radiology: trends, perceptions, and expectations. Emerg Radiol 2023; 30:267-277. [PMID: 36913061 PMCID: PMC10362990 DOI: 10.1007/s10140-023-02121-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE There is a growing body of diagnostic performance studies for emergency radiology-related artificial intelligence/machine learning (AI/ML) tools; however, little is known about user preferences, concerns, experiences, expectations, and the degree of penetration of AI tools in emergency radiology. Our aim is to conduct a survey of the current trends, perceptions, and expectations regarding AI among American Society of Emergency Radiology (ASER) members. METHODS An anonymous and voluntary online survey questionnaire was e-mailed to all ASER members, followed by two reminder e-mails. A descriptive analysis of the data was conducted, and results summarized. RESULTS A total of 113 members responded (response rate 12%). The majority were attending radiologists (90%) with greater than 10 years' experience (80%) and from an academic practice (65%). Most (55%) reported use of commercial AI CAD tools in their practice. Workflow prioritization based on pathology detection, injury or disease severity grading and classification, quantitative visualization, and auto-population of structured reports were identified as high-value tasks. Respondents overwhelmingly indicated a need for explainable and verifiable tools (87%) and the need for transparency in the development process (80%). Most respondents did not feel that AI would reduce the need for emergency radiologists in the next two decades (72%) or diminish interest in fellowship programs (58%). Negative perceptions pertained to potential for automation bias (23%), over-diagnosis (16%), poor generalizability (15%), negative impact on training (11%), and impediments to workflow (10%). CONCLUSION ASER member respondents are in general optimistic about the impact of AI in the practice of emergency radiology and its impact on the popularity of emergency radiology as a subspecialty. The majority expect to see transparent and explainable AI models with the radiologist as the decision-maker.
Collapse
Affiliation(s)
- Anjali Agrawal
- New Delhi operations, Teleradiology Solutions, Delhi, India
| | - Garvit D Khatri
- Nuclear Medicine, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bharti Khurana
- Emergency Radiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron D Sodickson
- Emergency Radiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuanyuan Liang
- Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Dreizin
- Trauma and Emergency Radiology, Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Dreizin D, Staziaki PV, Khatri GD, Beckmann NM, Feng Z, Liang Y, Delproposto ZS, Klug M, Spann JS, Sarkar N, Fu Y. Artificial intelligence CAD tools in trauma imaging: a scoping review from the American Society of Emergency Radiology (ASER) AI/ML Expert Panel. Emerg Radiol 2023; 30:251-265. [PMID: 36917287 PMCID: PMC10640925 DOI: 10.1007/s10140-023-02120-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND AI/ML CAD tools can potentially improve outcomes in the high-stakes, high-volume model of trauma radiology. No prior scoping review has been undertaken to comprehensively assess tools in this subspecialty. PURPOSE To map the evolution and current state of trauma radiology CAD tools along key dimensions of technology readiness. METHODS Following a search of databases, abstract screening, and full-text document review, CAD tool maturity was charted using elements of data curation, performance validation, outcomes research, explainability, user acceptance, and funding patterns. Descriptive statistics were used to illustrate key trends. RESULTS A total of 4052 records were screened, and 233 full-text articles were selected for content analysis. Twenty-one papers described FDA-approved commercial tools, and 212 reported algorithm prototypes. Works ranged from foundational research to multi-reader multi-case trials with heterogeneous external data. Scalable convolutional neural network-based implementations increased steeply after 2016 and were used in all commercial products; however, options for explainability were narrow. Of FDA-approved tools, 9/10 performed detection tasks. Dataset sizes ranged from < 100 to > 500,000 patients, and commercialization coincided with public dataset availability. Cross-sectional torso datasets were uniformly small. Data curation methods with ground truth labeling by independent readers were uncommon. No papers assessed user acceptance, and no method included human-computer interaction. The USA and China had the highest research output and frequency of research funding. CONCLUSIONS Trauma imaging CAD tools are likely to improve patient care but are currently in an early stage of maturity, with few FDA-approved products for a limited number of uses. The scarcity of high-quality annotated data remains a major barrier.
