1
|
Briolay A, Duboeuf F, Delplace S, Brizuela L, Peyruchaud O, Magne D, Bougault C. Voluntary exercise in mice triggers an anti-osteogenic and pro-tenogenic response in the ankle joint without affecting long bones. Bone Rep 2024; 23:101810. [PMID: 39493871 PMCID: PMC11530850 DOI: 10.1016/j.bonr.2024.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Biomechanical stimulation is proposed to occupy a central place in joint homeostasis, but the precise contribution of exercise remains elusive. We aimed to characterize in vivo the impact of mechanical stimulation on the cell-controlled regulation of ossification within the ankles of healthy mice undergoing mild physical activity. DBA/1 male mice were subjected to voluntary running exercise for two weeks, and compared to mice housed in standard conditions (n = 20 per group). Free access to activity wheels resulted in a running exercise of 5.5 ± 0.8 km/day at 14.5 ± 0.5 m/min. Serum levels of alkaline phosphatase, IL-6, IL-8/Kc, IL-17a, and TNF-α were measured. No change in systemic inflammation was detected. The bone architecture of the femur and the calcaneus was unchanged, as revealed by μCT and histology of the enthesis of the Achilles tendon. mRNAs were extracted from femurs, tibias, and ankle joints before RT-qPCR analysis. The expression of the mechanosensitive genes Sclerostin (Sost) and Periostin (Postn) was not impacted by the exercise in long bones. Oppositely, Sost and Postn levels were modulated by exercise in joints, and osteogenic markers (Col10a1, Runx2, Osx, and Dmp1) were downregulated in the exercise group. In addition, the tenogenic markers Scx, Mkx, and Tnmd were upregulated by exercise. Thus, voluntary exercise affected the phenotype of joint cells without impacting long bones. As gene expression of Bmp2, Bmp4, and Id1 was also reduced in these cells, an off-regulation of BMP signaling could be partly responsible for their mechanosensitive response. Running exercise seemed to preserve the tendon from its progressive ossification, as seen in numerous enthesopathies. This study paves the way to future experiments for investigating the effects of mechanical stimulation in various mouse models.
Collapse
Affiliation(s)
- Anne Briolay
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - François Duboeuf
- Universite Claude Bernard Lyon 1, INSERM, UMR 1033, LYOS, F-69372 Lyon, France
| | - Séverine Delplace
- Universite Littoral-Côte d'Opale, ULR 4490, MABLab, F-62327 Boulogne/Mer, France
| | - Leyre Brizuela
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - Olivier Peyruchaud
- Universite Claude Bernard Lyon 1, INSERM, UMR 1033, LYOS, F-69372 Lyon, France
| | - David Magne
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - Carole Bougault
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| |
Collapse
|
2
|
Zhang C, Chang Y, Shu L, Chen Z. Pathogenesis of thoracic ossification of the ligamentum flavum. Front Pharmacol 2024; 15:1496297. [PMID: 39545059 PMCID: PMC11560781 DOI: 10.3389/fphar.2024.1496297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is characterized by ectopic ossification of the ligamentum flavum in the thoracic spine and is considered the main cause of thoracic spinal stenosis and spinal cord disease. Osteoblast specific transcription factor Osterix (Osx) is required for bone formation, and there is no bone formation or ossification without Osx. Surgical intervention is recognized as the only effective method for TOLF treatment with set of complications. However, underlying mechanisms of TOLF are not well understood. This paper summarizes the pathogenesis of TOLF. Some relevant factors have been discussed, such as mechanical stress, genetic susceptibility genes, endocrine and trace element metabolism abnormalities, which may associate with TOLF. More recent studies using proteomics technology and RNA sequencing approach have discovered that some new factors participate in TOLF by upregulation of Osx gene expression including inflammatory factors. TOLF is a unique disease involving multiple factors. On the other hand, studies on TOLF pathogenic mechanism may provide new ideas for finding possible upstream regulatory factors of Osx and further developing novel drugs to stimulate new bone formation to treat osteoporosis.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Central Laboratory, Peking University International Hospital, Beijing, China
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yanan Chang
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Shu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University International Hospital, Beijing, China
| |
Collapse
|
3
|
Meyer A. Illuminating the impact of γδ T cells in man and mice in spondylarthritides. Eur J Immunol 2024; 54:e2451071. [PMID: 39077953 DOI: 10.1002/eji.202451071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Spondylarthritides (SpA) are a group of autoinflammatory diseases affecting the spine, peripheral joints, and entheses, including axial spondyloarthritis (axSpA) and psoriatic arthritis. AxSpA has a multifactorial etiology that involves genetic predispositions, such as HLA-B27 and IL-23R. Although HLA-B27 is strongly associated with axSpA, its role remains unclear. GWAS studies have demonstrated that genetic polymorphisms related to the IL-23 pathway occur throughout the spectrum of SpA, including but not limited to axSpA and PsA. IL-23 promotes the production of IL-17, which drives inflammation and tissue damage. This pathway contributes not only to peripheral enthesitis but also to spinal inflammation. γδ T cells in axSpA express IL-23R and RORγt, crucial for their activation, although specific pathogenic cells and factors remain elusive. Despite drug efficacy in PsA, IL-23R inhibition is ineffective in axSpA. Murine models provide valuable insights into the intricate cellular and molecular interactions that contribute to the development and progression of SpA. Those models are useful tools to elucidate the dynamics of γδ T cell involvement, offering insights into disease mechanisms and potential therapeutic targets. This review aims to illuminate the complex interplay between IL-23 and γδ T cells in SpA pathogenesis, emphasizing their roles in chronic inflammation, tissue damage, and disease heterogeneity.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Disease Models, Animal
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Interleukin-23/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- HLA-B27 Antigen/genetics
- HLA-B27 Antigen/immunology
- Genetic Predisposition to Disease
- Spondylarthritis/immunology
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
Collapse
Affiliation(s)
- Anja Meyer
- Center for Molecular Neurobiology Hamburg, Institute for Systems Immunology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Mangiavacchi A, Morelli G, Reppe S, Saera-Vila A, Liu P, Eggerschwiler B, Zhang H, Bensaddek D, Casanova EA, Medina Gomez C, Prijatelj V, Della Valle F, Atinbayeva N, Izpisua Belmonte JC, Rivadeneira F, Cinelli P, Gautvik KM, Orlando V. LINE-1 RNA triggers matrix formation in bone cells via a PKR-mediated inflammatory response. EMBO J 2024; 43:3587-3603. [PMID: 38951609 PMCID: PMC11377738 DOI: 10.1038/s44318-024-00143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.
Collapse
Affiliation(s)
- Arianna Mangiavacchi
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| | - Gabriele Morelli
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Sjur Reppe
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
- Oslo University Hospital, Department of Plastic and Reconstructive Surgery, Oslo, Norway
| | | | - Peng Liu
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Benjamin Eggerschwiler
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Huoming Zhang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Elisa A Casanova
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | | | - Vid Prijatelj
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
- Altos Labs, San Diego, CA, USA
| | - Nazerke Atinbayeva
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | | | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Paolo Cinelli
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Mistegård CE, Troldborg A, Loft AG, Thiel S, Spiller L, Protopopov M, Rios Rodriguez V, Muche B, Rademacher J, Weber AK, Lüders S, Sieper J, Poddubnyy D, Proft F. Exploring complement biomarkers in suspected axial spondyloarthritis. RMD Open 2024; 10:e004127. [PMID: 38749532 PMCID: PMC11328660 DOI: 10.1136/rmdopen-2024-004127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/14/2024] [Indexed: 08/18/2024] Open
Abstract
OBJECTIVES To investigate lectin pathway proteins (LPPs) as biomarkers for axial spondyloarthritis (axSpA) in a cross-sectional cohort with a suspicion of axSpA, comprising newly diagnosed axSpA and chronic low back pain (cLBP) individuals. METHODS Serum samples from 515 participants within the OptiRef cohort, including 151 axSpA patients and 364 cLBP patients, were measured using immunoassays for LPPs (mannan-binding lectin (MBL), collectin liver-1 (CL-L1), M-ficolin, H-ficolin and L-ficolin, MBL-associated serine proteases (MASP)-1, -2 and -3, MBL-associated proteins (MAp19 and MAp44) and the complement activation product C3dg). RESULTS Serum levels of L-ficolin, MASP-2 and C3dg were elevated in axSpA patients, whereas levels of MASP-3 and CL-L1 were decreased, and this remained significant for C3dg and MASP-3 after adjustment for C reactive protein (CRP). A univariate regression analysis showed serum levels of CL-L1, MASP-2, MASP-3 and C3dg to predict the diagnosis of axSpA, and MASP-3 and C3dg remained significant in a multivariate logistic regression analysis. Assessment of the diagnostic potential showed that a combination of human leukocyte antigen B27 (HLA-B27) and measurements of L-ficolin, MASP-3 and C3dg increased the diagnostic specificity for axSpA, however, with a concomitant loss of sensitivity. CONCLUSIONS Serum levels of complement activation, that is, C3dg, and MASP-3 differed significantly between axSpA and cLBP patients after adjustment for CRP. Although combining HLA-B27 with measurements of L-ficolin, MASP-3 and C3dg increased the diagnostic specificity for axSpA, this seems unjustified due to the concomitant loss of sensitivity. However, both C3dg and MASP-3 were associated with axSpA diagnosis in multivariate logistic regression, suggesting an involvement of complement in the inflammatory processes and possibly pathogenesis in axSpA.
Collapse
Affiliation(s)
- Clara Elbæk Mistegård
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Troldborg
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Gitte Loft
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Laura Spiller
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Mikhail Protopopov
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Valeria Rios Rodriguez
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Burkhard Muche
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Judith Rademacher
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health, BIH, Berlin, Germany
| | - Anne-Katrin Weber
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Susanne Lüders
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Joachim Sieper
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Fabian Proft
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
6
|
Bernal-Alferes B, Gómez-Mosqueira R, Ortega-Tapia GT, Burgos-Vargas R, García-Latorre E, Domínguez-López ML, Romero-López JP. The role of γδ T cells in the immunopathogenesis of inflammatory diseases: from basic biology to therapeutic targeting. J Leukoc Biol 2023; 114:557-570. [PMID: 37040589 DOI: 10.1093/jleuko/qiad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
The γδ T cells are lymphocytes with an innate-like phenotype that can distribute to different tissues to reside and participate in homeostatic functions such as pathogen defense, tissue modeling, and response to stress. These cells originate during fetal development and migrate to the tissues in a TCR chain-dependent manner. Their unique manner to respond to danger signals facilitates the initiation of cytokine-mediated diseases such as spondyloarthritis and psoriasis, which are immune-mediated diseases with a very strong link with mucosal disturbances, either in the skin or the gut. In spondyloarthritis, γδ T cells are one of the main sources of IL-17 and, therefore, the main drivers of inflammation and probably new bone formation. Remarkably, this population can be the bridge between gut and joint inflammation.
