1
|
Tajbakhsh S, Marić M. Nitroxide mediated miniemulsion polymerization of methacryloisobutyl
POSS
: Homopolymers and copolymers with alkyl methacrylates. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saeid Tajbakhsh
- Department of Chemical Engineering McGill University Quebec Canada
| | - Milan Marić
- Department of Chemical Engineering McGill University Quebec Canada
| |
Collapse
|
2
|
Jiao W, Yang H, Wu Z, Liu J, Zhang W. Self-assembled block polymer aggregates in selective solution: controllable morphology transitions and their applications in drug delivery. Expert Opin Drug Deliv 2020; 17:947-961. [DOI: 10.1080/17425247.2020.1767582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Weiqi Jiao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
- Department of Biochemistry and Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, US
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
3
|
Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted photodynamic therapy of breast cancer. Colloids Surf B Biointerfaces 2020; 189:110829. [PMID: 32036332 DOI: 10.1016/j.colsurfb.2020.110829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/17/2022]
Abstract
Chlorin e6 (Ce6), with its high phototoxic potential, has wide applications in photodynamic therapy (PDT) for many human diseases. However, poor cancer cell localization of Ce6 has limited its direct application for PDT. Here, we developed cancer-targeting peptide p 18-4/chlorin e6 (Ce6)-conjugated polyhedral oligomeric silsesquioxane (PPC) nanoparticles for improving the targeting ability of Ce6 to breast cancer cells, thereby enhancing PDT efficacy. The synthesized PPC nanoparticles exhibited a spherical shape with an average diameter of 127.2 ± 11.3 nm in aqueous solution. Compared with free Ce6, the immobilization of p 18-4 enhanced the in vitro cellular uptake and targeting ability of PPC nanoparticles in breast cancer cell line MDA-MB-231. In addition, the intracellular uptake of PPC nanoparticles in MDA-MB-231 cells was dramatically increased compared with other cancer cells, indicating an obvious targeting ability of PPC nanoparticles on breast cancer cells. Upon light irradiation, PPC nanoparticles revealed significantly improved phototoxicity to MDA-MB-231 cells, mainly due to apoptotic cell death. In vivo PDT study suggested that PPC nanoparticles exhibited increased retention in tumor tissues and effectively inhibited the growth of MDA-MB-231 tumors in a target-specific manner. Overall, these results indicate that PPC nanoparticles are highly effective PDT agents for breast cancer therapy.
Collapse
|
4
|
Ullah A, Shah SM, Hassan A, Maric M, Hussain H. Nitroxide‐mediated radical polymerization of methacryloisobutyl POSS and its block copolymers with poly(
n
‐acryloylmorpholine). JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Asad Ullah
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Islamabad Pakistan
| | - Syed M. Shah
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Islamabad Pakistan
| | - Abbas Hassan
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Islamabad Pakistan
| | - Milan Maric
- Department of Chemical EngineeringMcGill University 3610 University Street Montreal, Quebec, H3A 0C5 Canada
| | - Hazrat Hussain
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Islamabad Pakistan
| |
Collapse
|
5
|
Ullah A, Ullah S, Mahmood N, Shah SM, Hussain Z, Hussain H. Effect of polyhedral oligomeric silsesquioxane nanocage on the crystallization behavior of PEG
5k
‐
b
‐P(MA‐POSS) diblock copolymers achieved via atom transfer radical polymerization. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Asad Ullah
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Shakir Ullah
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Nasir Mahmood
- Institut für Chemie, FG Mikro‐ und Nanostrukturbasierte PolymerverbundwerkstoffeMartin Luther University Halle‐Wittenberg Halle/Saale Germany
| | - Syed M. Shah
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Zakir Hussain
- School of Chemical and Materials Engineering (SCME)National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Hazrat Hussain
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| |
Collapse
|
6
|
Ullah A, Shah SM, Hussain H. Amphiphilic tadpole-shaped POSS-poly(glycerol methacrylate) hybrid polymers: synthesis and self-assembly. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1662-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Chi H, Wang M, Xiao Y, Wang F, K S J. Self-Assembly and Applications of Amphiphilic Hybrid POSS Copolymers. Molecules 2018; 23:E2481. [PMID: 30262758 PMCID: PMC6222655 DOI: 10.3390/molecules23102481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Abstract
Understanding the mechanism of molecular self-assembly to form well-organized nanostructures is essential in the field of supramolecular chemistry. Particularly, amphiphilic copolymers incorporated with polyhedral oligomeric silsesquioxanes (POSSs) have been one of the most promising materials in material science, engineering, and biomedical fields. In this review, new ideas and research works which have been carried out over the last several years in this relatively new area with a main focus on their mechanism in self-assembly and applications are discussed. In addition, insights into the unique role of POSSs in synthesis, microphase separation, and confined size were encompassed. Finally, perspectives and challenges related to the further advancement of POSS-based amphiphilics are discussed, followed by the proposed design considerations to address the challenges that we may face in the future.