Collapse
Affiliation(s)
- David Dreizin
- Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Pedro V Staziaki
- Cardiothoracic Imaging, Department of Radiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Garvit D Khatri
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Nicholas M Beckmann
- Memorial Hermann Orthopedic & Spine Hospital, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Zhaoyong Feng
- Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuanyuan Liang
- Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachary S Delproposto
- Division of Emergency Radiology, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - J Stephen Spann
- Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Nathan Sarkar
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunting Fu
- Health Sciences and Human Services Library, University of Maryland, Baltimore, Baltimore, MD, USA
| |
Collapse
|
10
|
Bignami EG, Vittori A, Lanza R, Compagnone C, Cascella M, Bellini V. The Clinical Researcher Journey in the Artificial Intelligence Era: The PAC-MAN’s Challenge. Healthcare (Basel) 2023; 11:healthcare11070975. [PMID: 37046900 PMCID: PMC10093965 DOI: 10.3390/healthcare11070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Artificial intelligence (AI) is a powerful tool that can assist researchers and clinicians in various settings. However, like any technology, it must be used with caution and awareness as there are numerous potential pitfalls. To provide a creative analogy, we have likened research to the PAC-MAN classic arcade video game. Just as the protagonist of the game is constantly seeking data, researchers are constantly seeking information that must be acquired and managed within the constraints of the research rules. In our analogy, the obstacles that researchers face are represented by “ghosts”, which symbolize major ethical concerns, low-quality data, legal issues, and educational challenges. In short, clinical researchers need to meticulously collect and analyze data from various sources, often navigating through intricate and nuanced challenges to ensure that the data they obtain are both precise and pertinent to their research inquiry. Reflecting on this analogy can foster a deeper comprehension of the significance of employing AI and other powerful technologies with heightened awareness and attentiveness.
Collapse
Affiliation(s)
- Elena Giovanna Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Viale Gramsci 14, 43126 Parma, Italy
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
- Correspondence: or ; Tel.: +39-0668592397
| | - Roberto Lanza
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Viale Gramsci 14, 43126 Parma, Italy
| | - Christian Compagnone
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Viale Gramsci 14, 43126 Parma, Italy
| | - Marco Cascella
- Department of Anesthesia and Critical Care, Istituto Nazionale Tumori—IRCCS, Fondazione Pascale, 80131 Naples, Italy
| | - Valentina Bellini
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Viale Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
11
|
Aisen AM, Rodrigues PS. Deep Learning to Detect Pancreatic Cancer at CT: Artificial Intelligence Living Up to Its Hype. Radiology 2023; 306:183-185. [PMID: 36098644 DOI: 10.1148/radiol.222126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alex M Aisen
- From Philips Healthcare, Cambridge, MA (A.M.A.); and Philips Healthcare, Best, the Netherlands (P.S.R.)
| | - Pedro S Rodrigues
- From Philips Healthcare, Cambridge, MA (A.M.A.); and Philips Healthcare, Best, the Netherlands (P.S.R.)