Collapse
Affiliation(s)
- Brian Bernal-Alferes
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Rafael Gómez-Mosqueira
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Graciela Teresa Ortega-Tapia
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Rubén Burgos-Vargas
- Departamento de Reumatología, Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis No. 148 Col. Doctores C.P. 06720, Alcaldía Cuauhtémoc Ciudad de México, México
| | - Ethel García-Latorre
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - José Pablo Romero-López
- Laboratorio de Patogénesis Molecular, Edificio A4, Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Número 1, Colonia Los Reyes Ixtacala, C.P. 54090, Tlalnepantla, Estado de México, México
| |
Collapse
|
7
|
Lee BW, Moon SJ. Inflammatory Cytokines in Psoriatic Arthritis: Understanding Pathogenesis and Implications for Treatment. Int J Mol Sci 2023; 24:11662. [PMID: 37511421 PMCID: PMC10381020 DOI: 10.3390/ijms241411662] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Psoriatic arthritis (PsA) is a persistent, inflammatory disease that affects individuals with psoriasis, arthritis, and enthesitis. Research has demonstrated that inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-23 (IL-23), and interleukin-17 (IL-17) play a pivotal role in both the onset and progression of PsA. These cytokines are generated by activated immune cells and stimulate the attraction of inflammatory cells to the synovium and joint tissues, resulting in the deterioration of cartilage and bone. The blocking of these cytokines has become a successful treatment strategy for PsA, as biological drugs that inhibit TNF-α, IL-23, and IL-17 have demonstrated notable clinical benefits. The association between PsA and other types of inflammatory cytokines or chemokines, excluding TNF-α, IL-23, and IL-17, has been extensively investigated in numerous studies. These findings may provide a chance for the discovery of novel therapeutic agents targeting other molecules, distinct from the currently approved biologics and targeted synthetic disease-modifying anti-rheumatic drugs. In this review, we discuss the current understanding of the role of inflammatory cytokines in PsA pathogenesis and clinical implications of targeting these cytokines for PsA treatment.
Collapse
Affiliation(s)
- Bong-Woo Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea
| |
Collapse
|
8
|
Yuliasih Y, Permatasari A, Rahmawati LD, Wahyudi MI, Nisa' N. The Increasing Level of DKK-1 as a New Bone Formation Factor in Patients with Early Spondyloarthritis. Autoimmune Dis 2023; 2023:5543234. [PMID: 37261370 PMCID: PMC10229241 DOI: 10.1155/2023/5543234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 06/02/2023] Open
Abstract
The role of dickkopf-related protein 1 (DKK-1) in radiographic development may become a robust marker for early spondyloarthritis (SpA) diagnosis. This study aimed at determining the serum DKK-1 profile in patients with SpA and investigating its relationship with SpA progression. Supported by analyzing the BMD data which aims to affirm the potential of DKK-1 as a biomarker for early diagnosis of SpA, this research may become the early study to produce a robust tool to diminish the fatal impacts in SpA. This cross-sectional study included patients with SpA using ASAS 2010 criteria from Dr. Soetomo General Hospital, Indonesia. Collected data included patients' general characteristics, disease duration, disease activity using ASDAS-CRP and ASDAS-ESR, serum DKK-1 levels, and BMD. The patients were classified as early SpA if the disease duration was ≤5 years and established SpA if the disease duration was >5 years, while the low BMD was indicated by Z score ≤ -2.00. The correlation was tested using the Spearman or Pearson test. The differences in patients' characteristics among early and established SpA and also between low and normal BMD were tested using the unpaired T-test or the Mann-Whitney test. The serum DKK-1 levels in early SpA (7365 ± 2067 pg/dL) were significantly higher than those in established SpA (5360 ± 1054 pg/dL). Serum DKK-1 levels were also associated with disease duration (r = -0.370, p = 0.040) and BMD at the total hip (r = 0.467, p = 0.028). The differences in all patients' clinical parameters were not found between patients with low BMD at any site and patients with normal BMD unless in the BMI (p = 0.019). Our findings found DKK-1 as a potential diagnostic marker for early SpA. Early diagnosis may lead to rapid treatment to delay disease progression and prevent future impairment.
Collapse
Affiliation(s)
- Yuliasih Yuliasih
- Rheumatology Division, Internal Medicine Department, Airlangga University, Surabaya 60132, Indonesia
- Immunology, Postgraduate School, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Aghnia Permatasari
- Internal Medicine Department, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia
| | - Lita Diah Rahmawati
- Rheumatology Division, Internal Medicine Department, Airlangga University, Surabaya 60132, Indonesia
| | - Mohammad Imam Wahyudi
- Internal Medicine Department, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia
| | - Nabilatun Nisa'
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| |
Collapse
|
9
|
Jeon C, Jang Y, Lee SH, Weon S, Park H, Lee S, Oh Y, Choi SH, Wang SE, Kim TH, Sung IH, Jo S. Abnormal kynurenine level contributes to the pathological bone features of ankylosing spondylitis. Int Immunopharmacol 2023; 118:110132. [PMID: 37023698 DOI: 10.1016/j.intimp.2023.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) exhibits paradoxical bone features typically characterized by new bone formation and systemic bone loss. Although abnormal kynurenine (Kyn), a tryptophan metabolite, has been closely linked to the disease activity of AS, the distinct role of its pathological bone features remains unknown. METHODS Kynurenine sera level was collected from healthy control (HC; n = 22) and AS (n = 87) patients and measured by ELISA. In the AS group, we analyzed and compared the Kyn level based on the modified stoke ankylosing spondylitis spinal score (mSASSS), MMP13, and OCN. Under osteoblast differentiation, the treatment with Kyn in AS-osteoprogenitors conducted cell proliferation, alkaline phosphatase activity, bone mineralization-related alizarin red s (ARS), von kossa (VON), hydroxyapatite (HA) staining, and mRNA expression markers (ALP, RUNX2, OCN, and OPG) for bone formation. TRAP and F-actin staining was used for osteoclast formation of mouse osteoclast precursors. RESULTS Kyn sera level was significantly elevated in the AS group compared to the HC. In addition, Kyn sera level was correlated with mSASSS (r = 0.03888, p = 0.067), MMP13 (r = 0.0327, p = 0.093), and OCN (r = 0.0436, p = 0.052). During osteoblast differentiation, treatment with Kyn exhibited no difference in cell proliferation and alkaline phosphate (ALP) activity for bone matrix maturation but promoted ARS, VON, and HA staining for bone mineralization. Interestingly, osteoprotegerin (OPG) and OCN expressions of AS-osteoprogenitors were augmented in the Kyn treatment during differentiation. In growth medium, Kyn treatment of AS-osteoprogenitors resulted in induction of OPG mRNA, protein expression, and Kyn-response genes (AhRR, CYP1b1, and TIPARP). Secreted OPG proteins were observed in the supernatant of AS-osteoprogenitors treated with Kyn. Notably, the supernatant of Kyn-treated AS-osteoprogenitors interrupted the RANKL-mediated osteoclastogenesis of mouse osteoclast precursor such as TRAP-positive osteoclast formation, NFATc1 expression, and osteoclast differentiation markers. CONCLUSION Our results revealed that elevated Kyn level increased the bone mineralization of osteoblast differentiation in AS and decreased RANKL-mediated osteoclast differentiation by inducing OPG expression. Out study have implication for potential coupling factors linking osteoclast and osteoblast where abnormal Kyn level could be involved in pathological bone features of AS.
Collapse
Affiliation(s)
- Chanhyeok Jeon
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea; Deparment of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yurin Jang
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Subin Weon
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Hyosun Park
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Suein Lee
- Hanyang University College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| | - Younseo Oh
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea; Department of Bioresearch, Huonslab, Seongnam-si, Gyeonggi-do 13201, Republic of Korea
| | - Sung Hoon Choi
- Hanyang University College of Medicine, Hanyang University, Seoul 04763, Republic of Korea; Department of Orthopedic Surgery, Hanyang University Hospital, Seoul 04763, Republic of Korea
| | - Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea; Deparment of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; Hanyang University College of Medicine, Hanyang University, Seoul 04763, Republic of Korea; Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Republic of Korea
| | - Il-Hoon Sung
- Hanyang University College of Medicine, Hanyang University, Seoul 04763, Republic of Korea; Department of Orthopedic Surgery, Hanyang University Hospital, Seoul 04763, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
10
|
Sundanum S, Orr C, Veale D. Targeted Therapies in Psoriatic Arthritis-An Update. Int J Mol Sci 2023; 24:6384. [PMID: 37047357 PMCID: PMC10094037 DOI: 10.3390/ijms24076384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Psoriatic arthritis (PsA) is a systemic inflammatory condition characterised by multiple clinical manifestations. Over the last decade, significant progress has been made in understanding the pathobiology of the disease. An expanded set of targeted therapies have emerged and have shown efficacy in PsA. Nevertheless, there is still a substantial subset of patients who experience no response or only a partial response to currently licensed therapies. The heterogeneous nature of the disease, together with a varying level of severity at presentation and disease activity during follow-up, brings tremendous challenges to devising management strategies. While there are certain pathophysiological similarities between PsA and rheumatoid arthritis (RA), it has become clear that there are discriminating features between these two conditions at the clinical, cellular, and molecular levels. However, there is a degree of overlap in the clinical approach when treating both PsA and RA, given that many biological and targeted therapies have proven efficacy for both pathologies. With an increasing understanding of the relevance of the IL-23/IL-17 axis in PsA, pharmacological agents blocking this pathway have provided promising possibilities for patients with PsA.
Collapse
Affiliation(s)
| | | | - Douglas Veale
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
11
|
IL-6 is involved in thoracic ossification of the ligamentum flavum. PLoS One 2022; 17:e0272357. [PMID: 35905126 PMCID: PMC9337630 DOI: 10.1371/journal.pone.0272357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is a heterotopic ossification of spinal ligaments. TOLF is the major cause of thoracic spinal canal stenosis and myelopathy, and its underlying mechanisms are not clear. Bone formation is a complex developmental process involving the differentiation of mesenchymal stem cells to osteoblasts, and regulated by BMP2, RUNX2, Osterix (OSX), etc. In this study, we continue to further characterize properties of TOLF. Our immunohistochemistry experiments showed that expressions of osteoblastic factors such as BMP2 and RUNX2 increased in TOLF. According to flow cytometry analysis the proportion of S phase of cell cycle in primary TOLF cells was 9% higher than the control. Alizarin red staining and ALP staining observations were consistent with immunohistochemistry results. It was also observed that inflammatory cytokine IL-6 level dramatically increased in the culture supernatant of primary TOLF cells. We propose the hypothesis that IL-6 is involved in TOLF. To testify the hypothesis, we examined the effect of IL-6. Our results showed that IL-6 was able to activate expressions of osteoblastic factors such as BMP2, RUNX2, OSX, OCN and ALP, and that expressions of cell proliferation factors cyclin D1 and cyclin C increased in the presence of IL-6. Moreover, IL-6-induced BMP2 expression was inhibited by p38 inhibitor SB203580, indicating that IL-6 regulated the osteogenic BMP2 activation through p38 MAPK pathway. These data suggest that IL-6 is involved in TOLF.
Collapse
|
12
|
Toussirot E. The Use of Janus Kinase Inhibitors in Axial Spondyloarthritis: Current Insights. Pharmaceuticals (Basel) 2022; 15:ph15030270. [PMID: 35337068 PMCID: PMC8951918 DOI: 10.3390/ph15030270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 01/24/2023] Open
Abstract
Current pharmacological treatments of axial spondyloarthritis (axSpA) are limited to non-steroidal anti-inflammatory drugs (NSAIDs) and biological agents, including TNFα inhibitors and IL-17 inhibitors. Despite the availability of these agents, many patients either fail to respond adequately, lose their initial therapeutic response over time, or develop undesirable side effects, thus highlighting the need for new treatment options. Janus kinase (JAK) and signal transducers and activators of transcription (STAT) are a group of intracellular kinases that play a role in the signaling pathway induced by cytokines and certain growth factors associated with the inflammatory process of axSpA. There are several lines of evidence implicating the JAK–STAT pathway in the pathophysiological process of axSpA, including genetic data, the use of certain JAK in the intracellular signal of specific cytokines involved in axSpA (IL-23, IL-22, and IL-6), and data from experimental models of SpA. This provides a rationale for the assessment of JAK inhibitors (JAKi) in clinical trials with patients with axSpA. In this review, we examine the role of JAK–STAT signaling in the pathogenesis of axSpA and summarize the results from recent clinical trials of JAKi (tofacitinib, upadacitinib, and filgotinib) in patients with axSpA.