Collapse
Affiliation(s)
- Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingyue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yiting Xiao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fuke Wang
- Polymeric Materials Department, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| | - Joshy K S
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India.
| |
Collapse
|
8
|
Raus V, Janata M, Čadová E. Copper Wire-Catalyzed RDRP in Nonpolar Media as a Route to Ultrahigh Molecular Weight Organic-Inorganic Hybrid Polymers. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vladimír Raus
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Miroslav Janata
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| |
Collapse
|
9
|
Self-Assembly Behavior and pH-Stimuli-Responsive Property of POSS-Based Amphiphilic Block Copolymers in Solution. MICROMACHINES 2018; 9:mi9060258. [PMID: 30424191 PMCID: PMC6187445 DOI: 10.3390/mi9060258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/05/2022]
Abstract
Stimuli-responsive polymeric systems containing special responsive moieties can undergo alteration of chemical structures and physical properties in response to external stimulus. We synthesized a hybrid amphiphilic block copolymer containing methoxy polyethylene glycol (MePEG), methacrylate isobutyl polyhedral oligomeric silsesquioxane (MAPOSS) and 2-(diisopropylamino)ethyl methacrylate (DPA) named MePEG-b-P(MAPOSS-co-DPA) via atom transfer radical polymerization (ATRP). Spherical micelles with a core-shell structure were obtained by a self-assembly process based on MePEG-b-P(MAPOSS-co-DPA), which showed a pH-responsive property. The influence of hydrophobic chain length on the self-assembly behavior was also studied. The pyrene release properties of micelles and their ability of antifouling were further studied.
Collapse
|
10
|
Cao Q, He N, Wang Y, Lu Z. Self-assembled nanostructures from amphiphilic globular protein–polymer hybrids. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2176-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Wang G, Zhang L. Synthesis, self-assembly and pH sensitivity of PDEAEMA–PEG–PDEAEMA triblock copolymer micelles for drug delivery. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Enhanced cellular uptake of protoporphyrine IX/linolenic acid-conjugated spherical nanohybrids for photodynamic therapy. Colloids Surf B Biointerfaces 2016; 142:182-191. [DOI: 10.1016/j.colsurfb.2016.02.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/02/2016] [Accepted: 02/25/2016] [Indexed: 01/12/2023]
|
13
|
Ullah A, Ullah S, Khan GS, Shah SM, Hussain Z, Muhammad S, Siddiq M, Hussain H. Water soluble polyhedral oligomeric silsesquioxane based amphiphilic hybrid polymers: Synthesis, self-assembly, and applications. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Zhu HZ, You LQ, Wei HL, Wang GF, Chu HJ, Zhu J, He J. Preparation and characterization of pH-sensitive hydrogel microspheres based on atom transfer radical polymerization. POLYM ENG SCI 2015. [DOI: 10.1002/pen.24168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hong-Zheng Zhu
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Li-Qin You
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Hong-Liang Wei
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Guo-Feng Wang
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Hui-Juan Chu
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Jing Zhu
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Juan He
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| |
Collapse
|
15
|
Chiou CW, Lin YC, Wang L, Maeda R, Hayakawa T, Kuo SW. Hydrogen Bond Interactions Mediate Hierarchical Self-Assembly of POSS-Containing Block Copolymers Blended with Phenolic Resin. Macromolecules 2014. [DOI: 10.1021/ma502180c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chin-Wei Chiou
- Department
of Materials and Optoelectronic Science, Center for Functional Polymers
and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yung-Chih Lin
- Department
of Materials and Optoelectronic Science, Center for Functional Polymers
and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Lei Wang
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-S8-36
O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Rina Maeda
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-S8-36
O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Teruaki Hayakawa
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-S8-36
O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shiao-Wei Kuo
- Department
of Materials and Optoelectronic Science, Center for Functional Polymers
and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
16
|
Raus V, Čadová E, Starovoytova L, Janata M. ATRP of POSS Monomers Revisited: Toward High-Molecular Weight Methacrylate–POSS (Co)Polymers. Macromolecules 2014. [DOI: 10.1021/ma501541g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Vladimír Raus
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Eva Čadová
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Larisa Starovoytova
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Miroslav Janata
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|