| |
Collapse
|
12
|
Toda N, Hashimoto M, Iwabuchi Y, Nagasaka M, Takeshita R, Yamada M, Yamada Y, Jinzaki M. Validation of deep learning-based computer-aided detection software use for interpretation of pulmonary abnormalities on chest radiographs and examination of factors that influence readers' performance and final diagnosis. Jpn J Radiol 2023; 41:38-44. [PMID: 36121622 DOI: 10.1007/s11604-022-01330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To evaluate the performance of a deep learning-based computer-aided detection (CAD) software for detecting pulmonary nodules, masses, and consolidation on chest radiographs (CRs) and to examine the effect of readers' experience and data characteristics on the sensitivity and final diagnosis. MATERIALS AND METHODS The CRs of 453 patients were retrospectively selected from two institutions. Among these CRs, 60 images with abnormal findings (pulmonary nodules, masses, and consolidation) and 140 without abnormal findings were randomly selected for sequential observer-performance testing. In the test, 12 readers (three radiologists, three pulmonologists, three non-pulmonology physicians, and three junior residents) interpreted 200 images with and without CAD, and the findings were compared. Weighted alternative free-response receiver operating characteristic (wAFROC) figure of merit (FOM) was used to analyze observer performance. The lesions that readers initially missed but CAD detected were stratified by anatomic location and degree of subtlety, and the adoption rate was calculated. Fisher's exact test was used for comparison. RESULTS The mean wAFROC FOM score of the 12 readers significantly improved from 0.746 to 0.810 with software assistance (P = 0.007). In the reader group with < 6 years of experience, the mean FOM score significantly improved from 0.680 to 0.779 (P = 0.011), while that in the reader group with ≥ 6 years of experience increased from 0.811 to 0.841 (P = 0.12). The sensitivity of the CAD software and the adoption rate for the lesions with subtlety level 2 or 3 (obscure) lesions were significantly lower than for level 4 or 5 (distinct) lesions (50% vs. 93%, P < 0.001; and 55% vs. 74%, P = 0.04, respectively). CONCLUSION CAD software use improved doctors' performance in detecting nodules/masses and consolidation on CRs, particularly for non-expert doctors, by preventing doctors from missing distinct lesions rather than helping them to detect obscure lesions.
Collapse
Affiliation(s)
- Naoki Toda
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Hashimoto
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yu Iwabuchi
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Misa Nagasaka
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryo Takeshita
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Minoru Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
13
|
van Beek EJR, Ahn JS, Kim MJ, Murchison JT. Validation study of machine-learning chest radiograph software in primary and emergency medicine. Clin Radiol 2023; 78:1-7. [PMID: 36171164 DOI: 10.1016/j.crad.2022.08.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023]
Abstract
AIM To evaluate the performance of a machine learning based algorithm tool for chest radiographs (CXRs), applied to a consecutive cohort of historical clinical cases, in comparison to expert chest radiologists. MATERIALS AND METHODS The study comprised 1,960 consecutive CXR from primary care referrals and the emergency department (992 and 968 cases respectively), obtained in 2015 at a UK hospital. Two chest radiologists, each with >20 years of experience independently read all studies in consensus to serve as a reference standard. A chest artificial intelligence (AI) algorithm, Lunit INSIGHT CXR, was run on the CXRs, and results were correlated with those by the expert readers. The area under the receiver operating characteristic curve (AUROC) was calculated for the normal and 10 common findings: atelectasis, fibrosis, calcification, consolidation, lung nodules, cardiomegaly, mediastinal widening, pleural effusion, pneumothorax, and pneumoperitoneum. RESULTS The ground truth annotation identified 398 primary care and 578 emergency department datasets containing pathologies. The AI algorithm showed AUROC of 0.881-0.999 in the emergency department dataset and 0.881-0.998 in the primary care dataset. The AUROC for each of the findings between the primary care and emergency department datasets did not differ, except for pleural effusion (0.954 versus 0.988, p<0.001). CONCLUSIONS The AI algorithm can accurately and consistently differentiate normal from major thoracic abnormalities in both acute and non-acute settings, and can serve as a triage tool.
Collapse
Affiliation(s)
- E J R van Beek
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, UK.