Collapse
Affiliation(s)
- Eric Toussirot
- INSERM CIC-1431, Centre d’Investigation Clinique, Pôle Recherche, CHU de Besançon, 25000 Besançon, France;
- Rhumatologie, Pôle PACTE (Pathologies Aiguës Chroniques Transplantation Éducation), CHU de Besançon, 25000 Besançon, France
- Département Universitaire de Thérapeutique, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- INSERM UMR1098 Right “Relations Hôte Greffon Tumeurs, Ingénierie Cellulaire et Génique”, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
13
|
Wu X, Zhang L, Bian T, Man S, Li H, Liu W, Zhou Y. The correlation between volumetric bone mineral density and morphological parameters of the proximal femur and clinical outcomes in ankylosing spondylitis patients with hip involvement. BMC Musculoskelet Disord 2022; 23:24. [PMID: 34980053 PMCID: PMC8725399 DOI: 10.1186/s12891-021-04912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background To measure volumetric bone mineral density (vBMD) with quantitative computed tomography (QCT) in the proximal femur of ankylosing spondylitis (AS) patients with hip involvement and analyze their correlations with radiographic and clinical parameters. Methods Sixty-five AS inpatients were enrolled in this study. The bone mineral density was measured by QCT and dual-energy x-ray absorptiometry (DXA), respectively. The morphological parameters of the proximal femur were measured on digital anteroposterior (AP) radiographs of the pelvis. The correlations between them were analyzed by SPSS software. Results The average trabecular vBMD measured at the femoral neck was 136.38 ± 25.58 mg/cm3. According to the BASRI-Hip score, group A consisted of 39 hips (0–2 score) and group B consisted of 26 hips (3–4 score). There were significant differences regarding trabecular CTXA equivalent T-score between group A and B at the femoral neck (p = 0.004); intertrochanteric region (p < 0.001) and greater trochanter (p = 0.001). The trabecular CTXA equivalent T-score at femoral neck had a negative correlation with disease duration (r = − 0.311, p = 0.012) and with CBR (r = − 0.319, p = 0.010). Conclusions The low trabecular bone density at the site of the hip was associated with the duration of disease progression and degree of hip involvement. Meanwhile, it had a correlation with hip function status although we failed to confirm a significant relationship between hip vBMD and disease activity.
Collapse
Affiliation(s)
- Xinfeng Wu
- Department of Spine Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Liang Zhang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Tao Bian
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Siliang Man
- Department of Rheumatology and Immunology, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Hongchao Li
- Department of Rheumatology and Immunology, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Wei Liu
- Department of Rheumatology and Immunology, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Yixin Zhou
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China.
| |
Collapse
|
14
|
Braun J, Buehring B, Baraliakos X, Gensler LS, Porter B, Quebe-Fehling E, Haemmerle S. Effects of secukinumab on bone mineral density and bone turnover biomarkers in patients with ankylosing spondylitis: 2-year data from a phase 3 study, MEASURE 1. BMC Musculoskelet Disord 2021; 22:1037. [PMID: 34903218 PMCID: PMC8670267 DOI: 10.1186/s12891-021-04930-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background Axial spondyloarthritis including ankylosing spondylitis (AS) is characterized by chronic inflammation and new bone formation in the axial skeleton. On the other hand, bone loss, osteoporosis and an increased risk of vertebral fractures is known to frequently occur in AS. In the MEASURE 1 study, the clinically efficacious interleukin-17A inhibitor secukinumab was shown to have limited radiographic progression through 4 years in patients with active AS. Here we present a post hoc analysis to evaluate the effect of secukinumab on bone mineral density (BMD) and bone turnover biomarkers over 2 years in this study. Methods BMD was measured by dual-energy X-ray absorptiometry at the lumbar spine, total hip, and femoral neck. Spinal radiographs performed at baseline and Week 104 were assessed by modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS) and analyzed in relation to BMD change, considering baseline syndesmophytes. Bone turnover biomarkers were assessed at baseline and at Weeks 52 or 104. Results Among 104 patients included in this analysis, 66% were male, with a mean (SD) age of 40.4 (12.3) years. In postmenopausal women and men ≥50 years of age (T-score), the proportion of patients having normal BMD at baseline and Week 104 were 54.5%/54.5% (lumbar spine), 31.6%/55.6% (total hip), and 42.1%/44.4% (femoral neck). Similarly, at baseline, the proportion of patients with osteopenia/osteoporosis was 31.8%/13.6% (lumbar spine), 57.9%/10.5% (total hip), 42.1%/15.8% (femoral neck), and 36.4%/9.1% (lumbar spine), 44.4%/0% (total hip) and 55.6%/0% (femoral neck) at Week 104, respectively. In premenopausal women and men < 50 years of age (Z-score), the proportion of patients having BMD below the expected range for age at baseline and Week 104 were 25.0%/21.2% (lumbar spine), 11.3%/17.8% (total hip), and 9.9%/8.9% (femoral neck). In relation to mSASSS change scores ≥2 over 2 years, the increase in lumbar spine BMD was not related to radiographic progression and syndesmophyte formation. No significant changes were observed in the bone turnover markers over time. Conclusion The high proportion of AS patients with diminished BMD was confirmed in this study. An increase of BMD in the lumbar spine after 2 years of secukinumab treatment in patients with AS was found that was probably unrelated to radiographic progression. No relevant effects of secukinumab on bone turnover biomarkers were documented. Trial registration MEASURE 1 (post hoc analysis) Clinicaltrials.gov, NCT01358175; Registered, 23 May 2011. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04930-1.
Collapse
Affiliation(s)
- Jürgen Braun
- Rheumazentrum Ruhrgebiet Herne, Ruhr-University, Bochum, Germany.
| | - Bjoern Buehring
- Rheumazentrum Ruhrgebiet Herne, Ruhr-University, Bochum, Germany
| | | | | | - Brian Porter
- Novartis Pharmaceuticals Corporation, East Hanover, USA
| | | | | |
Collapse
|
15
|
Tay SH, Yeo JG, Leong JY, Albani S, Arkachaisri T. Juvenile Spondyloarthritis: What More Do We Know About HLA-B27, Enthesitis, and New Bone Formation? Front Med (Lausanne) 2021; 8:666772. [PMID: 34095174 PMCID: PMC8174582 DOI: 10.3389/fmed.2021.666772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Juvenile spondyloarthritis (JSpA) refers to a diverse spectrum of immune-mediated inflammatory arthritides whose onset occurs in late childhood and adolescence. Like its adult counterpart, JSpA is typified by a strong association with human leukocyte antigen-B27 (HLA-B27) and potential axial involvement, while lacking rheumatoid factor (RF) and distinguishing autoantibodies. A characteristic manifestation of JSpA is enthesitis (inflammation of insertion sites of tendons, ligaments, joint capsules or fascia to bone), which is commonly accompanied by bone resorption and new bone formation at affected sites. In this Review, advances in the role of HLA-B27, enthesitis and its associated osteoproliferation in JSpA pathophysiology and treatment options will be discussed. A deeper appreciation of how these elements contribute to the JSpA disease mechanism will better inform diagnosis, prognosis and therapy, which in turn translates to an improved quality of life for patients.
Collapse
Affiliation(s)
- Shi Huan Tay
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Joo Guan Yeo
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jing Yao Leong
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Salvatore Albani
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
16
|
The bone bridge significantly affects the decrease in bone mineral density measured with quantitative computed tomography in ankylosing spondylitis. PLoS One 2021; 16:e0249578. [PMID: 33861786 PMCID: PMC8051772 DOI: 10.1371/journal.pone.0249578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/20/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Ankylosing spondylitis (AS) has characteristics of spinal bone bridge and fusion. Although BMD reduction in AS may be presumed to be due to spinal inflammation, this study was designed to confirm whether immobilization of the spine due to syndesmophytes is related to BMD reduction, as immobilization itself is a risk factor for BMD reduction. METHODS Among male patients diagnosed with AS according to the modified New York criteria, those who underwent bone density tests with quantitative computed tomography (QCT) were retrospectively analyzed through a chart review. The correlation between the presence or absence of bone bridges for each vertebral body level of the L spine confirmed with radiography and BMD confirmed with QCT was analyzed. RESULTS A total of 47 male patients with AS were enrolled. The mean patient age was 46.8 ± 8.2 years, and the mean disease duration was 7.9 ± 6.4 years. The trabecular BMD of the lumbar spine (L1-L4) ranged from 23.1 to 158.45 mg/cm3 (mean 102.2 ± 37 mg/cm3), as measured with QCT. The lumbar BMD measurements showed that 30 patients (63.8%) had osteopenia or osteoporosis. Bone bridge formation showed a negative correlation with BMD. Low BMD was significantly correlated with bone bridge in the vertebral body (p < 0.05). Positive correlations were observed between bone bridge score and BASMI flexion score, whereas significant negative correlations were found between BMD and BASMI flexion score (p < 0.05). CONCLUSION Decreased mobility of the vertebrae due to bone bridge formation affects the decrease in BMD in patients with AS.
Collapse
|
17
|
Wu D, Griffith JF, Lam SHM, Wong P, Yue J, Shi L, Li EK, Cheng IT, Li TK, Hung VW, Qin L, Tam LS. Comparison of bone structure and microstructure in the metacarpal heads between patients with psoriatic arthritis and healthy controls: an HR-pQCT study. Osteoporos Int 2020; 31:941-950. [PMID: 31938819 DOI: 10.1007/s00198-020-05298-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/10/2020] [Indexed: 01/01/2023]
Abstract
UNLABELLED Human cadaveric study has indicated that the metacarpal head (MCH) is intracapsular in location. We hypothesized that exposure to the intra-articular inflammatory milieu in psoriatic arthritis (PsA) will lead to bone loss in the MCH. INTRODUCTION To compare the bone structure and microstructure in the MCH between patients with PsA and healthy controls by high-resolution peripheral quantitative CT (HR-pQCT), and to ascertain factors associated with bone loss in PsA patients. METHODS Sixty-two PsA patients without joint destruction and 62 age-, gender-, and body mass index-matched healthy subjects underwent HR-pQCT imaging of the second and third MCH (MCH 2&3). The number and volume of bone erosion and enthesiophytes, as well as volumetric bone mineral density (vBMD) and microstructure at the MCH 2&3, were recorded. Correlation analysis and multivariable linear regression models were used to determine the association of demographic and disease-specific variables with compromised bone structure and microstructure in PsA. RESULTS At the MCH 2&3, bone erosion (p = 0.003) and enthesiophyte (p = 0.000) volumes in PsA patients were significantly larger than healthy controls. In PsA patients, older age was associated with a larger erosion and enthesiophyte volume. Concerning the mean vBMD and microstructure at the MCH 2&3, PsA patients had significantly lower mean vBMD (average vBMD - 6.9%, trabecular vBMD - 8.8%, peri-trabecular vBMD - 7.7%, meta-trabecular vBMD - 9.8%), trabecular bone volume fraction (- 8.8%), and trabecular thickness (- 8.1%) compared with control subjects. Multivariable regression analysis revealed that older age and a higher C-reactive protein level were associated with trabecular bone loss. CONCLUSIONS PsA patients had a higher burden of bone damages (erosions and enthesiophytes) and trabecular bone loss compared with healthy control at the MCH. Inflammation contributed to the deterioration in trabecular microstructure in these patients.
Collapse
Affiliation(s)
- D Wu
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - J F Griffith
- Department of Imaging and Interventional Radiology, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - S H M Lam
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - P Wong
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - J Yue
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - L Shi
- Research Centre for Medical Image Computing, Department of Imaging and Interventional Radiology, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - E K Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - I T Cheng
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - T K Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - V W Hung
- Bone Quality and Health Centre of the Department of Orthopedics & Traumatology, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - L Qin
- Bone Quality and Health Centre of the Department of Orthopedics & Traumatology, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - L-S Tam
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Prediction of Response to Tumor Necrosis Value-α Blocker Is Suggested by 18F-NaF SUV max But Not by Quantitative Pharmacokinetic Analysis in Patients With Ankylosing Spondylitis. AJR Am J Roentgenol 2020; 214:1352-1358. [PMID: 32286869 DOI: 10.2214/ajr.19.22352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE. We aimed to evaluate the pharmacokinetics and maximum standardized uptake value (SUVmax) of 18F-NaF PET/CT for assessment of disease activity and prediction of response in patients with ankylosing spondylitis (AS). MATERIALS AND METHODS. Twenty-seven patients (age, interquartile range, 30.25-49.75 years) with AS who were receiving a tumor necrosis factor-α (TNF-α) blocker were included. All patients underwent dynamic PET of the pelvis followed by whole-body PET/CT. Quantitative analysis of kinetic data of the sacroiliac joints (SIJs) was performed, and the SUVmax of the SIJs and SUVmax of the spine were calculated. Clinical indexes related to AS disease activity (serum C-reactive protein level, Bath ankylosing spondylitis disease activity index [ BASDAI], and Bath ankylosing spondylitis functional index) were evaluated. Clinical response was defined as an improvement from the initial BASDAI score of 50% or more (BASDAI 50) within 2 years after baseline 18F-NaF PET/CT. RESULTS. The BASDAI score at 18F-NaF PET/CT was significantly different between the responders and nonresponders: 18F-NaF uptake at the spine was significantly higher in the responders than in the nonresponders. Only SUVmax of the spine had a significant positive correlation with BASDAI score at PET/CT (r = 0.38, p = 0.048). The BASDAI score at PET/CT (odds ratio [OR], 35.32; 95% CI, 2.09-57.84; p = 0.014) and SUVmax of the spine (OR, 14.69; 95% CI, 0.79-27.27; p = 0.027) were significantly associated with BASDAI 50 response prediction. CONCLUSION. The results of our study suggest that the SUVmax of the spine on whole-body 18F-NaF PET/CT is a reliable and noninvasive biomarker for predicting therapeutic response to TNF-α blocker and shows better performance for predicting response than quantitative pharmacokinetic parameters. Fluorine-18-labeled NaF PET/CT showed axial bone lesions with bone formation and can be used as a monitoring tool in patients with AS receiving anti-TNF-α drugs. However, these results need to be validated in a larger cohort.
Collapse
|
19
|
Wu J, Wu X, Chen Z, Lv Q, Yang M, Zheng X, Li Q, Zhang Y, Wei Q, Cao S, Li X, Qi J, Zhao M, Liao Z, Lin Z, Gu J. Circulating Retinol-Binding Protein 4 as a Possible Biomarker of Treatment Response for Ankylosing Spondylitis: An Array-Based Comparative Study. Front Pharmacol 2020; 11:231. [PMID: 32210816 PMCID: PMC7076136 DOI: 10.3389/fphar.2020.00231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 01/31/2023] Open
Abstract
Objective To explore proteins associated with ankylosing spondylitis (AS) and to investigate potential proteins that may predict treatment response of adalimumab (ADA) in AS patients. Methods In the discovery cohort, 39 AS patients and 20 healthy controls (HCs) were included, and 16 AS patients received ADA treatment for 24 weeks after included. In the validation cohort, 43 AS patients and 39 HCs were enrolled, and all 43 patients received ADA treatment after enrollment. Blood samples and clinical information were collected from two cohorts at baseline from all participants and week 24 from patients received ADA treatment. A human antibody array containing 1,000 proteins was used in the discovery phase, and Elisa kits were used for protein validation. Results Compared with HCs, we identified 53 differentially expressed proteins (DEPs) in AS patients. Bioinformatics analysis revealed they were mostly enriched in coagulation function-related pathways, acute response signaling, and LXR/RXR activation. Bone metabolism pathways were also associated. Comparison between samples of pre- and post-ADA treatment revealed 42 DEPs. They were mostly associated with bone metabolism and inflammation response pathways. Significant enrichment was also found in LXR/RXR activation but not the coagulation function-related pathways. Upstream regulator analysis suggested that most regulators also significantly functioned under usage of ADA. Precisely, seven proteins were abnormally expressed in AS and restored after ADA treatment. Retinol-binding protein 4 (RBP4), one of the seven proteins, was validated that its baseline levels were inversely correlated with improvements in Ankylosing Spondylitis Disease Activity Score-C-reactive protein (ASDAS-CRP). Likewise, percentage changes in RBP4 levels were inversely correlated with changes in ASDAS-CRP score. Conclusion A dysregulated serum protein profile existed in AS. ADA exerted a considerable but not entire alteration toward the dysregulation. RBP4 could be a biomarker for predicting and monitoring ADA treatment response.
Collapse
Affiliation(s)
- Jialing Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinyu Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zena Chen
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Lv
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingcan Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuqi Zheng
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuxia Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanli Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuangyan Cao
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Qi
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minjing Zhao
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zetao Liao
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiming Lin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol 2020; 16:193-207. [PMID: 32080619 DOI: 10.1038/s41584-019-0364-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Mechanical loading is an important factor in musculoskeletal health and disease. Tendons and ligaments require physiological levels of mechanical loading to develop and maintain their tissue architecture, a process that is achieved at the cellular level through mechanotransduction-mediated fine tuning of the extracellular matrix by tendon and ligament stromal cells. Pathological levels of force represent a biological (mechanical) stress that elicits an immune system-mediated tissue repair pathway in tendons and ligaments. The biomechanics and mechanobiology of tendons and ligaments form the basis for understanding how such tissues sense and respond to mechanical force, and the anatomical extent of several mechanical stress-related disorders in tendons and ligaments overlaps with that of chronic inflammatory arthritis in joints. The role of mechanical stress in 'overuse' injuries, such as tendinopathy, has long been known, but mechanical stress is now also emerging as a possible trigger for some forms of chronic inflammatory arthritis, including spondyloarthritis and rheumatoid arthritis. Thus, seemingly diverse diseases of the musculoskeletal system might have similar mechanisms of immunopathogenesis owing to conserved responses to mechanical stress.
Collapse
|
21
|
Pang DD, Cai L, Zhang JR, Dai SM. IL-23 induces the expression of pro-osteogenic factors in
osteoclasts. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1099-9028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Background The mechanism for the new bone formation in ankylosing
spondylitis (AS) is still unclear. Although it has been demonstrated that
IL-23 plays a pivotal role in the pathophysiology of AS, IL-23 has no direct
effects on osteoblasts but modulates the function of osteoclasts.
Aims To explore whether IL-23 indirectly facilitates new bone
formation through osteoclasts in AS, here we analyzed whether IL-23 enhances
the expression levels of pro-osteogenic factors by osteoclasts.
Methods Mononuclear cells were harvested from mouse bone marrow and
cultured in the presence of M-CSF (50 ng/ml) and RANKL
(30 ng/ml) to trigger the production of osteoclasts. Protein
and mRNA expression levels of Semaphorin 4D, Ephrin B2, BMP2, BMP6, SPHK1,
HtrA1 and Wnt10b were measured using Western blot and qRT-PCR.
Results Primary mononuclear cells were transformed into osteoclasts
with RANKL and M-CSF. The increased expression of NFATc1 and TRAP together
with TRAP staining of>3 nuclei were used to identify mature
osteoclasts. The mRNA expression levels of BMP2, Ephrin B2 and SPHK1 were
enhanced by 1.46, 2.1 and 2.46 folds after exposure to IL-23. Confirmation
of increased levels of Ephrin B2 and SPHK1 in IL-23-stimulated osteoclasts
was provided by Western blot analysis. IL-23 had no effects on the
expression of BMP6 or Wnt10b, or on the anti-osteogenic factors Semaphorin
4D or HtrA1.
Conclusions IL-23 induces osteoclasts to express pro-osteogenic
factors rather than anti-osteogenic factors, suggesting IL-23 might
indirectly promote the differentiation of osteoblasts through activated
osteoclasts in ankylosing spondylitis.
Collapse
Affiliation(s)
- Dan-Dan Pang
- Department of Rheumatology & Immunology, Changhai Hospital,
Second Military Medical University, Shanghai, China
- Department of Rheumatology & Immunology, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Li Cai
- Department of Rheumatology & Immunology, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Jing-Ru Zhang
- Department of Rheumatology & Immunology, Changhai Hospital,
Second Military Medical University, Shanghai, China
- Department of Rheumatology & Immunology, First Affiliated
Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sheng-Ming Dai
- Department of Rheumatology & Immunology, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai,
China
| |
Collapse
|
22
|
Kang KY, Ju JH, Park SH, Hong YS. Longitudinal Association Between Trabecular Bone Loss and Disease Activity in Axial Spondyloarthritis: A 4-year Prospective Study. J Rheumatol 2019; 47:1330-1337. [PMID: 31732556 DOI: 10.3899/jrheum.190749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To investigate whether trabecular bone loss is longitudinally associated with disease activity measures in patientswith axial spondyloarthritis (axSpA). METHODS Data from patients enrolled in the Incheon Saint Mary's axSpA prospective observational cohort were evaluated. Trabecular bone loss was assessed using the trabecular bone score (TBS). The relationship between TBS and disease activity measures [Ankylosing Spondylitis Disease Activity Score (ASDAS), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP)] was investigated using generalized estimating equation (GEE) models. RESULTS Four-year followup data from 240 patients (80% males, mean age 37 ± 12 yrs) were evaluated. At baseline, higher disease activity according to ASDAS-ESR and ASDAS-CRP showed a trend toward lower TBS (p = 0.003 and p = 0.016, respectively). Univariate GEE analyses showed a significant association between TBS and disease activity measures over time, with the exception of BASDAI. Univariate analysis showed a longitudinal association between TBS and age, smoking, and spinal structural damage. In multivariate GEE analysis, ASDAS-ESR, ASDAS-CRP, ESR, and CRP were longitudinally associated with TBS after adjustment for confounding factors. ASDAS scores and inflammatory markers were longitudinally associated with TBS in patients with ankylosing spondylitis (AS; 79%), but not in patients with nonradiographic axSpA (nr-axSpA). BASDAI scores showed no relationship with TBS in either the AS or nr-axSpA groups. CONCLUSION Trabecular bone loss in patients with axSpA, assessed using the TBS, showed a longitudinal association with ASDAS scores and inflammatory markers.