| | | | | | - J T Murchison
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Palm V, Norajitra T, von Stackelberg O, Heussel CP, Skornitzke S, Weinheimer O, Kopytova T, Klein A, Almeida SD, Baumgartner M, Bounias D, Scherer J, Kades K, Gao H, Jäger P, Nolden M, Tong E, Eckl K, Nattenmüller J, Nonnenmacher T, Naas O, Reuter J, Bischoff A, Kroschke J, Rengier F, Schlamp K, Debic M, Kauczor HU, Maier-Hein K, Wielpütz MO. AI-Supported Comprehensive Detection and Quantification of Biomarkers of Subclinical Widespread Diseases at Chest CT for Preventive Medicine. Healthcare (Basel) 2022; 10:2166. [PMID: 36360507 PMCID: PMC9690402 DOI: 10.3390/healthcare10112166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/12/2023] Open
Abstract
Automated image analysis plays an increasing role in radiology in detecting and quantifying image features outside of the perception of human eyes. Common AI-based approaches address a single medical problem, although patients often present with multiple interacting, frequently subclinical medical conditions. A holistic imaging diagnostics tool based on artificial intelligence (AI) has the potential of providing an overview of multi-system comorbidities within a single workflow. An interdisciplinary, multicentric team of medical experts and computer scientists designed a pipeline, comprising AI-based tools for the automated detection, quantification and characterization of the most common pulmonary, metabolic, cardiovascular and musculoskeletal comorbidities in chest computed tomography (CT). To provide a comprehensive evaluation of each patient, a multidimensional workflow was established with algorithms operating synchronously on a decentralized Joined Imaging Platform (JIP). The results of each patient are transferred to a dedicated database and summarized as a structured report with reference to available reference values and annotated sample images of detected pathologies. Hence, this tool allows for the comprehensive, large-scale analysis of imaging-biomarkers of comorbidities in chest CT, first in science and then in clinical routine. Moreover, this tool accommodates the quantitative analysis and classification of each pathology, providing integral diagnostic and prognostic value, and subsequently leading to improved preventive patient care and further possibilities for future studies.
Collapse
Affiliation(s)
- Viktoria Palm
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Tobias Norajitra
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Oyunbileg von Stackelberg
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Claus P. Heussel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Stephan Skornitzke
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Taisiya Kopytova
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Andre Klein
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Silvia D. Almeida
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Michael Baumgartner
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Dimitrios Bounias
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Jonas Scherer
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Klaus Kades
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Hanno Gao
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Paul Jäger
- Interactive Machine Learning Research Group, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Marco Nolden
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Elizabeth Tong
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Kira Eckl
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Johanna Nattenmüller
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine Freiburg, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Tobias Nonnenmacher
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Omar Naas
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Julia Reuter
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Arved Bischoff
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Jonas Kroschke
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Fabian Rengier
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Kai Schlamp
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Manuel Debic
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Klaus Maier-Hein
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| |
Collapse
|
15
|
Ahuja A, Kefalakes H. Clinical Applications of Artificial Intelligence in Gastroenterology: Excitement and Evidence. Gastroenterology 2022; 163:341-344. [PMID: 35489435 DOI: 10.1053/j.gastro.2022.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Amisha Ahuja
- Temple University Hospital, Philadelphia, Pennsylvania
| | | |
Collapse
|
16
|
Fang Z, Peltz G. An automated multi-modal graph-based pipeline for mouse genetic discovery. Bioinformatics 2022; 38:3385-3394. [PMID: 35608290 PMCID: PMC9992076 DOI: 10.1093/bioinformatics/btac356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Our ability to identify causative genetic factors for mouse genetic models of human diseases and biomedical traits has been limited by the difficulties associated with identifying true causative factors, which are often obscured by the many false positive genetic associations produced by a GWAS. RESULTS To accelerate the pace of genetic discovery, we developed a graph neural network (GNN)-based automated pipeline (GNNHap) that could rapidly analyze mouse genetic model data and identify high probability causal genetic factors for analyzed traits. After assessing the strength of allelic associations with the strain response pattern; this pipeline analyzes 29M published papers to assess candidate gene-phenotype relationships; and incorporates the information obtained from a protein-protein interaction network and protein sequence features into the analysis. The GNN model produces markedly improved results relative to that of a simple linear neural network. We demonstrate that GNNHap can identify novel causative genetic factors for murine models of diabetes/obesity and for cataract formation, which were validated by the phenotypes appearing in previously analyzed gene knockout mice. The diabetes/obesity results indicate how characterization of the underlying genetic architecture enables new therapies to be discovered and tested by applying 'precision medicine' principles to murine models. AVAILABILITY AND IMPLEMENTATION The GNNHap source code is freely available at https://github.com/zqfang/gnnhap, and the new version of the HBCGM program is available at https://github.com/zqfang/haplomap. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhuoqing Fang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|