Collapse
Affiliation(s)
- Kwi Young Kang
- From the Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea. .,K.Y. Kang, MD, PhD, Associate Professor, Division of Rheumatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea; J.H. Ju, College of Medicine, The Catholic University of Korea, St. Mary's Hospital; S.H. Park, Seoul St. Mary's Hospital; Y.S. Hong, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Ji Hyeon Ju
- From the Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,K.Y. Kang, MD, PhD, Associate Professor, Division of Rheumatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea; J.H. Ju, College of Medicine, The Catholic University of Korea, St. Mary's Hospital; S.H. Park, Seoul St. Mary's Hospital; Y.S. Hong, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- From the Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,K.Y. Kang, MD, PhD, Associate Professor, Division of Rheumatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea; J.H. Ju, College of Medicine, The Catholic University of Korea, St. Mary's Hospital; S.H. Park, Seoul St. Mary's Hospital; Y.S. Hong, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeon Sik Hong
- From the Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,K.Y. Kang, MD, PhD, Associate Professor, Division of Rheumatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea; J.H. Ju, College of Medicine, The Catholic University of Korea, St. Mary's Hospital; S.H. Park, Seoul St. Mary's Hospital; Y.S. Hong, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
23
|
Laloo F, Herregods N, Jaremko JL, Carron P, Elewaut D, Van den Bosch F, Verstraete K, Jans L. MRI of the axial skeleton in spondyloarthritis: the many faces of new bone formation. Insights Imaging 2019; 10:67. [PMID: 31338670 PMCID: PMC6650523 DOI: 10.1186/s13244-019-0752-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
Spondyloarthritis has two hallmark features: active inflammation and structural lesions with new bone formation. MRI is well suited to assess active inflammation, but there is increasing interest in the role of structural lesions at MRI. Recent MRI studies have examined the established features of new bone formation and demonstrated some novel features which show diagnostic value and might even have potential as possible markers of disease progression. Although MRI is not the first imaging modality that comes into mind for assessment of bony changes, these features of new bone formation can be detected on MRI—if one knows how to recognize them. This review illustrates the MRI features of new bone formation and addresses possible pitfalls.
Collapse
Affiliation(s)
- Frederiek Laloo
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Nele Herregods
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Jacob L Jaremko
- Department of Radiology & Diagnostic Imaging, University of Alberta Hospital, 8440-112 Street, Edmonton, Alberta, T6G 2B7, Canada
| | - Philippe Carron
- Department of Rheumatology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.,VIB Inflammation Research Center, Unit for Molecular Immunology and Inflammation, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.,VIB Inflammation Research Center, Unit for Molecular Immunology and Inflammation, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Filip Van den Bosch
- Department of Rheumatology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.,VIB Inflammation Research Center, Unit for Molecular Immunology and Inflammation, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Koenraad Verstraete
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Lennart Jans
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| |
Collapse
|
24
|
Enhanced osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis: a study based on a three-dimensional biomimetic environment. Cell Death Dis 2019; 10:350. [PMID: 31024000 PMCID: PMC6484086 DOI: 10.1038/s41419-019-1586-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/17/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
Abstract
The mechanism of pathological osteogenesis in Ankylosing spondylitis (AS) is largely unknown. Our previous studies demonstrated that the imbalance between BMP-2 and Noggin secretion induces abnormal osteogenic differentiation of marrow-derived mesenchymal stem cells (MSCs) from AS patients in a two-dimensional culture environment. In this study, HA/β-TCP scaffolds were further used as a three-dimensional (3D) biomimetic culture system to mimic the bone microenvironment in vivo to determine the abnormal osteogenic differentiation of AS-MSCs. We demonstrated that when cultured in HA/β-TCP scaffolds, AS-MSCs had a stronger osteogenic differentiation capacity than that of MSCs from healthy donors (HD-MSCs) in vitro and in vivo. This dysfunction resulted from BMP2 overexpression in AS-MSCs, which excessively activated the Smad1/5/8 and ERK signalling pathways and finally led to enhanced osteogenic differentiation. Both the signalling pathway inhibitors and siRNAs inhibiting BMP2 expression could rectify the enhanced osteogenic differentiation of AS-MSCs. Furthermore, BMP2 expression in ossifying entheses was significantly higher in AS patients. In summary, our study demonstrated that AS-MSCs possess enhanced osteogenic differentiation in HA/β-TCP scaffolds as a 3D biomimetic microenvironment because of BMP2 overexpression, but not Noggin. These results provide insights into the mechanism of pathological osteogenesis, which can aid in the development of niche-targeting medications for AS.
Collapse
|
25
|
Wang CM, Tsai SC, Lin JC, Wu YJJ, Wu J, Chen JY. Association of Genetic Variants of RANK, RANKL, and OPG with Ankylosing Spondylitis Clinical Features in Taiwanese. Mediators Inflamm 2019; 2019:8029863. [PMID: 31015798 PMCID: PMC6446096 DOI: 10.1155/2019/8029863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease that leads to spinal ankylosis. The receptor activator of the nuclear factor-kappa (RANK), RANK ligand, and osteoprotegerin (OPG) (RANK/RANKL/OPG) pathway plays critical roles in bone metabolism and the immune system. The current study was aimed at investigating whether six single-nucleotide polymorphisms (SNPs) within the RANK, RANKL, and OPG genes essential for bone homeostasis are associated with AS. Genotype distributions, allele and haplotype frequencies, were compared between 1120 AS patients and 1435 healthy controls and among AS patients with stratification by syndesmophyte formation, onset age, and HLA-B27 positivity. We found that RANKL SNPs were associated with AS syndesmophyte formation. Notably, the RANKL SNP haplotype rs7984870C/rs9533155G/rs9525641C was negatively associated with AS susceptibility and appeared to protect against syndesmophyte formation in AS. Functionally, RANKL promoter SNPs (rs9525641 C/T and rs9533155 G/C) affected DNA-protein complex formation and promoter activity in promoter reporter analyses. The OPG SNP haplotype rs2073618G/rs3102735T was significantly associated with HLA-B27 negativity in AS patients. Furthermore, AS patients with syndesmophyte formation had significantly lower levels of soluble RANKL levels than those without syndesmophyte formation. Our data suggested a role for RANKL in AS susceptibility and severity.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Shu-Chun Tsai
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2 Nankang, Taipei 115, Taiwan
| | - Jing-Chi Lin
- Attending Physician, Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Yeong-Jian Jan Wu
- Attending Physician, Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Jianming Wu
- Associate Professor, Department of Veterinary and Biomedical Sciences, Department of Medicine, University of Minnesota, USA
| | - Ji-Yih Chen
- Attending Physician, Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| |
Collapse
|
26
|
Lories RJ. Advances in understanding the pathophysiology of spondyloarthritis. Best Pract Res Clin Rheumatol 2019; 32:331-341. [PMID: 31171306 DOI: 10.1016/j.berh.2018.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/10/2018] [Indexed: 01/02/2023]
Abstract
Progressive understanding of the underlying pathophysiology of axial spondyloarthritis has successfully translated into innovative therapeutic strategies and successful management of patients in the clinic. This review summarizes the key roles of the pro-inflammatory cytokines tumor necrosis factor and interleukin-17 in the onset and progression of disease and how these cytokines are instrumental in shaping the concept that enthesitis is a key feature of axial spondyloarthritis. Advances in immunological technologies have led to the important insight that different cell populations, part of both the innate and adaptive immune system, play a key role in axial spondyloarthritis. In addition to inflammation, structural damage to the axial skeleton, in particular progressive ankylosis of the sacroiliac joints and the spine, is key to the outcome of patients. Novel data integrate the role of pro-inflammatory cytokines and enthesitis in this context.
Collapse
Affiliation(s)
- Rik J Lories
- KU Leuven, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, Leuven, Belgium; University Hospitals Leuven, Division of Rheumatology, Leuven, Belgium.
| |
Collapse
|
27
|
New bone formation in the intervertebral joint space in spondyloarthritis: An MRI study. Eur J Radiol 2018; 109:210-217. [PMID: 30527307 DOI: 10.1016/j.ejrad.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To study the presence of high signal intensity of the intervertebral disc, syndesmophytes, vertebral corner bridging and transdiscal ankylosis on spinal T1-weighted MR images in spondyloarthritis (SpA). METHODS A retrospective case-control study of whole spine MRI examinations, obtained in 100 patients with axial SpA and in 100 control patients, was performed. All disco-vertebral units (DVUs) were analyzed on T1-weighted MR images for normal or high signal intensity of the intervertebral disc, presence of syndesmophytes, vertebral corner bridging or transdiscal ankylosis and correlated with final diagnosis. Sensitivity, specificity, and positive and negative likelihood ratios were calculated. RESULTS In this study group, intradiscal high signal intensity, vertebral corner bridging and transdiscal ankylosis on T1-weighted MR images of the spine were all highly specific (specificity: 100%) for diagnosis of axial SpA. However, these signs all had low sensitivity (vertebral corner bridging: 15.0%; intradiscal high signal intensity on T1-weighted MR images: 12.0%; transdiscal ankylosis: 8.0%). Syndesmophytes on spinal MRI were observed in 25 patients but had a more limited diagnostic value (sensitivity: 16.0%, specificity: 91.0%). CONCLUSIONS When present in a patient with inflammatory back pain, intradiscal high signal intensity on T1-weighted MR images could be a specific and reliable sign of the presence of axial SpA. Vertebral corner bridging and transdiscal ankylosis also show potential as specific and reliable signs of axial SpA. In contrast, syndesmophytes on MRI do not show potential as a specific or reliable sign of axial SpA.
Collapse
|
28
|
Caparbo VF, Saad CGS, Moraes JC, de Brum-Fernandes AJ, Pereira RMR. Monocytes from male patients with ankylosing spondylitis display decreased osteoclastogenesis and decreased RANKL/OPG ratio. Osteoporos Int 2018; 29:2565-2573. [PMID: 30006885 DOI: 10.1007/s00198-018-4629-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/02/2018] [Indexed: 11/25/2022]
Abstract
UNLABELLED The present study investigates the osteoclastogenic capacity of peripheral blood mononuclear cells (PBMCs) in male patients with ankylosing spondylitis (AS). We demonstrated that monocytes from these patients display a lower capacity to generate osteoclasts compared to cells from healthy controls, and osteoclastogenesis was negatively correlated with disease duration. INTRODUCTION Ankylosing spondylitis (AS) is a disease characterized by new bone growth that leads to syndesmophyte formation but AS patients frequently present with low bone mineral density/fractures. Osteoclastogenesis in AS patients is poorly studied and controversial. The aim of this study is to determine if the osteoclastogenic capacity of PBMCs is different in AS patients compared to controls and the relationship between osteoclastogenesis and clinical/laboratory parameters. METHODS PBMCs from 85 male AS patients and 59 controls were tested for CD16+ cells and induced to differentiate into osteoclasts over 3 weeks in vitro. Serum levels of RANKL, osteoprotegerin (OPG), C-terminal telopeptide of type I collagen (CTX), and amino-terminal pro-peptide of type I collagen (P1NP) were also evaluated. RESULTS PBMCs from AS patients had fewer CD16+ cells and produced fewer osteoclasts compared to controls. Apoptosis occurred less frequently in osteoclasts obtained from AS patients than in osteoclasts from the controls. A lower RANKL/OPG and CTX/P1NP were observed in AS patients compared to controls. AS patients taking NSAIDs presented no difference regarding the number of OCs produced and the percentage of CD16+ cells compared to controls. However, patients taking TNF inhibitors (TNFi) presented lower OC numbers than controls. A negative correlation was demonstrated between the number of osteoclasts generated from PBMCs of AS patients and disease duration. CONCLUSION Monocytes from male AS patients display a lower capacity to generate osteoclasts in vitro compared to cells from controls. Osteoclastogenesis was negatively correlated with disease duration. This finding supports the idea that osteoclasts play a role in the physiopathology of bone disease in AS patients.
Collapse
Affiliation(s)
- V F Caparbo
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, Av. Dr. Arnaldo, 455, 3° andar, sala 3193, São Paulo, SP, 01246-903, Brazil
| | - C G S Saad
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, Av. Dr. Arnaldo, 455, 3° andar, sala 3193, São Paulo, SP, 01246-903, Brazil
| | - J C Moraes
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, Av. Dr. Arnaldo, 455, 3° andar, sala 3193, São Paulo, SP, 01246-903, Brazil
| | - A J de Brum-Fernandes
- Département de médecine, Service de Rhumatologie, Faculté de médecine et des sciences de la santé Université de Sherbrooke, Sherbrooke, Canada
| | - R M R Pereira
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, Av. Dr. Arnaldo, 455, 3° andar, sala 3193, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
29
|
Kim HR, Hong YS, Park SH, Ju JH, Kang KY. Low bone mineral density predicts the formation of new syndesmophytes in patients with axial spondyloarthritis. Arthritis Res Ther 2018; 20:231. [PMID: 30326956 PMCID: PMC6235222 DOI: 10.1186/s13075-018-1731-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/24/2018] [Indexed: 11/14/2022] Open
Abstract
Background This study aimed to investigate whether the presence of low bone mineral density (BMD) in patients with axial spondyloarthritis (axSpA) predicts formation of new syndesmophytes over 2 years. Methods One hundred and nineteen patients fulfilling the imaging arm of the Assessment of SpondyloArthritis International Society axSpA criteria were enrolled. All patients were under 50 years of age. The modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS) was assessed by two trained readers blinded to the patients’ data. BMD (lumbar spine, femoral neck or total hip) at baseline was assessed using dual-energy absorptiometry. Low BMD was defined as Z score ≤ − 2.0. Spinal radiographic progression was defined as worsening of the mSASSS by ≥ 2 points over 2 years. Logistic regression analyses were performed to identify predictors associated with development of new syndesmophytes and spinal radiographic progression. Results At baseline, 19 (16%) patients had low BMD. New syndesmophytes had developed in 22 (21%) patients at 2-year follow-up. New syndesmophyte formation after 2 years occurred more in patients with low BMD than in those with normal BMD (p = 0.047). In the multivariable analysis, current smoking, existing syndesmophytes and low BMD at baseline were associated with spinal radiographic progression (OR (95% CI) 3.0 (1.1, 7.7), 4.6 (1.8, 11.8) and 3.6 (1.2, 11.2), respectively). The presence of syndesmophytes at baseline and low BMD were predictors of new syndesmophytes over the following 2 years (OR (95% CI) 5.5 (2.0, 15.2) and 3.6 (1.1, 11.8), respectively). Conclusions Low BMD and existing syndesmophytes at baseline were independently associated with the development of new syndesmophytes in young axSpA patients.
Collapse
Affiliation(s)
- Hyoung Rae Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeon Sik Hong
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kwi Young Kang
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea. .,Division of Rheumatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea.
| |
Collapse
|
30
|
Van Mechelen M, Gulino GR, de Vlam K, Lories R. Bone Disease in Axial Spondyloarthritis. Calcif Tissue Int 2018; 102:547-558. [PMID: 29090349 DOI: 10.1007/s00223-017-0356-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Axial spondyloarthritis is a chronic inflammatory skeletal disorder with an important burden of disease, affecting the spine and sacroiliac joints and typically presenting in young adults. Ankylosing spondylitis, diagnosed by the presence of structural changes to the skeleton, is the prototype of this disease group. Bone disease in axial spondyloarthritis is a complex phenomenon with the coexistence of bone loss and new bone formation, both contributing to the morbidity of the disease, in addition to pain caused by inflammation. The skeletal structural changes respectively lead to increased fracture risk and to permanent disability caused by ankylosis of the sacroiliac joints and the spine. The mechanism of this new bone formation leading to ankylosis is insufficiently known. The process appears to originate from entheses, specialized structures that provide a transition zone in which tendon and ligaments insert into the underlying bone. Growth factor signaling pathways such as bone morphogenetic proteins, Wnts, and Hedgehogs have been identified as molecular drivers of new bone formation, but the relationship between inflammation and activation of these pathways remains debated. Long-standing control of inflammation appears necessary to avoid ankylosis. Recent evidence and concepts suggest an important role for biomechanical factors in both the onset and progression of the disease. With regard to new bone formation, these processes can be understood as ectopic repair responses secondary to inflammation-induced bone loss and instability. In this review, we discuss the clinical implications of the skeletal changes as well as the underlying molecular mechanisms, the relation between inflammation and new bone formation, and the potential role of biomechanical stress.
Collapse
Affiliation(s)
- Margot Van Mechelen
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Division of Rheumatology, UZ Leuven, Herestraat 49, B3000, Leuven, Belgium
| | - Giulia Rossana Gulino
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Kurt de Vlam
- Division of Rheumatology, UZ Leuven, Herestraat 49, B3000, Leuven, Belgium
| | - Rik Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Division of Rheumatology, UZ Leuven, Herestraat 49, B3000, Leuven, Belgium.
| |
Collapse
|
31
|
de Koning A, Schoones JW, van der Heijde D, van Gaalen FA. Pathophysiology of axial spondyloarthritis: Consensus and controversies. Eur J Clin Invest 2018; 48:e12913. [PMID: 29460306 DOI: 10.1111/eci.12913] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/14/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Axial spondyloarthritis (axSpA) is a common inflammatory arthritis of the sacroiliac joints and the spine. The best-known and most studied form of axSpA is ankylosing spondylitis. DESIGN In this review, we provide a brief overview of the pathophysiology of axSpA. In addition, we performed a quantitative text analysis of reviews on the pathogenesis of axSpA published in the last 10 years to establish the current consensus in various fields of research into the pathogenesis of axSpA. RESULTS There appears to be broad consensus on genetic risk factors and the involvement of the immune system in the initiation phase of the disease although little consensus was found on which specific immune cells drive disease. Moreover, despite relatively little data available, alterations in the microbiome are commonly thought to be involved in disease. Abnormal bone formation is the most prominent pathogenic factor thought to be involved in disease progression. CONCLUSION So, although the pathophysiology of axSpA remains incompletely understood, the progress in recent years in several fields of research in axSpA including genetics, diagnosis, imaging and therapeutics, hold great promise for the future.
Collapse
Affiliation(s)
- Anoek de Koning
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan W Schoones
- Walaeus Library, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Floris A van Gaalen
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
32
|
Livshits G, Kalinkovich A. Hierarchical, imbalanced pro-inflammatory cytokine networks govern the pathogenesis of chronic arthropathies. Osteoarthritis Cartilage 2018; 26:7-17. [PMID: 29074297 DOI: 10.1016/j.joca.2017.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic inflammatory arthropathies, such as rheumatoid arthritis (RA), spondyloarthritis, including psoriatic arthritis (PsA), ankylosing spondyloarthritis (AS), osteoarthritis (OA), and intervertebral disc degenerative disease (DDD) constitute major public health problems that are anticipated to grow significantly as the human population ages. However, many aspects concerning the molecular mechanisms underlying their onset and progression remain unclear. DESIGN This narrative review critically analyzes the molecular mechanisms underlying the inflammation-associated pathogenesis of the aforementioned joint diseases. This includes, in particular, the major role played by several key soluble factors (such as cytokines and the associated signaling pathways, designated as "fragile nodes") produced by local cells and recruited to the joints' immune cells, whose elimination by specific drugs has dramatically improved the diseases' symptomatology and outcome in human clinical trials or in rodent arthritis models. HYPOTHESIS AND THE AIM OF THIS REVIEW We hypothesize that the pathogenesis of chronic inflammatory arthropathies is governed by hierarchical, imbalanced pro-inflammatory cytokine networks (HIPICNs) (comprising a combination of fragile nodes) that are created during the development of both autoimmune (RA, PsA, and AS) and non-autoimmune (OA and DDD) disorders. The main aim of this review is to provide evidence that despite substantial pathobiological differences between these arthropathies, the HIPICNs created are quite common, thus justifying the merging of these disorders mechanistically and suggesting that these common mechanisms exist in the onset and progression of different joint diseases.
Collapse
Affiliation(s)
- G Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | - A Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
33
|
Solmaz D, Uslu S, Kozacı D, Karaca N, Bulbul H, Tarhan EF, Ozmen M, Can G, Akar S. Evaluation of periostin and factors associated with new bone formation in ankylosing spondylitis: Periostin may be associated with the Wnt pathway. Int J Rheum Dis 2017; 21:502-509. [PMID: 28941122 DOI: 10.1111/1756-185x.13186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Periostin has been shown to be involved in bone anabolism through the regulation of Wnt-β-catenin signaling. It may be one of the pathogenic mechanisms in syndesmophyte formation in ankylosing spondylitis (AS). The aim of this study was to evaluate serum periostin levels in patients with AS and to assess relationships among biomarkers of bone formation and periostin in disease outcomes, particularly radiographic changes. METHODS Ninety-seven consecutive AS patients (78% male) and 48 healthy controls (75% male) were included in the study. Serum periostin, dickkopf-1 (DKK-1), sclerostin and vascular endothelial growth factor (VEGF) levels were measured using commercially available enzyme-linked immunosorbent assay kits. Disease-related characteristics of patients were assessed using Ankylosing spondylitis disease activity score - C-reactive protein (ASDAS-CRP), Bath AS Disease Activity Index, Bath AS Functional Index and Bath AS metrology index. Radiographs were scored using the modified New York criteria and modified Stokes AS spinal score (mSASSS). RESULTS Compared with control subjects, patients with AS had significantly lower serum levels of periostin (P < 0.001) and sclerostin (P < 0.001), but higher serum levels of VEGF (P < 0.001) and high-sensitivity CRP (P < 0.001). Serum periostin (P = 0.005) and sclerostin levels (P = 0.016) were significantly lower in patients with very high disease activity according to ASDAS-CRP. Current age (P = 0.009), age at symptom onset (P = 0.021) and hip joint involvement (P = 0.012) were independently associated with the development of syndesmophyte, in contrast to biomarkers of bone metabolism that we evaluated. CONCLUSION Our results suggest that periostin is down-regulated in AS patients with highly active disease and may contribute to disease pathogenesis through an interaction with Wnt signaling.
Collapse
Affiliation(s)
- Dilek Solmaz
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Namik Kemal University Hospital, Tekirdag, Turkey
| | - Sadettin Uslu
- Department of Internal Medicine, Izmir Katip Çelebi University School of Medicine, Izmir, Turkey
| | - Didem Kozacı
- Department of Biochemistry, Adnan Menderes University School of Medicine, Aydin, Turkey
| | - Neslihan Karaca
- Department of Biochemistry, Adnan Menderes University School of Medicine, Aydin, Turkey
| | - Hale Bulbul
- Department of Internal Medicine, Izmir Katip Çelebi University School of Medicine, Izmir, Turkey
| | - Emine Figen Tarhan
- Department of Internal Medicine and Division of Rheumatology, Izmir Katip Çelebi University School of Medicine, Izmir, Turkey
| | - Mustafa Ozmen
- Department of Internal Medicine and Division of Rheumatology, Izmir Katip Çelebi University School of Medicine, Izmir, Turkey
| | - Gercek Can
- Department of Internal Medicine and Division of Rheumatology, Izmir Katip Çelebi University School of Medicine, Izmir, Turkey
| | - Servet Akar
- Department of Internal Medicine and Division of Rheumatology, Izmir Katip Çelebi University School of Medicine, Izmir, Turkey
| |
Collapse
|
34
|
Mechanisms, impact and prevention of pathological bone regeneration in spondyloarthritis. Curr Opin Rheumatol 2017; 29:287-292. [DOI: 10.1097/bor.0000000000000404] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Neerinckx B, Kollnberger S, Shaw J, Lories R. No evidence for a direct role of HLA-B27 in pathological bone formation in axial SpA. RMD Open 2017; 3:e000451. [PMID: 28879048 PMCID: PMC5574451 DOI: 10.1136/rmdopen-2017-000451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/19/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022] Open
Abstract
Objective The strong genetic association between HLA-B27 and ankylosing spondylitis has been known for over 40 years. HLA-B27 positivity is possibly associated with severity of ankylosis. We studied the in vitro and in vivo impact of HLA-B27 in models of chondrogenesis and osteogenesis. Methods Different in vitro differentiation systems were used to mimic endochondral and direct bone formation. ATDC5 cells and primary human periosteum-derived cells (hPDCs) were transduced with lentiviral vectors expressing HLA-B27 or HLA-B7. These cells and limb bud cells (from HLA-B27 transgenic and wild-type (WT) mice) were cultured in micromasses. To study direct osteogenesis in hPDCs, cells were cultured as monolayers and stimulated with osteogenic media. Chondrogenesis (COL2, ACAN, COL10) and osteogenesis (OSC, ALP, RUNX2) marker expression was studied by quantitative RT-PCR. Colorimetric tests were performed to measure proteoglycans, mineralization and collagens. Collagen antibody-induced arthritis (CAIA) was induced in HLA-B27 transgenic and WT mice. Clinical scoring and µCTs were performed. Statistical analyses were performed by two-way ANOVA. Results There was no difference in chondrogenesis markers or in colorimetric tests between HLA-B27+ and HLA-B7+ micromasses. Expression of osteogenesis markers and Alizarin red staining was comparable in the HLA-B27+ and the HLA-B7+ hPDCs in monolayers. HLA-B27 transgenic mice showed more severe arthritis compared with WT mice in the CAIA model. µCT analysis showed no increased bone formation in HLA-B27 transgenic mice. Conclusion HLA-B27 seems to enhance joint inflammation in the CAIA model. We could not document a direct effect of HLA-B27 on chondrogenesis or osteogenesis.
Collapse
Affiliation(s)
- Barbara Neerinckx
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Leuven, Belgium.,Division of Rheumatology, UZ Leuven, Leuven, Belgium
| | - Simon Kollnberger
- Cardiff Institute of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Jacqueline Shaw
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Oxford University, Oxford, UK
| | - Rik Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Leuven, Belgium.,Division of Rheumatology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Goldring SR. Differential mechanisms of de-regulated bone formation in rheumatoid arthritis and spondyloarthritis. Rheumatology (Oxford) 2017; 55:ii56-ii60. [PMID: 27856661 DOI: 10.1093/rheumatology/kew345] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 08/23/2016] [Indexed: 11/14/2022] Open
Abstract
The inflammatory arthropathies share in common their tendency to produce marked alterations in skeletal remodelling and architecture. This review will focus on RA and the seronegative spondyloarthopathies (SpA), which share common features with respect to their tendency to produce localized bone destruction at sites of articular and peri-articular inflammation. However, there are significant differences in the skeletal pathology in these conditions, which include the unique involvement of the axial skeleton and the presence of inflammation in the extra-articular entheses in SpA. There also are differences in the pattern of bone formation and repair associated with the articular and peri-articular inflammation. This review will highlight the molecular and cellular processes that are involved in the pathogenesis of the skeletal pathology in these two forms of inflammatory arthritis with specific focus on the pathogenic mechanisms underlying the differential patterns of bone formation and repair.
Collapse
Affiliation(s)
- Steven R Goldring
- The Hospital for Special Surgery, Weill College Medical College, New York, NY, USA
| |
Collapse
|
37
|
Corrado A, Maruotti N, Cantatore FP. Osteoblast Role in Rheumatic Diseases. Int J Mol Sci 2017; 18:ijms18061272. [PMID: 28617323 PMCID: PMC5486094 DOI: 10.3390/ijms18061272] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
Alterations in osteoblast growth, differentiation and activity play a role in the pathogenesis of several rheumatic diseases, such as rheumatoid arthritis, spondyloarthritides, osteoarthritis, and osteoporosis. In fact, in these rheumatic diseases, abnormal activity of Wnt signaling, receptor activator of nuclear factor-κB (RANK)-RANK ligand (RANKL)-osteoprotegerin (OPG) signaling, bone morphogenetic proteins (BMPs) pathway and other mechanisms have been described in osteoblasts. This review article is focused on current knowledge on the role of osteoblast dysregulation occurring in rheumatic diseases.
Collapse
Affiliation(s)
- Addolorata Corrado
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, 71122 Foggia, Italy.
| | - Nicola Maruotti
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, 71122 Foggia, Italy.
| | - Francesco Paolo Cantatore
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, 71122 Foggia, Italy.
| |
Collapse
|
38
|
Epigenetic and gene expression analysis of ankylosing spondylitis-associated loci implicate immune cells and the gut in the disease pathogenesis. Genes Immun 2017. [DOI: 10.1038/gene.2017.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Zhang C, Chen Z, Meng X, Li M, Zhang L, Huang A. The involvement and possible mechanism of pro-inflammatory tumor necrosis factor alpha (TNF-α) in thoracic ossification of the ligamentum flavum. PLoS One 2017; 12:e0178986. [PMID: 28575129 PMCID: PMC5456390 DOI: 10.1371/journal.pone.0178986] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is characterized by ectopic bone formation in the ligamentum flavum and is considered to be a leading cause of thoracic spinal canal stenosis and myelopathy. However, the underlying etiology is not well understood. An iTRAQ proteomics was used to reveal the involvement of inflammation factors in TOLF. TNF-α is a pro-inflammatory cytokine implicated in the pathogenesis of many human diseases. Protein profiling analysis showed that the protein level of TNF-α increased in the ossified ligamentum flavum of TOLF, which was confirmed by western blot. The effects of TNF-α on primary ligamentum flavum cells was examined. Cell proliferation assay demonstrated that primary cells from the ossified ligamentum flavum of TOLF grew faster than the control. Flow cytometry assay indicated that the proportions of cells in S phase of cell cycle of primary cells increased after TNF-α stimulation. To address the effect of TNF-α on gene expression, primary cells were derived from ligamentum flavum of TOLF patients. Culture cells were stimulated by TNF-α. RNA was isolated and analyzed by quantitative RT-PCR. G1/S-specific proteins cyclin D1 and c-Myc were upregulated after TNF-α stimulation. On the other hand, osteoblast differentiation related genes such as Bmp2 and Osterix (Osx) were upregulated in the presence of TNF-α. TNF-α activated Osx expression in a dose-dependent manner. Interestingly, a specific mitogen-activated protein kinase ERK inhibitor U0126, but not JNK kinase inhibitor SP600125, abrogated TNF-α activation of Osx expression. This suggests that TNF-α activates Osx expression through the mitogen-activated protein kinase ERK pathway. Taken together, we provide the evidence to support that TNF-α involves in TOLF probably through regulating cell proliferation via cyclin D1 and c-Myc, and promoting osteoblast differentiation via Osx.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Central Laboratory, Peking University International Hospital, Beijing, China
- Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (CZ); (ZC)
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Haidian District, Beijing, China
- * E-mail: (CZ); (ZC)
| | - Xiangyu Meng
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Mengtao Li
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Zhang
- Department of Research, Daobio Inc., Dallas, Texas, United States of America
| | - Ann Huang
- Department of Research, Daobio Inc., Dallas, Texas, United States of America
| |
Collapse
|
40
|
Mantravadi S, Ogdie A, Kraft WK. Tumor necrosis factor inhibitors in psoriatic arthritis. Expert Rev Clin Pharmacol 2017; 10:899-910. [PMID: 28490202 DOI: 10.1080/17512433.2017.1329009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a chronic inflammatory disease that can result in significant disability. With the emergence of tumor necrosis factor inhibitors (TNFi), therapeutic outcomes in PsA have improved substantially. The clinical efficacy and the inhibition of radiographic progression demonstrated by TNFi have transformed the management of PsA. However, there is still an unmet need for a subset of patients who do not respond adequately to TNFi. Areas covered: This review provides an overview of the pharmacokinetics of TNFi, the efficacy of TNFi in PsA, and the role of immunogenicity of TNFi in the treatment of PsA. In addition, we address the use of TNFi in the setting of other medications utilized in the treatment of PsA and the potential future role of biosimilars. Expert commentary: Monoclonal antibodies exhibit complex and widely variable pharmacokinetics. The study of factors that can affect the pharmacokinetics, such as immunogenicity, is valuable to further define and understand the use of TNFi in PsA, especially in the subset of patients who do not respond adequately to these agents or lose effectiveness over time.
Collapse
Affiliation(s)
- Santhi Mantravadi
- a Department of Pharmacology and Experimental Therapeutics , Thomas Jefferson University , Philadelphia , PA , USA
| | - Alexis Ogdie
- b Department of Medicine, Division of Rheumatology, Perelman School of Medicine , University of Pennsylvania , Philadelphia PA , USA
| | - Walter K Kraft
- a Department of Pharmacology and Experimental Therapeutics , Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
41
|
Magrey MN, Khan MA. The Paradox of Bone Formation and Bone Loss in Ankylosing Spondylitis: Evolving New Concepts of Bone Formation and Future Trends in Management. Curr Rheumatol Rep 2017; 19:17. [DOI: 10.1007/s11926-017-0644-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Neerinckx B, Lories RJ. Structural Disease Progression in Axial Spondyloarthritis: Still a Cause for Concern? Curr Rheumatol Rep 2017; 19:14. [DOI: 10.1007/s11926-017-0639-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Baum R, Gravallese EM. Bone as a Target Organ in Rheumatic Disease: Impact on Osteoclasts and Osteoblasts. Clin Rev Allergy Immunol 2017; 51:1-15. [PMID: 26411424 DOI: 10.1007/s12016-015-8515-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dysregulated bone remodeling occurs when there is an imbalance between bone resorption and bone formation. In rheumatic diseases, including rheumatoid arthritis (RA) and seronegative spondyloarthritis, systemic and local factors disrupt the process of physiologic bone remodeling. Depending upon the local microenvironment, cell types, and local mechanical forces, inflammation results in very different effects on bone, promoting bone loss in the joints and in periarticular and systemic bone in RA and driving bone formation at enthesial and periosteal sites in diseases such as ankylosing spondylitis (AS), included within the classification of axial spondyloarthritis. There has been a great deal of interest in the role of osteoclasts in these processes and much has been learned over the past decade about osteoclast differentiation and function. It is now appreciated that osteoblast-mediated bone formation is also inhibited in the RA joint, limiting the repair of erosions. In contrast, osteoblasts function to produce new bone in AS. The Wnt and BMP signaling pathways have emerged as critical in the regulation of osteoblast function and the outcome for bone in rheumatic diseases, and these pathways have been implicated in both bone loss in RA and bone formation in AS. These pathways provide potential novel approaches for therapeutic intervention in diseases in which inflammation impacts bone.
Collapse
Affiliation(s)
- Rebecca Baum
- Department of Medicine and Division of Rheumatology, University of Massachusetts Medical School, Lazare Research Building Suite 223, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Ellen M Gravallese
- Department of Medicine and Division of Rheumatology, University of Massachusetts Medical School, Lazare Research Building Suite 223, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Novel clinical and animal model data support that biomechanical factors play a role in the onset and progression of spondyloarthritis. Bringing together these insights with the progress made in our understanding of the immunopathogenesis and genetic susceptibility of spondyloarthritis may provide new opportunities for better management. RECENT FINDINGS Tail suspension prevents arthritis in a tumor necrosis factor overexpression model. A similar approach also reduces new bone formation after acute arthritis in mice. Physical labor is associated with disease severity, including structural disease progression. Sentinel immune cells in the enthesis provide a link between local damage and the development of inflammation. Loss of stability likely triggers tissue remodeling, including the formation of syndesmophytes. Improving muscle strength and control while avoiding excessive strain or overuse should be considered in the approach toward patients. New regulators of tissue turnover and remodeling are emerging including microRNAs. SUMMARY Local damage may provide a trigger for spondyloarthritis. For structural disease progression loss of stability may be an important factor. Control of inflammation will prevent stability issues and improve the long-term prognosis of disease. Physical therapy will continue to provide benefit for patients in the short and in long-term management of disease.
Collapse
|
45
|
Atkinson SM, Nansen A. Pharmacological Value of Murine Delayed-type Hypersensitivity Arthritis: A Robust Mouse Model of Rheumatoid Arthritis in C57BL/6 Mice. Basic Clin Pharmacol Toxicol 2016; 120:108-114. [PMID: 27553641 DOI: 10.1111/bcpt.12657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
In this MiniReview, we summarize the body of knowledge on the delayed-type hypersensitivity arthritis (DTHA) model, a recently developed arthritis model with 100% incidence, low variation and synchronized onset in C57BL/6 (B6) mice, and compare it to other murine arthritis models. It is desirable to have robust arthritis models in B6 mice, as many transgene strains are bred on this background. However, several of the most widely used mouse model of arthritis cannot be induced in B6 mice without the drawback of lower incidence, reduced severity and higher variation, if at all. DTHA is induced by modifying a classical methylated bovine serum albumin (mBSA)-induced DTH response by administering a cocktail of anti-type II collagen antibodies (anti-CII) between immunization and challenge. Arthritis affects one, predefined paw in which acute inflammation and severe arthritis rapidly develop and peak after 4-7 days. Disease is self-resolving over the course of around 3 weeks. Disease manifestations resemble those seen in other arthritis models and include bone erosion, cartilage destruction, oedema, pannus and new bone formation. Induction of DTHA is dependent on CD4+ T cells while B cells are dispensable. The DTHA model is set apart from other murine arthritis models in that it can be induced in B6 mice with 100% incidence and with high and consistent severity. This is the clearest advantage of the model, as the mechanisms of disease and clinical manifestations can be found in other arthritis models. The model holds potential for future modifications that may improve the lack of chronicity.
Collapse
Affiliation(s)
- Sara Marie Atkinson
- Novo Nordisk & LIFE In Vivo Pharmacology Centre & the Danish In Vivo Pharmacology PhD Program, University of Copenhagen, Frederiksberg C, Denmark.,Diabetes Complications Research, Novo Nordisk A/S, Maaloev, Denmark
| | | |
Collapse
|
46
|
MR signal in the sacroiliac joint space in spondyloarthritis: a new sign. Eur Radiol 2016; 27:2024-2030. [DOI: 10.1007/s00330-016-4587-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022]
|
47
|
Leone A, Marino M, Dell'Atti C, Zecchi V, Magarelli N, Colosimo C. Spinal fractures in patients with ankylosing spondylitis. Rheumatol Int 2016; 36:1335-46. [PMID: 27379763 DOI: 10.1007/s00296-016-3524-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/28/2016] [Indexed: 12/13/2022]
Abstract
The ankylosed spine is prone to fracture even after minor trauma due to its changed biomechanical properties. The two central features of ankylosing spondylitis (AS) that promote the pathological remodeling of the spine are inflammation and new bone formation. AS is also associated with osteoporosis that is attributed to an uncoupling of the bone formation and bone resorption processes. Therefore, bone resorption occurs and promotes weakening of the spine as well as increased risk of vertebral fractures which can be hugely different in terms of clinical relevance. Even in the presence of symptomatic clinical vertebral fractures, the diagnosis can be overruled by attributing the pain to disease activity. Furthermore, given the highly abnormal structure of the spine, vertebral fracture diagnosis can be difficult on the basis of radiography alone. CT can show the fractures in detail. Magnetic resonance imaging is considered the method of choice for the imaging of spinal cord injuries, and a reasonable option for exclusion of occult fractures undetected by CT. Since it is equally important for radiologists and clinicians to have a common knowledge base rather than a compartmentalized view, the aim of this review article was to provide the required clinical knowledge that radiologists need to know and the relevant radiological semiotics that clinicians require in diagnosing clinically significant injury to the ankylosed spine.
Collapse
Affiliation(s)
- Antonio Leone
- Institute of Radiology, School of Medicine, Catholic University, Largo A. Gemelli 1, 00168, Rome, Italy.
| | - Marzia Marino
- Institute of Radiology, School of Medicine, Catholic University, Largo A. Gemelli 1, 00168, Rome, Italy
| | - Claudia Dell'Atti
- Institute of Radiology, School of Medicine, Catholic University, Largo A. Gemelli 1, 00168, Rome, Italy
| | - Viola Zecchi
- Institute of Radiology, School of Medicine, Catholic University, Largo A. Gemelli 1, 00168, Rome, Italy
| | - Nicola Magarelli
- Institute of Radiology, School of Medicine, Catholic University, Largo A. Gemelli 1, 00168, Rome, Italy
| | - Cesare Colosimo
- Institute of Radiology, School of Medicine, Catholic University, Largo A. Gemelli 1, 00168, Rome, Italy
| |
Collapse
|
48
|
González-Chávez SA, Quiñonez-Flores CM, Pacheco-Tena C. Molecular mechanisms of bone formation in spondyloarthritis. Joint Bone Spine 2016; 83:394-400. [DOI: 10.1016/j.jbspin.2015.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/20/2015] [Indexed: 12/17/2022]
|
49
|
Xie Z, Wang P, Li Y, Deng W, Zhang X, Su H, Li D, Wu Y, Shen H. Imbalance Between Bone Morphogenetic Protein 2 and Noggin Induces Abnormal Osteogenic Differentiation of Mesenchymal Stem Cells in Ankylosing Spondylitis. Arthritis Rheumatol 2016; 68:430-40. [PMID: 26413886 DOI: 10.1002/art.39433] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/08/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To study the osteogenic differentiation capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs) from patients with ankylosing spondylitis (AS) and to investigate the mechanisms of abnormal osteogenic differentiation of BM-MSCs in AS. METHODS BM-MSCs from healthy donors (HD-MSCs) and patients with AS (AS-MSCs) were cultured in osteogenic differentiation medium for 0-21 days, after which their osteogenic differentiation capacity was determined using alizarin red S and alkaline phosphatase assays. Gene expression levels of osteoblastic markers and related cytokines were detected by high-throughput quantitative reverse transcription-polymerase chain reaction. Enzyme-linked immunosorbent assay was performed to detect protein levels of bone morphogenetic protein 2 (BMP-2) and Noggin in the cell culture supernatant. The activation of Smad1/5/8 and MAPK signaling pathways was measured by Western blotting. The balance between BMP-2 and Noggin expression was regulated using lentiviruses encoding short hairpin RNA and exogenous Noggin, respectively, which enabled evaluation of how this balance affected osteogenic differentiation of AS-MSCs. RESULTS AS-MSCs outperformed HD-MSCs in osteogenic differentiation capacity. During osteogenic differentiation, AS-MSCs secreted more BMP-2 but less Noggin, accompanied by an overactivation of Smad1/5/8 and ERK-1/2. When the Noggin concentration was increased or BMP-2 expression was inhibited, the abnormal osteogenic differentiation of AS-MSCs was rectified. In addition, the balance between BMP-2 and Noggin secretion was restored. CONCLUSION The results of this study demonstrate that an imbalance between BMP-2 and Noggin secretion induces abnormal osteogenic differentiation of AS-MSCs. These findings reveal a mechanism of pathologic osteogenesis in AS and provide a new perspective on inhibiting pathologic osteogenesis by regulating the balance between BMP-2 and Noggin.
Collapse
Affiliation(s)
- Zhongyu Xie
- Sun Yat-sen Memorial Hospital and Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Sun Yat-sen Memorial Hospital and Sun Yat-sen University, Guangzhou, China
| | - Yuxi Li
- Sun Yat-sen Memorial Hospital and Sun Yat-sen University, Guangzhou, China
| | - Wen Deng
- Sun Yat-sen Memorial Hospital and Sun Yat-sen University, Guangzhou, China
| | - Xin Zhang
- Sun Yat-sen Memorial Hospital and Sun Yat-sen University, Guangzhou, China
| | - Hongjun Su
- Sun Yat-sen Memorial Hospital and Sun Yat-sen University, Guangzhou, China
| | - Deng Li
- Sun Yat-sen Memorial Hospital and Sun Yat-sen University, Guangzhou, China
| | - Yanfeng Wu
- Sun Yat-sen Memorial Hospital and Sun Yat-sen University, Guangzhou, China
| | - Huiyong Shen
- Sun Yat-sen Memorial Hospital and Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Xie Z, Li J, Wang P, Li Y, Wu X, Wang S, Su H, Deng W, Liu Z, Cen S, Ouyang Y, Wu Y, Shen H. Differential Expression Profiles of Long Noncoding RNA and mRNA of Osteogenically Differentiated Mesenchymal Stem Cells in Ankylosing Spondylitis. J Rheumatol 2016; 43:1523-31. [PMID: 27182066 DOI: 10.3899/jrheum.151181] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We previously demonstrated that mesenchymal stem cells (MSC) from patients with ankylosing spondylitis (AS; ASMSC) have a greater osteogenic differentiation capacity than MSC from healthy donors (HDMSC) and that this difference underlies the pathogenesis of pathological osteogenesis in AS. Here we compared expression levels of long noncoding RNA (lncRNA) and mRNA between osteogenically differentiated ASMSC and HDMSC and explored the precise mechanism underlying abnormal osteogenic differentiation in ASMSC. METHODS HDMSC and ASMSC were induced with osteogenic differentiation medium for 10 days. Microarray analyses were then performed to identify lncRNA and mRNA differentially expressed between HDMSC and ASMSC, which were then subjected to bioinformatics analysis and confirmed by quantitative real-time PCR (qRT-PCR) assays. In addition, coding-non-coding gene co-expression (CNC) networks were constructed to examine the relationships between the lncRNA and mRNA expression patterns. RESULTS A total of 520 lncRNA and 665 mRNA were differentially expressed in osteogenically differentiated ASMSC compared with HDMSC. Bioinformatics analysis revealed 64 signaling pathways with significant differences, including transforming growth factor-β signaling. qRT-PCR assays confirmed the reliability of the microarray data. The CNC network indicated that 4 differentially expressed lncRNA, including lnc-ZNF354A-1, lnc-LIN54-1, lnc-FRG2C-3, and lnc-USP50-2 may be involved in the abnormal osteogenic differentiation of ASMSC. CONCLUSION Our study characterized the differential lncRNA and mRNA expression profiles of osteogenically differentiated ASMSC and identified 4 lncRNA that may participate in the abnormal osteogenic differentiation of ASMSC. These results provide insight into the pathogenesis of pathological osteogenesis in AS.
Collapse
Affiliation(s)
- Zhongyu Xie
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Jinteng Li
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Peng Wang
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Yuxi Li
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Xiaohua Wu
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Shan Wang
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Hongjun Su
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Wen Deng
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Zhenhua Liu
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Shuizhong Cen
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Yi Ouyang
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Yanfeng Wu
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Huiyong Shen
- From the Department of Orthopedics, and the Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China.Z. Xie, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; J. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; P. Wang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Li, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; X. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Wang, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Su, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; W. Deng, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Z. Liu, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; S. Cen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Ouyang, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Y. Wu, MD, Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; H. Shen, MD, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University.
| |
Collapse
|